首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The integral membrane protein flavocytochrome b (Cyt b) comprises the catalytic core of the human phagocyte NADPH oxidase complex and serves to initiate a cascade of reactive oxygen species that participate in the elimination of infectious agents. Superoxide production by the NADPH oxidase complex has been shown to be specifically regulated by the enzymatic generation of lipid second messengers following phagocyte activation. In the present study, a Cyt b-specific monoclonal antibody (mAb 44.1) was labeled with Cascade Blue (CCB) and used in resonance energy transfer (RET) studies probing the effects of a panel of lipid species on the structure of Cyt b. The binding of CCB-mAb 44.1 to immunoaffinity-purified Cyt b was both highly specific and resulted in significant quenching of the steady state donor fluorescence. Titration of the CCB-mAb 44.1:Cyt b complex with the anionic amphiphile lithium dodecyl sulfate (LDS) resulted in a saturable relaxation of fluorescence quenching due to conformational changes in Cyt b at concentrations of the amphiphile required for maximum rates of superoxide production by Cyt b in cell-free assays. Similar results were observed for the anionic amphiphile arachidonic acid (AA), although no relaxation of fluorescence quenching was observed for arachidonate methyl ester (AA-ME). Saturable relaxation of fluorescence quenching was also observed with the anionic, 18:1 phospholipids phosphatidic acid (DOPA) and phosphatidylserine (DOPS), while no relaxation was observed upon addition of the neutral 18:1 lipids phosphatidylcholine (DOPC), phosphatidylethanolamine (DOPE) or diacylglycerol (DAG) at similar levels. Further examination of a variety of phosphatidic acid (PA) species demonstrated DOPA to both potently induce conformational changes in Cyt b and to cause more dramatic conformational changes than PA species with shorter, saturated acyl chains. The data presented in this study support the hypothesis that second messenger lipids, such as AA and PA, directly bind to flavocytochrome b and modulate conformational states relevant to the activation of superoxide production.  相似文献   

2.
The heterodimeric, integral membrane protein flavocytochrome b (Cyt b) is the catalytic core of the phagocyte NADPH oxidase and generates superoxide which plays a critical role in host defense. To better define the activation of superoxide production by this multisubunit enzyme complex, Cyt b-specific monoclonal antibodies (mAbs) and the p47phox SH3 domains (p47SH3AB) were used in the present study as probes to map surface structure and conformational dynamics in human neutrophil Cyt b. In pull-down and co-immunoprecipitation studies with detergent-solubilized Cyt b, the oxidase-inhibitory mAb CS9 was shown to share an overlapping binding site with p47SH3AB on the C-terminal region of the p22phox subunit. Similar studies demonstrated a surprising lack of overlap between the mAb 44.1 and CS9/p47SH3AB binding sites, and they indicated that the oxidase-inhibitory mAb NL7 binds a region physically separated from the p22phox C-terminal domain. Resonance energy transfer and size exclusion chromatography confirmed the above results for functionally reconstituted Cyt b and provided evidence that binding of both mAb CS9 and p47SH3AB altered the conformation of Cyt b. Further support that binding of the p47phox SH3 domains modulates the structure of Cyt b was obtained using a cell-free assay system where p47SH3AB enhanced superoxide production in the presence of a p67phox (1-212)-Rac1(Q61L) fusion protein. Taken together, this study further characterizes the structure of human neutrophil Cyt b in both detergent micelles and reconstituted membrane bilayers, and it provides evidence that the cytosolic regulatory subunit p47phox modulates the conformation of Cyt b (in addition to serving as an adapter protein) during oxidase activation.  相似文献   

3.
Using a phosphorylation-dependent cell-free system to study NADPH oxidase activation (McPhail, L. C., Qualliotine-Mann, D., and Waite, K. A. (1995) Proc. Natl. Acad. Sci. U. S. A. 92, 7931-7935), we previously showed that p47(phox), a cytosolic NADPH oxidase component, is phosphorylated. Now, we show that p22(phox), a subunit of the NADPH oxidase component flavocytochrome b(558), also is phosphorylated. Phosphorylation is selectively activated by phosphatidic acid (PA) versus other lipids and occurs on a threonine residue in p22(phox). We identified two protein kinase families capable of phosphorylating p22(phox): 1) a potentially novel, partially purified PA-activated protein kinase(s) known to phosphorylate p47(phox) and postulated to mediate the phosphorylation-dependent activation of NADPH oxidase by PA and 2) conventional, but not novel or atypical, isoforms of protein kinase C (PKC). In contrast, all classes of PKC isoforms could phosphorylate p47(phox). In a gel retardation assay both the phosphatidic acid-dependent kinase and conventional PKC isoforms phosphorylated all molecules of p22(phox). These findings suggest that phosphorylation of p22(phox) by conventional PKC and/or a novel PA-activated protein kinase regulates the activation/assembly of NADPH oxidase.  相似文献   

