首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The cytochrome P450 epoxygenase-dependent arachidonic acid metabolites, epoxyeicosatrienoic acids (EETs), are potent survival factors and mitogens for renal epithelial cells, but the molecular identity in the cells that initiates the mitogenic signaling of EETs has remained elusive. We screened kidney cell lines for the expression of G-protein-coupled receptor 40 (GPR40) and found that the porcine renal tubular epithelial cell line LLCPKcl4, which has been previously demonstrated to be sensitive to the mitogenic effect of EETs, expresses higher levels of GPR40 mRNA and protein than the human embryonic kidney cell line HEK293. EETs induced only a weak mitogenic EGFR signaling and mild cell proliferation in HEK293 cells. To determine whether GPR40 expression level is what mediates the mitogenic sensitivity of cells to EETs, we created a human GPR40 (hGPR40) cDNA construct and transfected it into HEK293 cells and picked up a number of stable transfectants. We found that GPR40 overexpression in HEK293 cells indeed significantly enhanced EET-induced cell proliferation and markedly augmented EGFR phosphorylation ERK activation, which were inhibited by the EGFR tyrosine kinase inhibitor, AG1478, or the HB-EGF inhibitor, CRM197. EETs significantly enhanced release of soluble HB-EGF, a natural ligand of EGFR, into the culture medium of hGPR40-transfected HEK293 cells, compared to empty vector-transfected cells. In mouse kidneys, markedly higher level of GPR40 protein was found in the cortex and outer stripe of outer medulla compared to the inner stripe of outer medulla and inner medulla. In situ hybridization confirmed that GPR40 mRNA was localized to a subset of renal tubules in the kidney, including the cortical collecting duct. Thus, this study provides the first demonstration that upregulation of GPR40 expression enhances the mitogenic response to EETs and a relatively high expression level of GPR40 is detected in a subset of tubules including cortical collecting ducts in the mammalian kidney.  相似文献   

2.
Acidic tissue microenvironment commonly exists in inflammatory diseases, tumors, ischemic organs, sickle cell disease, and many other pathological conditions due to hypoxia, glycolytic cell metabolism and deficient blood perfusion. However, the molecular mechanisms by which cells sense and respond to the acidic microenvironment are not well understood. GPR4 is a proton-sensing receptor expressed in endothelial cells and other cell types. The receptor is fully activated by acidic extracellular pH but exhibits lesser activity at the physiological pH 7.4 and minimal activity at more alkaline pH. To delineate the function and signaling pathways of GPR4 activation by acidosis in endothelial cells, we compared the global gene expression of the acidosis response in primary human umbilical vein endothelial cells (HUVEC) with varying level of GPR4. The results demonstrated that acidosis activation of GPR4 in HUVEC substantially increased the expression of a number of inflammatory genes such as chemokines, cytokines, adhesion molecules, NF-κB pathway genes, and prostaglandin-endoperoxidase synthase 2 (PTGS2 or COX-2) and stress response genes such as ATF3 and DDIT3 (CHOP). Similar GPR4-mediated acidosis induction of the inflammatory genes was also noted in other types of endothelial cells including human lung microvascular endothelial cells and pulmonary artery endothelial cells. Further analyses indicated that the NF-κB pathway was important for the acidosis/GPR4-induced inflammatory gene expression. Moreover, acidosis activation of GPR4 increased the adhesion of HUVEC to U937 monocytic cells under a flow condition. Importantly, treatment with a recently identified GPR4 antagonist significantly reduced the acidosis/GPR4-mediated endothelial cell inflammatory response. Taken together, these results show that activation of GPR4 by acidosis stimulates the expression of a wide range of inflammatory genes in endothelial cells. Such inflammatory response can be suppressed by GPR4 small molecule inhibitors and hold potential therapeutic value.  相似文献   

3.
The intermediate-conductance calcium-activated potassium channel (IK1) promotes cell proliferation of numerous cell types including endothelial cells, T lymphocytes, and several cancer cell lines. The mechanism underlying IK1-mediated cell proliferation was examined in human embryonic kidney 293 (HEK293) cells expressing recombinant human IK1 (hIK1) channels. Inhibition of hIK1 with TRAM-34 reduced cell proliferation, while expression of hIK1 in HEK293 cells increased proliferation. When HEK293 cells were transfected with a mutant (GYG/AAA) hIK1 channel, which neither conducts K(+) ions nor promotes Ca(2+) entry, proliferation was increased relative to mock-transfected cells. Furthermore, when HEK293 cells were transfected with a trafficking mutant (L18A/L25A) hIK1 channel, proliferation was also increased relative to control cells. The lack of functional activity of hIK1 mutants at the cell membrane was confirmed by a combination of whole cell patch-clamp electrophysiology and fura-2 imaging to assess store-operated Ca(2+) entry and cell surface immunoprecipitation assays. Moreover, in cells expressing hIK1, inhibition of ERK1/2 and JNK kinases, but not of p38 MAP kinase, reduced cell proliferation. We conclude that functional K(+) efflux at the plasma membrane and the consequent hyperpolarization and enhanced Ca(2+) entry are not necessary for hIK1-induced HEK293 cell proliferation. Rather, our data suggest that hIK1-induced proliferation occurs by a direct interaction with ERK1/2 and JNK signaling pathways.  相似文献   

