首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Psoriasis is a chronic inflammatory disorder of the skin characterized by epidermal hyperplasia and infiltration of leukocytes into the dermis and epidermis. T cell-derived cytokines, such as IFN-γ and IL-17A, play a major role in the psoriasis-associated epidermal hyperplasia, even though factors/mechanisms that regulate the production of these cytokines are not fully understood. We have recently shown that IL-21 is synthesized in excess in psoriatic skin lesions and causes epidermal hyperplasia when injected intradermally in mice. Moreover, in the human psoriasis SCID mouse model, neutralization of IL-21 reduces both skin thickening and expression of inflammatory molecules, thus supporting the pathogenic role of IL-21 in psoriasis. However, the basic mechanism by which IL-21 promotes skin pathology remains unknown. In this study, we show that CD4(+) cells accumulate early in the dermis of IL-21-treated mice and mediate the development of epidermal hyperplasia. Indeed, IL-21 fails to induce skin damage in RAG1-deficient mice and CD4(+) cell-depleted wild-type mice. The majority of CD4(+) cells infiltrating the dermis of IL-21-treated mice express IFN-γ and, to a lesser extent, IL-17A. Studies in cytokine knockout mice show that IFN-γ, but not IL-17A, is necessary for IL-21-induced epidermal hyperplasia. Finally, we demonstrate that IFN-γ-producing CD4(+) cells infiltrating the human psoriatic plaque express IL-21R, and abrogation of IL-21 signals reduces IFN-γ expression in cultures of psoriatic CD4(+) cells. Data indicate that IL-21 induces an IFN-γ-dependent pathogenic response in vivo, thus contributing to elucidate a mechanism by which IL-21 sustains skin-damaging inflammation.  相似文献   

2.
We have previously demonstrated that IL-7 is essential for the persistence of colitis as a survival factor of colitogenic IL-7Rα-expressing memory CD4(+) T cells. Because IL-7Rα is broadly expressed on various immune cells, it is possible that the persistence of colitogenic CD4(+) T cells is affected by other IL-7Rα-expressing non-T cells. To test this hypothesis, we conducted two adoptive transfer colitis experiments using IL-7Rα(-/-) CD4(+)CD25(-) donor cells and IL-7Rα(-/-) × RAG-2(-/-) recipient mice, respectively. First, IL-7Rα expression on colitic lamina propria (LP) CD4(+) T cells was significantly higher than on normal LP CD4(+) T cells, whereas expression on other colitic LP immune cells, (e.g., NK cells, macrophages, myeloid dendritic cells) was conversely lower than that of paired LP cells in normal mice, resulting in predominantly higher expression of IL-7Rα on colitogenic LP CD4(+) cells, which allows them to exclusively use IL-7. Furthermore, RAG-2(-/-) mice transferred with IL-7Rα(-/-) CD4(+)CD25(-) T cells did not develop colitis, although LP CD4(+) T cells from mice transferred with IL-7Rα(-/-) CD4(+)CD25(-) T cells were differentiated to CD4(+)CD44(high)CD62L(-) effector-memory T cells. Finally, IL-7Rα(-/-) × RAG-2(-/-) mice transferred with CD4(+)CD25(-) T cells developed colitis similar to RAG-2(-/-) mice transferred with CD4(+)CD25(-) T cells. These results suggest that IL-7Rα expression on colitogenic CD4(+) T cells, but not on other cells, is essential for the development of chronic colitis. Therefore, therapeutic approaches targeting the IL-7/IL-7R signaling pathway in colitogenic CD4(+) T cells may be feasible for the treatment of inflammatory bowel diseases.  相似文献   