4.
Lee JH  Lee KS  Chung T  Park J 《Biochimie》2000,82(8):727-732
The leukocyte NADPH oxidase of neutrophils is a membrane-bound enzyme that catalyzes the production of O(2(-)) from oxygen using NADPH as the electron donor. During activation, the cytosolic oxidase components p47(phox) and p67(phox), each containing two Src homology 3 (SH3) domains, migrate to the plasma membrane, where they associate with cytochrome b(558), a membrane-integrated flavohemoprotein, to assemble the active oxidase. Oxidase activation can be mimicked in a cell-free system using an anionic amphiphile, such as sodium dodecyl sulfate or arachidonic acid and the phosphorylation of p47(phox )with protein kinase C. Activators of the oxidase in vitro cause exposure of p47(phox)-SH3, which has probably been masked by the C-terminal region of this protein in a resting state. We show here that the total protein steady-state intrinsic fluorescence exhibited by the tryptophan residues of p47(phox) substantially decreased when N-terminal truncated p47(phox)-SH3-C was treated with anionic amphiphiles or phosphorylated with protein kinase C. This finding was similar to the results obtained with full-length p47(phox). However, the fluorescence of C-terminal truncated p47(phox)-N-SH3 and both C-terminal and N-terminal truncated p47(phox)-SH3 were not altered by the activators. These results indicate that the C-terminal region of p47(phox) is a primary target of the conformational change during the activation of NADPH oxidase.  相似文献   

5.
The superoxide-generating NADPH oxidase complex of phagocytes consists of a membranal heterodimeric flavocytochrome (cytochrome b(559)), composed of gp91(phox) and p22(phox) subunits, and four cytosolic proteins, p47(phox), p67(phox), p40(phox), and the small GTPase Rac (1 or 2). All redox stations involved in electron transport from NADPH to oxygen are located in gp91(phox). NADPH oxidase activation is the consequence of assembly of cytochrome b(559) with cytosolic proteins, a process reproducible in a cell-free system, consisting of phagocyte membranes, and recombinant cytosolic components, activated by an anionic amphiphile. p22(phox) is believed to act as a linker between the cytosolic components and gp91(phox). We applied "peptide walking" to mapping of domains in p22(phox) participating in NADPH oxidase assembly. Ninety one synthetic overlapping pentadecapeptides, spanning the p22(phox) sequence, were tested for the ability to inhibit NADPH oxidase activation in the cell-free system and to bind individual cytosolic NADPH oxidase components. We conclude the following. 1) The p22(phox) subunit of cytochrome b(559) serves as an anchor for both p47(phox) and p67(phox). 2) p47(phox) binds not only to the proline-rich region, located at residues 151-160 in the cytosolic C terminus of p22(phox), but also to a domain (residues 51-63) located on a loop exposed to the cytosol. 3) p67(phox) shares with p47(phox) the ability to bind to the proline-rich region (residues 151-160) and also binds to two additional domains, in the cytosolic loop (residues 81-91) and at the start of the cytosolic tail (residues 111-115). 4) The binding affinity of p67(phox) for p22(phox) peptides is lower than that of p47(phox). 5) Binding of both p47(phox) and p67(phox) to proline-rich p22(phox) peptides occurs in the absence of an anionic amphiphile. A revised membrane topology model of p22(phox) is proposed, the core of which is the presence of a functionally important cytosolic loop (residues 51-91).  相似文献   