4.
The protein-tyrosine kinase substrate annexin II is a growth regulated gene whose expression is increased in several human cancers. While the precise function of this protein is not understood, annexin II is proposed to be involved in multiple physiological activities, including DNA synthesis and cell proliferation. Targeted disruption of the annexin II gene affects calcium signaling, tyrosine phosphorylation and apoptosis, indicating the important physiological role of this protein. We used a transient co-transfection assay to regulate annexin II expression in human HeLa, 293 and 293T cells, and measured the effects of annexin II down regulation on DNA synthesis and proliferation. Transfection of cells with an antisense annexin II vector results in inhibition of cell division and proliferation, with concomitant reduction in annexin II message and protein levels. Cellular DNA synthesis is significantly reduced in antisense transfected cells. Replication extracts made from antisense transfected cells have significantly reduced efficiency to support SV40 in vitro DNA replication, while the extracts made from sense transfected cells are fully capable of replication. Our results indicate an important role of annexin II in cellular DNA synthesis and cell proliferation.  相似文献   

5.
GPR55 was recently identified as a putative receptor for certain cannabinoids, and lysophosphatidylinositol (LPI). Recently, the role of cannabinoids as GPR55 agonists has been disputed by a number of reports, in part, because studies investigating GPR55 often utilized overexpression systems, such as the GPR55-overexpressing HEK293 cells, which make it difficult to deduce the physiological role of endogenous GPR55. In the present study, we found that PC12 cells, a neural model cell line, express endogenous GPR55, and by using these cells, we were able to examine the role of endogenous GPR55. Although GPR55 mRNA and protein were expressed in PC12 cells, neither CB(1) nor CB(2) mRNA was expressed in these cells. GPR55 was predominantly localized on the plasma membrane in undifferentiated PC12 cells. However, GPR55 was also localized in the growth cones or the ruffled border in differentiated PC12 cells, suggesting a potential role for GPR55 in the regulation of neurite elongation. LPI increased intracellular Ca(2+) concentration and RhoA activity, and induced ERK1/2 phosphorylation, whereas endogenous and synthetic cannabinoids did not, thereby suggesting that cannabinoids are not GPR55 agonists. LPI also caused neurite retraction in a time-dependent manner accompanied by the loss of neurofilament light chain and redistribution of actin in PC12 cells differentiated by NGF. This LPI-induced neurite retraction was found to be G(q)-independent and G(13)-dependent. Furthermore, inactivation of RhoA function via C3 toxin and GPR55 siRNA knockdown prevented LPI-induced neurite retraction. These results suggest that LPI, and not cannabinoids, causes neurite retraction in differentiated PC12 cells via a GPR55, G(13) and RhoA signaling pathway.  相似文献   

6.
7.
The G protein-coupled prostaglandin F2α (PGF2α) receptor [F prostanoid (FP) receptor] has been implicated in many physiological events including cardiovascular, respiratory, immune, reproductive, and endocrine responses. Binding of PGF2α to FP receptor elicits inositol production and protein kinase C-dependent MAPK activation through Gα(q) coupling. Here we report that AL-8810, previously characterized as an orthosteric antagonist of PGF2α-dependent, Gα(q)-mediated signaling, potently activates ERK1/2 in a protein kinase C-independent manner. Rather, AL-8810 promoted ERK1/2 activation via an epidermal growth factor receptor transactivation mechanism in both human embryonic kidney 293 cells and in the MG-63 osteoblast-like cells, which express endogenous FP receptors. Neither AL-8810- nor PGF2α-mediated stimulation of FP receptor promoted association with β-arrestins, suggesting that MAPK activation induced by these ligands is independent of β-arrestin's signaling scaffold functions. Interestingly, the spatiotemporal activation of ERK1/2 promoted by AL-8810 and PGF2α showed almost completely opposite responses in the nucleus and the cytosol. Finally, using [(3)H]thymidine incorporation, we noted differential regulation of PGF2α- and AL-8810-induced cell proliferation in MG-63 cells. This study reveals, for the first time, the signaling biased nature of FP receptor orthosteric ligands toward MAPK signaling. Our findings on the specific patterns of ERK1/2 activation promoted by FP receptor ligands may help dissect the distinct roles of MAPK in FP receptor-dependent physiological responses.  相似文献   