3.
Lee WW  Shin MS  Kang Y  Lee N  Jeon S  Kang I 《Cytokine》2012,58(3):332-335
The IL-7 receptor alpha (IL-7Rα) is the high affinity receptor for IL-7 which is essential for T cell homeostasis. We recently reported an age-associated expansion of human effector memory (EM) CD8(+) T cells expressing IL-7Rα low (IL-7Rα(low)), which could be detrimental to hosts by occupying "immunological space". We investigated the potential mechanisms for this phenomenon, focusing on cytomegalovirus (CMV) infection and INF-α. In the elderly (age ≥ 65), CMV infection was associated with a decreased frequency of na?ve CD8(+) T cells as well as with an increased frequency of total EM and IL-7Rα(low) EM CD8(+) T cells. However, in the young (age ≤ 40), this viral infection was associated only with an increased frequency of IL-7Rα(low) EM CD8(+) T cells. There was no association found between CMV immune status and plasma levels of IFN-α. In CMV-infected young and elderly people, INF-α levels had no correlation with the frequency of IL-7Rα(low) EM CD8(+) T cells although this cytokine levels correlated with the frequency of IL-7Rα(low) CD45RA(+) EM CD8(+) T cells in CMV-uninfected elderly people. Our findings suggest that the effect of CMV infection on the frequency of CD8(+) T cell subsets may begin with IL-7Rα(low) EM CD8(+) T cells and spread to other subsets with aging. Also, IFN-α could be associated with the expansion of IL-7Rα(low) CD45RA(+) EM CD8(+) T cells in the CMV-uninfected elderly.  相似文献   

4.
Recent findings have demonstrated an indispensable role for GM-CSF in the pathogenesis of experimental autoimmune encephalomyelitis. However, the signaling pathways and cell populations that regulate GM-CSF production in vivo remain to be elucidated. Our work demonstrates that IL-1R is required for GM-CSF production after both TCR- and cytokine-induced stimulation of immune cells in vitro. Conventional αβ and γδ T cells were both identified to be potent producers of GM-CSF. Moreover, secretion of GM-CSF was dependent on IL-1R under both IL-12- and IL-23-induced stimulatory conditions. Deficiency in IL-1R conferred significant protection from experimental autoimmune encephalomyelitis, and this correlated with reduced production of GM-CSF and attenuated infiltration of inflammatory cells into the CNS. We also find that GM-CSF production in vivo is not restricted to a defined CD4(+) T cell lineage but is rather heterogeneously expressed in the effector CD4(+) T cell population. In addition, inflammasome-derived IL-1β upstream of IL-1R is a critical regulator of GM-CSF production by T cells during priming, and the adapter protein, MyD88, promotes GM-CSF production in both αβ and γδ T cells. These findings highlight the importance of inflammasome-derived IL-1β and the IL-1R/MyD88 signaling axis in the regulation of GM-CSF production.  相似文献   

5.
Sustained intratumoral delivery of IL-12 and GM-CSF can overcome tumor immune suppression and promote T cell-dependent eradication of established disease in murine tumor models. However, the antitumor effector response is transient and rapidly followed by a T suppressor cell rebound. The mechanisms that control the switch from an effector to a regulatory response in this model have not been defined. Because dendritic cells (DC) can mediate both effector and suppressor T cell priming, DC activity was monitored in the tumors and the tumor-draining lymph nodes (TDLN) of IL-12/GM-CSF-treated mice. The studies demonstrated that therapy promoted the recruitment of immunogenic DC (iDC) to tumors with subsequent migration to the TDLN within 24-48 h of treatment. Longer-term monitoring revealed that iDC converted to an IDO-positive tolerogenic phenotype in the TDLN between days 2 and 7. Specifically, day 7 DC lost the ability to prime CD8(+) T cells but preferentially induced CD4(+)Foxp3(+) T cells. The functional switch was reversible, as inhibition of IDO with 1-methyl tryptophan restored immunogenic function to tolerogenic DC. All posttherapy immunological activity was strictly associated with conventional myeloid DC, and no functional changes were observed in the plasmacytoid DC subset throughout treatment. Importantly, the initial recruitment and activation of iDC as well as the subsequent switch to tolerogenic activity were both driven by IFN-γ, revealing the dichotomous role of this cytokine in regulating IL-12-mediated antitumor T cell immunity.  相似文献   

6.
7.
Mature dendritic cells (DCs) play a pathogenic role in atherosclerosis. Our previous study demonstrated that exogenous interleukin (IL)-37 suppresses the maturation of DCs, induces the T-regulatory (Treg) cell response, and attenuates atherosclerosis in ApoE−/− mice. The aim of the present study was to explore the molecular mechanism of IL-37 on the maturation of DCs throughout the development of atherosclerosis. The expression of interleukin-1 receptor 8 (IL-1R8), which is a single Ig-domain receptor that was recently found to be pivotal for the extracellular function of IL-37, Toll-like receptor (TLR) 4 and p65, was measured in ApoE−/− mice and IL-37 transgenic (IL-37tg) ApoE−/− mice. IL-1R8 was mainly expressed in aortic plaque-infiltrated DCs and at significantly higher levels in IL-37tg atherosclerotic mice, accompanied by lower levels of TLR4 and p65. Furthermore, IL-37 eliminated the maturation of DCs induced by oxidized low-density lipoprotein (oxLDL) and caused marked upregulation of IL-1R8 in vitro and downregulation of TLR4 and p65, which was consistent with the experiments in mice. However, the inhibitory effect of IL-37 on the maturation of DCs in vitro was abolished when IL-37 was used to treat DCs isolated from IL-1R8-deficient and TLR4-deficient mice. Therefore, this study indicated that IL-37 inhibited the maturation of DCs via the IL-1R8-TLR4-NF-κB pathway and attenuated atherosclerosis in ApoE−/− mice.  相似文献   