6.
The catalytic core of the phagocyte NADPH oxidase is a heterodimeric integral membrane protein (flavocytochrome b (Cyt b)) that generates superoxide and initiates a cascade of reactive oxygen species critical for the host inflammatory response. In order to facilitate structural characterization, the present study reports the first direct analysis of human phagocyte Cyt b by matrix-assisted laser desorption/ionization and nanoelectrospray mass spectrometry. Mass analysis of in-gel tryptic digest samples provided 73% total sequence coverage of the gp91(phox) subunit, including three of the six proposed transmembrane domains. Similar analysis of the p22(phox) subunit provided 72% total sequence coverage, including assignment of the hydrophobic N-terminal region and residues that are polymorphic in the human population. To initiate mass analysis of Cyt b post-translational modifications, the isolated gp91(phox) subunit was subject to sequential in-gel digestion with Flavobacterium meningosepticum peptide N-glycosidase F and trypsin, with matrix-assisted laser desorption/ionization and liquid chromatography-mass spectrometry/mass spectrometry used to demonstrate that Asn-132, -149, and -240 are genuinely modified by N-linked glycans in human neutrophils. Since the PLB-985 cell line represents an important model system for analysis of the NADPH oxidase, methods were developed for the purification of Cyt b from PLB-985 membrane fractions in order to confirm the appropriate modification of N-linked glycosylation sites on the recombinant gp91(phox) subunit. This study reports extensive sequence coverage of the integral membrane protein Cyt b by mass spectrometry and provides analytical methods that will be useful for evaluating posttranslational modifications involved in the regulation of superoxide production.  相似文献   

7.
The leukocyte NADPH oxidase of neutrophils is a membrane-bound enzyme that catalyzes the reduction of oxygen to at the expense of NADPH. The enzyme is dormant in resting neutrophils but becomes active when the cells are exposed to appropriate stimuli. During oxidase activation, the highly basic cytosolic oxidase component p47(phox) becomes phosphorylated on several serines and migrates to the plasma membrane. We report here that phosphorylation of p47(phox) with protein kinase C induces conformational changes, as reflected by a fluorescence change of N, N'-di-methyl-N(iodoacetyl)-N'-(7-nitrobenz-2-oxa-1,3-diazol-4-yl) ethyleneamine (IANBD)-labeled p47(phox). We propose that this alteration in conformation results in the appearance of a binding site through which p47(phox) interacts with cytochrome b558 during the activation process. In addition, the present study indicates that other oxidase components, such as p67(phox) and p22(phox), influence the conformation of p47(phox).  相似文献   

8.
Chronic granulomatous disease (CGD) is a rare inherited disorder in which phagocytes lack NADPH oxidase activity. Patients with CGD suffer from recurrent bacterial and fungal infections because of the absence of superoxide anions (O2- degrees ) generatingsystem. The NADPH oxidase complex is composed of a membranous cytochrome b558, cytosolic proteins p67phox, p47phox, p40phox and two small GTPases Rac2 and Rap1A. Cytochrome b558 consists of two sub-units gp91phox and p22phox. The most common form of CGD is due to mutations in CYBB gene encoding gp91phox. In some rare cases, the mutated gp91phox is normally expressed but is devoided of oxidase activity. These variants called X+ CGD, have provided interesting informations about oxidase activation mechanisms. However modelization of such variants is necessary to obtain enough biological material for studies at the molecular level. A cellular model (knock-out PLB-985 cells) has been developed for expressing recombinant mutated gp91phox for functional analysis of the oxidase complex. Recent works demonstrated that this cell line genetically deficient in gp91phox is a powerful tool for functional analysis of the NADPH oxidase complex activation.  相似文献   

9.
The integral membrane protein flavocytochrome b (Cyt b) is the catalytic core of the human phagocyte NADPH oxidase, an enzyme complex that initiates a cascade of reactive oxygen species important in the elimination of infectious agents. This study reports the generation and characterization of six mAbs (NS1, NS2, NS5, CS6, CS8, and CS9) that recognize the p22(phox) subunit of the Cyt b heterodimer. Each of the mAbs specifically detected p22(phox) by Western blot analysis but did not react with intact neutrophils in FACS studies. Phage display mapping identified core epitope regions recognized by mAbs NS2, NS5, CS6, CS8, and CS9. Fluorescence resonance energy transfer experiments indicated that mAbs CS6 and CS8 efficiently compete with Cascade Blue-labeled mAb 44.1 (a previously characterized, p22(phox)-specific mAb) for binding to Cyt b, supporting phage display results suggesting that all three Abs recognize a common region of p22(phox). Energy transfer experiments also suggested the spatial proximity of the mAb CS9 and mAb NS1 binding sites to the mAb 44.1 epitope, while indicating a more distant proximity between the mAb NS5 and mAb 44.1 epitopes. Cell-free oxidase assays demonstrated the ability of mAb CS9 to markedly inhibit superoxide production in a concentration-dependent manner, with more moderate levels of inhibition observed for mAbs NS1, NS5, CS6, and CS8. A combination of computational predictions, available experimental data, and results obtained with the mAbs reported in this study was used to generate a novel topology model of p22(phox).  相似文献   