8.
9.
Zinc enhances epithelial proliferation, protects the digestive epithelial layer and has profound antiulcerative and antidiarrheal roles in the colon. Despite the clinical significance of this ion, the mechanisms linking zinc to these cellular processes are poorly understood. We have previously identified an extracellular Zn(2+) sensing G-protein coupled receptor (ZnR) that activates Ca(2+) signaling in colonocytes, but its molecular identity as well as its effects on colonocytes' survival remained elusive. Here, we show that Zn(2+), by activation of the ZnR, protects HT29 colonocytes from butyrate induced cell death. Silencing of the G-protein coupled receptor GPR39 expression abolished ZnR-dependent Ca(2+) release and Zn(2+)-dependent survival of butyrate-treated colonocytes. Importantly, GPR39 also mediated ZnR-dependent upregulation of Na(+)/H(+) exchange activity as this activity was found in native colon tissue but not in tissue obtained from GPR39 knock-out mice. Although ZnR-dependent upregulation of Na(+)/H(+) exchange reduced the cellular acid load induced by butyrate, it did not rescue HT29 cells from butyrate induced cell death. ZnR/GPR39 activation however, increased the expression of the anti-apoptotic protein clusterin in butyrate-treated cells. Furthermore, silencing of clusterin abolished the Zn(2+)-dependent survival of HT29 cells. Altogether, our results demonstrate that extracellular Zn(2+), acting through ZnR, regulates intracellular pH and clusterin expression thereby enhancing survival of HT29 colonocytes. Moreover, we identify GPR39 as the molecular moiety of ZnR in HT29 and native colonocytes.  相似文献   

10.
11.
Gut microbial metabolites of polyunsaturated fatty acids have attracted much attention because of their various physiological properties. Dysfunction of tight junction (TJ) in the intestine contributes to the pathogenesis of many disorders such as inflammatory bowel disease. We evaluated the effects of five novel gut microbial metabolites on tumor necrosis factor (TNF)-α-induced barrier impairment in Caco-2 cells and dextran sulfate sodium-induced colitis in mice. 10-Hydroxy-cis-12-octadecenoic acid (HYA), a gut microbial metabolite of linoleic acid, suppressed TNF-α and dextran sulfate sodium-induced changes in the expression of TJ-related molecules, occludin, zonula occludens-1, and myosin light chain kinase. HYA also suppressed the expression of TNF receptor 2 (TNFR2) mRNA and protein expression in Caco-2 cells and colonic tissue. In addition, HYA suppressed the protein expression of TNFR2 in murine intestinal epithelial cells. Furthermore, HYA significantly up-regulated G protein-coupled receptor (GPR) 40 expression in Caco-2 cells. It also induced [Ca2+]i responses in HEK293 cells expressing human GPR40 with higher sensitivity than linoleic acid, its metabolic precursor. The barrier-recovering effects of HYA were abrogated by a GPR40 antagonist and MEK inhibitor in Caco-2 cells. Conversely, 10-hydroxyoctadacanoic acid, which is a gut microbial metabolite of oleic acid and lacks a carbon-carbon double bond at Δ12 position, did not show these TJ-restoring activities and down-regulated GPR40 expression. Therefore, HYA modulates TNFR2 expression, at least partially, via the GPR40-MEK-ERK pathway and may be useful in the treatment of TJ-related disorders such as inflammatory bowel disease.  相似文献   