8.
We recently identified a CD2-mediated, IL-12-dependent signaling pathway that inhibits apoptosis in mitogen-stimulated human gammadelta-T cells. Here we show that gammadelta-T cells which acquire resistance to mitogen-induced apoptosis upregulate IL-12 receptor beta 1 subunit (IL-12Rbeta1); in contrast, gammadelta-T cells which remain sensitive to mitogen-induced apoptosis fail to express IL-12Rbeta1. Next we show that gammadelta-T cells which are rendered resistant to mitogen-induced apoptosis attenuate their expression of the IL-2 receptor alpha chain (IL-2Ralpha/CD25), this in part accounting for their acquired resistance to IL-2-induced death. In contrast, apoptosis-sensitive gammadelta-T cells are shown to persist in their expression of IL-2Ralpha/CD25, thus remaining sensitive to IL-2-induced death. Moreover, we show that apoptosis-resistant, but not apoptosis-sensitive, gammadelta-T cells display an enhanced responsiveness to IL-15, a finding in keeping with the known function of IL-15 as a growth and survival factor. Finally, we present evidence to suggest that this differential responsiveness to IL-15 occurs in part by the increased expression of the IL-15Ralpha chain on apoptosis-resistant gammadelta-T cells, compared to apoptosis-sensitive gammadelta-T cells. The biological and clinical implications of these findings are discussed.  相似文献   

9.
Dendritic cells (DCs) are promising antigen presenting cells for cancer treatment. Previously, we showed that the combination of monophosphoryl lipid A (MPLA) with IFNγ generates mature DCs that produce IL-12 and polarize CD4+ T cells towards a Th1 phenotype. Here, we extended these observations by showing that the DCs generated with the clinical grade maturation cocktail of MPLA/IFNγ induce superior tumour antigen-specific CD8+ CTL responses compared to the cytokine cocktail matured DCs that are currently used in the clinic. MPLA/IFNγ DCs can induce CTL responses in healthy individuals as well as in melanoma patients. The CTL induction was mainly dependent on the IL-12 produced by the MPLA/IFNγ DCs. The high amounts of induced CTLs are functional as they produce IFNγ and lyse target cells and this cytolytic activity is antigen specific and HLA restricted. Furthermore, the CTLs proved to kill tumour cells expressing endogenous tumour antigen in vitro. Therefore, MPLA/IFNγ DCs are very promising for the use in future cancer immunotherapy.  相似文献   

10.
Osteoporosis results from dysregulated bone remodeling with increased osteoclast-mediated destruction of bones. We have recently shown in vitro the truncated tryptophanyl-tRNA synthetase (mini-TrpRS)-dependent action of interferon-gamma (IFN-γ) to promote myeloid lineage multinucleation, a fundamental step in the osteoclast formation. In particular, we found that IFN-γ readily induced monocyte aggregation leading to multinuclear giant cell formation that paralleled marked upregulation of mini-TrpRS. However, blockade of mini-TrpRS with its cognate amino acid and decoy substrate D-Tryptophan prevented mini-TrpRS signaling, and markedly reduced the aggregation of monocytes and multinucleation in the presence of IFN. The cell signaling mechanism executed by mini-TrpRS appears inevitably in any inflammatory environment that involves IFN-γ with outcomes depending on the cell type involved. Here, we elaborate on these findings and discuss the potential role of the IFN-γ/mini-TrpRS signaling axis in osteoporosis pathophysiology, which may eventually materialize in a novel therapeutic perspective for this disease.  相似文献   