10.
Endothelial cells express a constitutively active phagocyte-type NADPH oxidase whose activity is augmented by agonists such as angiotensin II. We recently reported (Li, J.-M., and Shah, A. M. (2002) J. Biol. Chem. 277, 19952-19960) that in contrast to neutrophils a substantial proportion of the NADPH oxidase in unstimulated endothelial cells exists as preassembled intracellular complexes. Here, we investigate the mechanism of angiotensin II-induced endothelial NADPH oxidase activation. Angiotensin II (100 nmol/liter)-induced reactive oxygen species production (as measured by dichlorohydrofluorescein fluorescence or lucigenin chemiluminescence) was completely absent in coronary microvascular endothelial cells isolated from p47(phox) knockout mice. Transfection of p47(phox) cDNA into p47(phox-/-) cells restored the angiotensin II response, whereas transfection of antisense p47(phox) cDNA into wild-type cells depleted p47(phox) and inhibited the angiotensin II response. In unstimulated human microvascular endothelial cells, there was significant p47(phox)-p22(phox) complex formation but minimal detectable p47(phox) phosphorylation. Angiotensin II induced rapid serine phosphorylation of p47(phox) (within 1 min, peaking at approximately 15 min), a 1.9 +/- 0.1-fold increase in p47(phox)-p22(phox) complex formation and a 1.6 +/- 0.2-fold increase in NADPH-dependent O(2)-* production (p < 0.05). p47(phox) was redistributed to "nuclear" and membrane-enriched cell fractions. These data indicate that angiotensin II-stimulated endothelial NADPH oxidase activity is regulated through serine phosphorylation of p47(phox) and its enhanced binding to p22(phox).  相似文献   

11.
The superoxide-generating NADPH oxidase is converted to an active state by the assembly of a membrane-localized cytochrome b(559) with three cytosolic components: p47(phox), p67(phox), and GTPase Rac1 or Rac2. Assembly involves two sets of protein-protein interactions: among cytosolic components and among cytosolic components and cytochrome b(559) within its lipid habitat. We circumvented the need for interactions among cytosolic components by constructing a recombinant tripartite chimera (trimera) consisting of the Phox homology (PX) and Src homology 3 (SH3) domains of p47(phox), the tetratricopeptide repeat and activation domains of p67(phox), and full-length Rac1. Upon addition to phagocyte membrane, the trimera was capable of oxidase activation in vitro in the presence of an anionic amphiphile. The trimera had a higher affinity (lower EC(50)) for and formed a more stable complex (longer half-life) with cytochrome b(559) compared with the combined individual components, full-length or truncated. Supplementation of membrane with anionic but not neutral phospholipids made activation by the trimera amphiphile-independent. Mutagenesis, truncations, and domain replacements revealed that oxidase activation by the trimera was dependent on the following interactions: 1) interaction with anionic membrane phospholipids via the poly-basic stretch at the C terminus of the Rac1 segment; 2) interaction with p22(phox) via Trp(193) in the N-terminal SH3 domain of the p47(phox) segment, supplementing the electrostatic attraction; and 3) an intrachimeric bond among the p67(phox) and Rac1 segments complementary to their physical fusion. The PX domain of the p47(phox) segment and the insert domain of the Rac1 segment made only minor contributions to oxidase assembly.  相似文献   