12.
G protein-coupled receptors (GPCRs) have the potential to play a role as molecular sensors responsive to luminal dietary contents. Although such a role for GPCRs has been implicated in the intestinal response to protein hydrolysate, no GPCR directly involved in this process has been previously identified. In the present study, for the first time, we identified GPR93 expression in enterocytes and demonstrated its activation in these cells by protein hydrolysate with EC50 of 10.6 mg/ml as determined by the induction of intracellular free Ca2+. In enterocytes, GPR93 was synergistically activated by protein hydrolysate in combination with an agonist, oleoyl-l-alpha-lysophosphatidic acid (LPA), which activated the receptor in these enterocytes with EC50 of 7.9 nM. The increased intracellular Ca2+ by GPR93 activation was observed without the addition of a promiscuous Galpha protein and was pertussis toxin sensitive, which suggests Galpha(q)- and Galpha(i)-mediated pathways. Activated GPR93 also induced pertussis toxin-sensitive ERK1/2 phosphorylation. Both nuclear factor of activated T cells and 12-O-tetradecanoylphorbol 13-acetate responsive elements reporter activities were induced by protein hydrolysate in cells exogenously expressing GPR93. The peptidomimetic cefaclor by itself did not activate GPR93 but potentiated the protein hydrolysate response and further amplified the synergistic enhancement of GPR93 activation by protein hydrolysate and LPA. These data suggest that, physiologically, the composition of stimuli might determine GPR93 activity or its sensitivity toward a given activator and suggest a new mechanism of the regulation of mucosal cell proliferation and differentiation and hormonal secretion by dietary products in the lumen.  相似文献   

13.
14.
15.
Rac1 protects epithelial cells against anoikis   总被引:6,自引:0,他引:6  
Rho family members play a critical role in malignant transformation. Anchorage-independent growth and the ability to avoid apoptosis caused by loss of anchorage (anoikis) are important features of transformed cells. Here we show that constitutive activation of Rac1 inhibits anoikis in Madin-Darby canine kidney (MDCK) epithelial cells. Constitutively active Rac1-V12 decreases DNA fragmentation and caspase activity by 50% in MDCK cells kept in suspension. In addition, expression of Rac1-V12 in MDCK cells in suspension conditions causes an increase in the number of surviving cells. We also investigated the signaling pathways that are activated by Rac1 to stimulate cell survival. We show that expression of Rac1-V12 in MDCK cells in suspension stimulates a number of signaling cascades that have been implicated in the control of cell survival, including the p42/44 ERK, p38, protein kinase B, and nuclear factor kappaB pathways. Using specific chemical or protein inhibitors of these respective pathways, we show that Rac1-mediated cell survival strongly depends on phosphatidylinositol 3-kinase activity and that activation of ERK, p38, and NF-kappaB are largely dispensable for Rac1 survival signaling. In conclusion, these studies demonstrate that Rac1 can suppress apoptosis in epithelial cells in anchorage-independent conditions and suggest a potential role for Rac1-mediated survival signaling in cell transformation.  相似文献   

16.
We demonstrated previously that leukotriene D4 (LTD4) regulates proliferation of intestinal epithelial cells through a CysLT receptor by protein kinase C (PKC)epsilon-dependent stimulation of the mitogen-activated protein kinase ERK1/2. Our current study provides the first evidence that LTD4 can activate 90-kDa ribosomal S6 kinase (p90RSK) and cAMP-responsive element-binding protein (CREB) via pertussis-toxin-sensitive Gi protein pathways. Transfection and inhibitor experiments revealed that activation of p90RSK, but not CREB, is a PKCepsilon/Raf-1/ERK1/2-dependent process. LTD4-mediated CREB activation was not affected by expression of kinase-dead p90RSK but was abolished by transfection with the regulatory domain of PKCalpha (a specific dominant-inhibitor of PKCalpha). Kinase-negative mutants of p90RSK and CREB (K-p90RSK and K-CREB) blocked the LTD4-induced increase in cell number and DNA synthesis (thymidine incorporation). Compatible with these results, flow cytometry showed that LTD4 caused transition from the G0/G1 to the S+G2/M cell cycle phase, indicating increased proliferation. Similar treatment of cells transfected with K-p90RSK resulted in cell cycle arrest in the G0/G1 phase, consistent with a role of p90RSK in LTD4-induced proliferation. On the other hand, expression of K-CREB caused a substantial buildup in the sub-G0/G1 phase, suggesting a role for CREB in mediating LTD4-mediated survival in intestinal epithelial cells. Our results show that LTD4 regulates proliferation and survival via distinct intracellular signaling pathways in intestinal epithelial cells.  相似文献   