11.
Vitamin D and vitamin D receptor (VDR) deficiency results in severe symptoms of experimental inflammatory bowel disease in several different models. The intraepithelial lymphocytes of the small intestine contain large numbers of CD8αα(+) T cells that have been shown to suppress the immune response to Ags found there. In this study, we determined the role of the VDR in the development of CD8αα(+) T cells. There are fewer total numbers of TCRαβ(+) T cells in the gut of VDR knockout (KO) mice, and that reduction was largely in the CD8αα(+) TCRαβ(+) cells. Conversely TCRγδ(+) T cells were normal in the VDR KO mice. The thymic precursors of CD8αα(+) TCRαβ(+) cells (triple-positive for CD4, CD8αα, and CD8αβ) were reduced and less mature in VDR KO mice. In addition, VDR KO mice had a higher frequency of the CD8αα(+) TCRαβ(+) precursors (double-negative [DN] TCRαβ(+) T cells) in the gut. The proliferation rates of the DN TCRαβ(+) gut T cells were less in the VDR KO compared with those in wild type. Low proliferation of DN TCRαβ(+) T cells was a result of the very low expression of the IL-15R in this population of cells in the absence of the VDR. Bone marrow transplantation showed that the defect in VDR KO CD8αα(+) TCRαβ(+) cells was cell intrinsic. Decreased maturation and proliferation of CD8αα(+) TCRαβ(+) cells in VDR KO mice results in fewer functional CD8αα(+) TCRαβ(+) T cells, which likely explains the increased inflammation in the gastrointestinal tract of VDR KO and vitamin D-deficient mice.  相似文献   

12.
Variable sensitivity to T-cell-receptor (TCR)- and IL-7-receptor (IL-7R)-mediated homeostatic signals among na?ve T cells has thus far been largely attributed to differences in TCR specificity. We show here that even when withdrawn from self-peptide-induced TCR stimulation, CD8(+) T cells exhibit heterogeneous responses to interleukin-7 (IL-7) that are mechanistically associated with IL-7R expression differences that correlate with relative CD5 expression. Whereas CD5(hi) and CD5(lo) T cells survive equivalently in the presence of saturating IL-7 levels in vitro, CD5(hi) T cells proliferate more robustly. Conversely, CD5(lo) T cells exhibit prolonged survival when withdrawn from homeostatic stimuli. Through quantitative experimental analysis of signaling downstream of IL-7R, we find that the enhanced IL-7 responsiveness of CD5(hi) T cells is directly related to their greater surface IL-7R expression. Further, we identify a quantitative threshold in IL-7R-mediated signaling capacity required for proliferation that lies well above an analogous threshold requirement for survival. These distinct thresholds allow subtle differences in IL-7R expression between CD5(lo) and CD5(hi) T cells to give rise to significant variations in their respective IL-7-induced proliferation, without altering survival. Heterogeneous IL-7 responsiveness is observed similarly in vivo, with CD5(hi) na?ve T cells proliferating preferentially in lymphopenic mice or lymphoreplete mice administered with exogenous IL-7. However, IL-7 in lymphoreplete mice appears to be maintained at an effective level for preserving homeostasis, such that neither CD5(hi) IL-7R(hi) nor CD5(lo) IL-7R(lo) T cells proliferate or survive preferentially. Our findings indicate that IL-7R-mediated signaling not only maintains the size but also impacts the diversity of the na?ve T-cell repertoire.  相似文献   

13.

Background

Hepatocellular carcinoma (HCC) is the fifth most common cancer and the third most common cause of cancer-related death worldwide. The 5-year survival rate remains low despite considerable research into treatments of HCC, including surgery, radiotherapy and chemotherapy. Many mechanisms within HCC still require investigation, including the influence of hypoxia, which has a crucial role in many cancers and is associated with metastasis. Hypoxia inducible factor-1α (HIF-1α) is known to regulate the expression of many chemokines, including interleukin-8 (IL-8), which is associated with tumor metastasis. Although many studies have reported that HIF-1α is associated with HCC migration and invasion, the underlying mechanisms remain unknown.

Methods

The expression level of HIF-1α was determined in HCC cells. The correlation of IL-8 and HIF-1α expressions was assessed via knockdown of HIF-1α. HCC cells were also used to assess the influence of HIF-1α on HCC cell migration and invasion. LY294002, an inhibitor of the Akt pathway, was used to confirm the associated signaling pathways.

Results

We observed a significant attenuation of cell migration and invasion after silencing of HIF-1α. Exogenously expressing IL-8 restored migration and invasion. Akt was found to be involved in this process.