12.
NADPH oxidase is a major source of superoxide anions in the pulmonary arteries (PA). We previously reported that intratracheal SOD improves oxygenation and restores endothelial nitric oxide (NO) synthase (eNOS) function in lambs with persistent pulmonary hypertension of the newborn (PPHN). In this study, we determined the effects of the NADPH oxidase inhibitor apocynin on oxygenation, reactive oxygen species (ROS) levels, and NO signaling in PPHN lambs. PPHN was induced in lambs by antenatal ligation of the ductus arteriosus 9 days prior to delivery. Lambs were treated with vehicle or apocynin (3 mg/kg intratracheally) at birth and then ventilated with 100% O(2) for 24 h. A significant improvement in oxygenation was observed in apocynin-treated lambs after 24 h of ventilation. Contractility of isolated fifth-generation PA to norepinephrine was attenuated in apocynin-treated lambs. PA constrictions to NO synthase (NOS) inhibition with N-nitro-l-arginine were blunted in PPHN lambs; apocynin restored contractility to N-nitro-l-arginine, suggesting increased NOS activity. Intratracheal apocynin also enhanced PA relaxations to the eNOS activator A-23187 and to the NO donor S-nitrosyl-N-acetyl-penicillamine. Apocynin decreased the interaction between NADPH oxidase subunits p22(phox) and p47(phox) and decreased the expression of Nox2 and p22(phox) in ventilated PPHN lungs. These findings were associated with decreased superoxide and 3-nitrotyrosine levels in the PA of apocynin-treated PPHN lambs. eNOS protein expression, endothelial NO levels, and tetrahydrobiopterin-to-dihydrobiopterin ratios were significantly increased in PA from apocynin-treated lambs, although cGMP levels did not significantly increase and phosphodiesterase-5 activity did not significantly decrease. NADPH oxidase inhibition with apocynin may improve oxygenation, in part, by attenuating ROS-mediated vasoconstriction and by increasing NOS activity.  相似文献   

13.
The phagocyte-type NADPH oxidase expressed in endothelial cells differs from the neutrophil enzyme in that it exhibits low level activity even in the absence of agonist stimulation, and it generates intracellular reactive oxygen species. The mechanisms underlying these differences are unknown. We studied the subcellular location of (a) oxidase subunits and (b) functionally active enzyme in unstimulated endothelial cells. Confocal microscopy revealed co-localization of the major oxidase subunits, i.e. gp91(phox), p22(phox), p47(phox), and p67(phox), in a mainly perinuclear distribution. Plasma membrane biotinylation experiments confirmed the predominantly (>90%) intracellular distribution of gp91(phox) and p22(phox). After subcellular protein fractionation, approximately 50% of the gp91(phox) (91-kDa band), p22(phox), p67(phox), and p40(phox) pools and approximately 30% of the p47(phox) were present in the 1475 x g ("nucleus-rich") fraction. Likewise, approximately 50% of total NADPH-dependent O(2)() production (assessed by lucigenin (5 microm) chemiluminescence) was found in the 1475 x g fraction. Co-immunoprecipitation studies and measurement of NADPH-dependent reactive oxygen species production (cytochrome c reduction assay) demonstrated that p22(phox), gp91(phox), p47(phox), p67(phox), and p40(phox) existed as a functional complex in the cytoskeletal fraction. These results indicate that, in contrast to the neutrophil enzyme, a substantial proportion of the NADPH oxidase in unstimulated endothelial cells exists as a preassembled intracellular complex associated with the cytoskeleton.  相似文献   

14.
Human neutrophils participate in the host innate immune response, partly mediated by the multicomponent superoxide-generating enzyme NADPH oxidase. A correlation between phosphorylation of cytosolic NADPH oxidase components and enzyme activation has been identified but is not well understood. We previously showed that p22(phox), the small subunit of the membrane-bound oxidase component flavocytochrome b(558), is an in vitro substrate for both a phosphatidic acid-activated kinase and conventional protein kinase C isoforms (Regier, D. S., Waite, K. A., Wallin, R., and McPhail, L. C. (1999) J. Biol. Chem. 274, 36601-36608). Here we show that several neutrophil agonists (phorbol myristate acetate, opsonized zymosan, and N-formyl-methionyl-leucyl-phenylalanine) induce p22(phox) phosphorylation in intact neutrophils. To determine if phospholipase D (PLD) is needed for p22(phox) phosphorylation, cells were pretreated with ethanol, which reduces phosphatidic acid production by PLD in stimulated cells. Phorbol myristate acetate-induced phosphorylation of p22(phox) and NADPH oxidase activity were not reduced by ethanol. In contrast, ethanol reduced both activities when cells were stimulated by N-formyl-methionyl-leucyl-phenylalanine or opsonized zymosan. Varying the time of stimulation with opsonized zymosan showed that the phosphorylation of p22(phox) coincides with NADPH oxidase activation. GF109203X, an inhibitor of protein kinase C and the phosphatidic acid-activated protein kinase, decreased both p22(phox) phosphorylation and NADPH oxidase activity in parallel in opsonized zymosan-stimulated cells. Stimulus-induced phosphorylation of p22(phox) was on Thr residue(s), in agreement with in vitro results. Overall, these data show that NADPH oxidase activity and p22(phox) phosphorylation are correlated and suggest two mechanisms (PLD-dependent and -independent) by which p22(phox) phosphorylation occurs.  相似文献   