17.
Hyperkinetic Jak2 tyrosine kinase signaling has been implicated in several human diseases including leukemia, lymphoma, myeloma, and the myeloproliferative neoplasms. Using structure-based virtual screening, we previously identified a novel Jak2 inhibitor named G6. We showed that G6 specifically inhibits Jak2 kinase activity and suppresses Jak2-mediated cellular proliferation. To elucidate the molecular and biochemical mechanisms by which G6 inhibits Jak2-mediated cellular proliferation, we treated Jak2-V617F expressing human erythroleukemia (HEL) cells for 12 h with either vehicle control or 25 μM of the drug and compared protein expression profiles using two-dimensional gel electrophoresis. One differentially expressed protein identified by electrospray mass spectroscopy was the intermediate filament protein, vimentin. It was present in DMSO treated cells but absent in G6 treated cells. HEL cells treated with G6 showed both time- and dose-dependent cleavage of vimentin as well as a marked reorganization of vimentin intermediate filaments within intact cells. In a mouse model of Jak2-V617F mediated human erythroleukemia, G6 also decreased the levels of vimentin protein, in vivo. The G6-induced cleavage of vimentin was found to be Jak2-dependent and calpain-mediated. Furthermore, we found that intracellular calcium mobilization is essential and sufficient for the cleavage of vimentin. Finally, we show that the cleavage of vimentin intermediate filaments, per se, is sufficient to reduce HEL cell viability. Collectively, these results suggest that G6-induced inhibition of Jak2-mediated pathogenic cell growth is concomitant with the disruption of intracellular vimentin filaments. As such, this work describes a novel pathway for the targeting of Jak2-mediated pathological cell growth.  相似文献   

18.
Dipeptidyl peptidase IV (DPP4), DPP8, DPP9, and fibroblast activation protein (FAP), the four proteases of the DPP4 gene family, have unique peptidase and extra-enzymatic activities that have been implicated in various diseases including cancers. We report here a novel role of DPP9 in regulating cell survival and proliferation through modulating molecular signaling cascades. Akt (protein kinase B) activation was significantly inhibited by human DPP9 overexpression in human hepatoma cells (HepG2 and Huh7) and human embryonic kidney cells (HEK293T), whereas extracellular signal-regulated kinases (ERK1/2) activity was unaffected, revealing a pathway-specific effect. Interestingly, the inhibitory effect of DPP9 on Akt pathway activation was growth factor dependent. DPP9 overexpression caused apoptosis and significantly less epidermal growth factor (EGF)-mediated Akt activation in HepG2 cells. However, such inhibitory effect was not observed in cells stimulated with other growth factors, including connective tissue growth factor, hepatic growth factor, insulin or platelet-derived growth factor-BB. The effect of DPP9 on Akt did not occur when DPP9 enzyme activity was ablated by either mutagenesis or inhibition. The phosphatidylinositol 3-kinase (PI3K)/Akt pathway is a major downstream effector of Ras. We found that DPP9 and DPP8, but not DPP4 or FAP, associate with H-Ras, a key signal molecule of the EGF receptor signaling pathway. These findings suggest an important signaling role of DPP9 in the regulation of survival and proliferation pathways.  相似文献   

19.
Chen A  Dong L  Leffler NR  Asch AS  Witte ON  Yang LV 《PloS one》2011,6(11):e27586
Endothelium-leukocyte interaction is critical for inflammatory responses. Whereas the tissue microenvironments are often acidic at inflammatory sites, the mechanisms by which cells respond to acidosis are not well understood. Using molecular, cellular and biochemical approaches, we demonstrate that activation of GPR4, a proton-sensing G protein-coupled receptor, by isocapnic acidosis increases the adhesiveness of human umbilical vein endothelial cells (HUVECs) that express GPR4 endogenously. Acidosis in combination with GPR4 overexpression further augments HUVEC adhesion with U937 monocytes. In contrast, overexpression of a G protein signaling-defective DRY motif mutant (R115A) of GPR4 does not elicit any increase of HUVEC adhesion, indicating the requirement of G protein signaling. Downregulation of GPR4 expression by RNA interference reduces the acidosis-induced HUVEC adhesion. To delineate downstream pathways, we show that inhibition of adenylate cyclase by inhibitors, 2',5'-dideoxyadenosine (DDA) or SQ 22536, attenuates acidosis/GPR4-induced HUVEC adhesion. Consistently, treatment with a cAMP analog or a G(i) signaling inhibitor increases HUVEC adhesiveness, suggesting a role of the G(s)/cAMP signaling in this process. We further show that the cAMP downstream effector Epac is important for acidosis/GPR4-induced cell adhesion. Moreover, activation of GPR4 by acidosis increases the expression of vascular adhesion molecules E-selectin, VCAM-1 and ICAM-1, which are functionally involved in acidosis/GPR4-mediated HUVEC adhesion. Similarly, hypercapnic acidosis can also activate GPR4 to stimulate HUVEC adhesion molecule expression and adhesiveness. These results suggest that acidosis/GPR4 signaling regulates endothelial cell adhesion mainly through the G(s)/cAMP/Epac pathway and may play a role in the inflammatory response of vascular endothelial cells.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号