Conclusion

Hypoxia promotes HCC cell migration and invasion through the HIF-1α–IL-8–Akt axis.
  相似文献   

14.
Aiming to get a better insight on the impact of regulatory CD25(+)CD4(+) T cells in tumor immunobiology, a simple mathematical model was formulated and studied. This model is an extension of a previous model for the dynamics of autoreactive regulatory cells and effector cells that interact upon their co-localized activation at the antigen presenting cells (APCs). It assumes that tumor growth stimulates the activation and migration to the adjacent lymph node of fresh APCs loaded with tumor antigens. These APCs stimulate the growth of both effector and regulatory T cells, which may then migrate to the tumor site and induce tumor cell destruction. Our results predict the existence of two alternative dynamic modes of unbounded tumor growth. In the first mode, the tumor induces the expansion of effector T cells that outcompete regulatory T cells, but nevertheless fail to control the tumor. In the second mode, the tumor induces a balanced expansion of both effector and regulatory T cells, which prevents the tumor from being destroyed by the immune cells. Tumors characterized by a high specific growth rate, low immunogenicity, and that are relatively resistant to T cell destructive functions, will grow in the first mode; conversely, tumors that have a slow specific growth rate, that are immunogenic, and/or that are more sensitive to destruction by T cells will grow in the second mode. Overall, this result provides a simple explanation to the fact that the development of some tumors expands regulatory T cells while others do not, predicting how some key dynamical properties of the tumor determine either one or the other type of behavior.  相似文献   

15.
It is well established that IFN-γ is required for the development of experimental cerebral malaria (ECM) during Plasmodium berghei ANKA infection of C57BL/6 mice. However, the temporal and tissue-specific cellular sources of IFN-γ during P. berghei ANKA infection have not been investigated, and it is not known whether IFN-γ production by a single cell type in isolation can induce cerebral pathology. In this study, using IFN-γ reporter mice, we show that NK cells dominate the IFN-γ response during the early stages of infection in the brain, but not in the spleen, before being replaced by CD4(+) and CD8(+) T cells. Importantly, we demonstrate that IFN-γ-producing CD4(+) T cells, but not innate or CD8(+) T cells, can promote the development of ECM in normally resistant IFN-γ(-/-) mice infected with P. berghei ANKA. Adoptively transferred wild-type CD4(+) T cells accumulate within the spleen, lung, and brain of IFN-γ(-/-) mice and induce ECM through active IFN-γ secretion, which increases the accumulation of endogenous IFN-γ(-/-) CD8(+) T cells within the brain. Depletion of endogenous IFN-γ(-/-) CD8(+) T cells abrogates the ability of wild-type CD4(+) T cells to promote ECM. Finally, we show that IFN-γ production, specifically by CD4(+) T cells, is sufficient to induce expression of CXCL9 and CXCL10 within the brain, providing a mechanistic basis for the enhanced CD8(+) T cell accumulation. To our knowledge, these observations demonstrate, for the first time, the importance of and pathways by which IFN-γ-producing CD4(+) T cells promote the development of ECM during P. berghei ANKA infection.  相似文献   

16.
Complex interactions between effector T cells and Foxp3+ regulatory T cells (Treg) contribute to clinical outcomes in cancer, and autoimmune and infectious diseases. Previous work showed that IL-12 reversed Treg-mediated suppression of CD4+Foxp3 T cell (Tconv) proliferation. We and others have also shown that Tregs express T-bet and IFN-γ at sites of Th1 inflammation and that IL-12 induces IFN-γ production by Tregs in vitro. To investigate whether loss of immunosuppression occurs when IFN-γ is expressed by Tregs we treated mouse lymphocyte cultures with IL-12. IFN-γ expression did not decrease the ability of Tregs to suppress Tconv proliferation. Rather, IL-12 treatment decreased Treg frequency and Foxp3 levels in Tregs. We further showed that IL-12 increased IL-2R expression on Tconv and CD8 T cells, diminished its expression on Tregs and decreased IL-2 production by Tconv and CD8 T cells. Together, these IL-12 mediated changes favored the outgrowth of non-Tregs. Additionally, we showed that treatment with a second cytokine, IL-27, decreased IL-2 expression without augmenting Tconv and CD8 T cell proliferation. Notably, IL-27 only slightly modified levels of IL-2R on non-Treg T cells. Together, these results show that IL-12 has multiple effects that modify the balance between Tregs and non-Tregs and support an important role for relative levels of IL-2R but not for IFN-γ expression in IL-12-mediated reversal of Treg immunosuppression.  相似文献   