15.
16.
The superoxide (O(2))-generating NADPH oxidase complex of phagocytes consists of a membrane-associated flavocytochrome (cytochrome b(559)) and four cytosolic proteins, p47(phox), p67(phox), p40(phox), and the small GTPase Rac (Rac1 or -2). NADPH oxidase activation (O(2) production) is elicited as the consequence of assembly of some or all cytosolic components with cytochrome b(559). This process can be reproduced in an in vitro system consisting of phagocyte membranes, p47(phox), p67(phox), and Rac, activated by an anionic amphiphile. We now show that post-translationally processed (prenylated) Rac1 initiates NADPH oxidase assembly, expressed in O(2) production, in a cell-free system containing phagocyte membrane vesicles and p67(phox), in the absence of an activating amphiphile and of p47(phox). Prenylated Cdc42Hs, a GTPase closely related to Rac, is inactive under the same conditions. Results obtained with phagocyte membrane vesicles can be reproduced fully by replacing these with partially purified cytochrome b(559), incorporated in phosphatidylcholine vesicles. Prenylated, but not nonprenylated, Rac1 binds spontaneously to phagocyte membrane vesicles and also to artificial, protein-free, phosphatidylcholine vesicles, a process counteracted by GDP dissociation inhibitor for Rho. Binding of prenylated Rac1 to membrane vesicles is accompanied by the recruitment of p67(phox) to the same location and the formation of an assembled NADPH oxidase complex, producing O(2) upon the addition of NADPH. Amphiphile and p47(phox)-independent NADPH oxidase activation by prenylated Rac1 is inhibited by Rho GDP dissociation inhibitor and by phosphatidylcholine vesicles, both competing with membrane for prenylated Rac1. We conclude that, in vitro, targeting of Rac to the phagocyte membrane is sufficient for the induction of NADPH oxidase assembly, suggesting that the principal or, possibly, the only role of Rac is to recruit cytosolic p67(phox) to the membrane environment, to be followed by the interaction of p67(phox) with cytochrome b(559).  相似文献   

17.
The heterodimeric flavocytochrome b558, comprised of the two integral membrane proteins p22phox and gp91phox, mediates the transfer of electrons from NADPH to molecular oxygen in the phagocyte NADPH oxidase to generate the superoxide precursor of microbicidal oxidants. This study uses deletion mutagenesis to identify regions of p22phox required for maturation of gp91phox and for NADPH oxidase activity. N-terminal, C-terminal, or internal deletions of human p22phox were generated and expressed in Chinese hamster ovary cells with transgenes for gp91phox and two other NADPH oxidase subunits, p47phox, and p67phox. The results demonstrate that p22phox-dependent maturation of gp91phox carbohydrate, cell surface expression of gp91phox, and the enzymatic function of flavocytochrome b558 are closely correlated. Whereas the 5 N-terminal and 25 C-terminal amino acids are dispensable for these functions, the N-terminal 11 amino acids of p22phox are required, as is a hydrophilic region between amino acids 65 and 90. Upon deletion of 54 residues at the C terminus of p22phox (amino acids 142-195), maturation and cell surface expression of gp91phox was still preserved, although NADPH oxidase activity was absent, as expected, due to removal of a proline-rich domain between amino acids 151-160 that is required for recruitment of p47phox. Antibody binding studies indicate that the extreme N terminus of p22phox is inaccessible in the absence of cell permeabilization, supporting a model in which both the N- and C-terminal domains of p22phox extend into the cytoplasm, anchored by two membrane-embedded regions.  相似文献   

18.
The leukocyte NADPH oxidase of neutrophils is a membrane-bound enzyme that catalyzes the production of O2- from oxygen using NADPH as the electron donor. Dormant in resting neutrophils, the enzyme acquires catalytic activity when the cells are exposed to appropriate stimuli. During activation, the cytosolic oxidase components p47phox and p67phox migrate to the plasma membrane, where they associate with cytochrome b558, a membrane-integrated flavohemoprotein, to assemble the active oxidase. In whole cells and under certain circumstances in the cell-free system, the phosphorylation of p47phox mediates the activation process. It has been proposed that conformational changes in the protein structure of cytosolic factor p47phox may be an important part of the activation mechanism. The total protein steady-state intrinsic fluorescence (an emission maximum of 338 nm) exhibited by the tryptophan residues of p47phox was substantially decreased, reflecting on the conformational change that occurs when p47phox was phosphorylated with protein kinase C. We show here that the phosphorylation of p47phox by protein kinase A or mitogen-activated protein kinase, however, had little effect on the intrinsic fluorescence of p47phox. In addition, the present experiments indicate that in the mutant p47phoxS379A, only the single S-->A mutation appears to be a major importance for the function of p47phox, which is able to undergo the change in conformation that takes place when p47phox is phosphorylated by protein kinase C.  相似文献   

19.
The enzyme NADPH oxidase is regulated by phospholipase D in intact neutrophils and is activated by phosphatidic acid (PA) plus diacylglycerol (DG) in cell-free systems. We showed previously that cell-free NADPH oxidase activation by these lipids involves both protein kinase-dependent and -independent pathways. Here we demonstrate that only the protein kinase-independent pathway is operative in a cell-free system of purified and recombinant NADPH oxidase components. Activation by PA + DG was ATP-independent and unaffected by the protein kinase inhibitor staurosporine, indicating the lack of protein kinase involvement. Both PA and DG were required for optimal activation to occur. The drug reduced activation of NADPH oxidase by either arachidonic acid or PA + DG, with IC(50) values of 46 and 25 microm, respectively. The optimal concentration of arachidonic acid or PA + DG for oxidase activation was shifted to the right with, indicating interference of the drug with the interaction of lipid activators and enzyme components. inhibited the lipid-induced aggregation/sedimentation of oxidase components p47(phox) and p67(phox), suggesting a disruption of the lipid-mediated assembly process. The direct effects of on NADPH oxidase activation complicate its use as a "specific" inhibitor of DG kinase. We conclude that the protein kinase-independent pathway of NADPH oxidase activation by PA and DG involves direct interaction with NADPH oxidase components. Thus, NADPH oxidase proteins are functional targets for these lipid messengers in the neutrophil.  相似文献   

20.
Activation of phagocyte NADPH oxidase requires interaction between p47(phox) and p22(phox). p47(phox) in resting phagocytes does not bind p22(phox). Phosphorylation of serines in the p47(phox) C terminus enables binding to the p22(phox) C terminus by inducing a conformational change in p47(phox) that unmasks the SH3A domain. We report that an arginine/lysine-rich region in the p47(phox) C terminus binds the p47(phox) SH3 domains expressed in tandem (SH3AB) but does not bind the individual N-terminal SH3A and C-terminal SH3B domains. Peptides matching amino acids 301-320 and 314-335 of the p47(phox) arginine/lysine-rich region block the p47(phox) SH3AB/p22(phox) C-terminal and p47(phox) SH3AB/p47(phox) C-terminal binding and inhibit NADPH oxidase activity in vitro. Peptides with phosphoserines substituted for serines 310 and 328 do not block binding and are poor inhibitors of oxidase activity. Mutated full-length p47(phox) with aspartic acid substitutions to mimic the effects of phosphorylations at serines 310 and 328 bind the p22(phox) proline-rich region in contrast to wild-type p47(phox). We conclude that the p47(phox) SH3A domain-binding site is blocked by an interaction between the p47(phox) SH3AB domains and the C-terminal arginine/lysine-rich region. Phosphorylation of serines in the p47(phox) C terminus disrupts this interaction leading to exposure of the SH3A domain, binding to p22(phox), and activation of the NADPH oxidase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号