17.
Zou Q  Yao X  Feng J  Yin Z  Flavell R  Hu Y  Zheng G  Jin J  Kang Y  Wu B  Liang X  Feng C  Liu H  Li W  Wang X  Wen Y  Wang B 《PloS one》2011,6(10):e25525

Background

CD8+ cytotoxic T lymphocytes (CTLs) are crucial for eliminating hepatitis B virus (HBV) infected cells. DNA vaccination, a novel therapeutic strategy for chronic virus infection, has been shown to induce CTL responses. However, accumulated data have shown that CTLs could not be effectively induced by HBV DNA vaccination.

Methodology/Principal Findings

Here, we report that praziquantel (PZQ), an anti-schistoma drug, could act as an adjuvant to overcome the lack of potent CTL responses by HBV DNA vaccination in mice. PZQ in combination with HBV DNA vaccination augmented the induction of CD8+ T cell-dependent and HBV-specific delayed hypersensitivity responses (DTH) in C57BL/6 mice. Furthermore, the induced CD8+ T cells consisted of both Tc1 and Tc17 subtypes. By using IFN-γ knockout (KO) mice and IL-17 KO mice, both cytokines were found to be involved in the DTH. The relevance of these findings to HBV immunization was established in HBsAg transgenic mice, in which PZQ also augmented the induction of HBV-specific Tc1 and Tc17 cells and resulted in reduction of HBsAg positive hepatocytes. Adoptive transfer experiments further showed that PZQ-primed CD8+ T cells from wild type mice, but not the counterpart from IFN-γ KO or IL-17 KO mice, resulted in elimination of HBsAg positive hepatocytes.

Conclusions/Significance

Our results suggest that PZQ is an effective adjuvant to facilitate Tc1 and Tc17 responses to HBV DNA vaccination, inducing broad CD8+ T cell-based immunotherapy that breaks tolerance to HBsAg.  相似文献   

18.
Human thymic stromal lymphopoietin (TSLP) activates dendritic cells (DCs), which promote the proliferation and differentiation of CD4+ T cells. However, murine TSLP (mTSLP) can act directly on CD4+ T cells and bring about their differentiation. We studied the role of mTSLP in the generation of CD4+CD25+FoxP3+ T cells from thymocytes. mTSLP promoted the differentiation of CD4+ single-positive thymocytes into CD4+CD25+FoxP3+ T cells. Although we cannot exclude an effect of TSLP mediated through DCs due to co-stimulatory effects, mTSLP appears to act directly on thymocytes. T-cell receptor and TSLP receptor signaling act synergistically on thymocytes to generate CD4+CD25+FoxP3+ T cells. mTSLP may play an important role in maintaining immune tolerance by promoting the conversion of thymocytes into natural regulatory T cells via escape from negative selection.  相似文献   

19.
A subset of CD44(hi)CD8(+) T cells isolated from C57BL/6/J (B6) mice, but not BALB/c/By/J (BALB/c) mice, rapidly secrete IFN-γ within 16 h of infection with Listeria monocytogenes. This Ag-independent response requires the presence of both IL-12 and IL-18. Previous studies showed that dendritic cells from B6 mice produced more Th1-type cytokines such as IL-12 than did those from BALB/c mice in response to L. monocytogenes infection. In this report, we demonstrate that the microenvironment in L. monocytogenes-infected BALB/c mice is sufficient to induce responsive B6 CD8(+) T cells to rapidly secrete IFN-γ. Furthermore, BALB/c CD8(+) T cells did not rapidly secrete IFN-γ even when they were exposed to high concentrations of IL-12 plus IL-18 in vitro. In the presence of IL-12 and IL-18, B6 CD44(hi)CD8(+) T cells upregulated expression of the receptor subunits for these cytokines more rapidly than did BALB/c T cells. In comparing particular subsets of memory phenotype CD8(+) T cells, we found that virtual memory cells, rather than true Ag-experienced cells, had the greatest level of impairment in BALB/c mice. These data suggest that the degree of cytokine-driven bystander activation of CD8(+) T cells that occurs during infection depends on both APCs and T cell-intrinsic properties that can vary among mouse strains.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号