首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Female flowers of hop (Humulus lupulus L.) develop a large number of glandular trichomes called lupulin glands that contain a variety of prenylated compounds such as α- and β-acid (humulone and lupulone, respectively), as well as xanthohumol, a chalcone derivative. These prenylated compounds are biosynthesized by prenyltransferases catalyzing the transfer of dimethylallyl moiety to aromatic substances. In our previous work, we found HlPT-1 a candidate gene for such a prenyltransferase in a cDNA library constructed from lupulin-enriched flower tissues. In this study, we have characterized the enzymatic properties of HlPT-1 using a recombinant protein expressed in baculovirus-infected insect cells. HlPT-1 catalyzed the first transfer of dimethylallyl moiety to phloroglucinol derivatives, phlorisovalerophenone, phlorisobutyrophenone and phlormethylbutanophenone, leading to the formation of humulone and lupulone derivatives. HlPT-1 also recognized naringenin chalcone as a flavonoid substrate to yield xanthohumol, and this broad substrate specificity is a unique character of HlPT-1 that is not seen in other reported flavonoid prenyltransferases, all of which show strict specificity for their aromatic substrates. Moreover, unlike other aromatic substrate prenyltransferases, HlPT-1 revealed an exclusive requirement for Mg(2+) as a divalent cation for its enzymatic activity and also showed exceptionally narrow optimum pH at around pH 7.0.  相似文献   

2.
Flavonoids are natural compounds found in many plants, including the important fruit crop, tomato. Prenylated flavonoids consist of a large group of compounds, which often exhibit antitumour, antibacterial and/or anti-androgen activities. In this study, we engineered the biosynthesis of prenylated flavonoids using a Streptomyces prenyltransferase HypSc (SCO7190) possessing broad-range substrate specificity, in tomato as a host plant. LC/MS/MS analysis demonstrated the generation of 3'-dimethylallyl naringenin in tomato fruits when recombinant HypSc protein was targeted to the plastids, whereas the recombinant protein hardly produced this compound in vitro. This is the first report confirming the accumulation of a prenylated flavonoid using a bacterial prenyltransferase in transgenic plants, and our results suggest that the product specificities of prenyltransferases can be significantly influenced by the host plant.  相似文献   

3.
Prenylated isoflavones are secondary metabolites that are mainly distributed in legume plants. They often possess divergent biological activities such as anti-bacterial, anti-fungal, and anti-oxidant activities and thus attract much attention in food, medicinal, and agricultural research fields. Prenyltransferase is the key enzyme in the biosynthesis of prenylated flavonoids by catalyzing a rate-limiting step, i.e. the coupling process of two major metabolic pathways, the isoprenoid pathway and shikimate/polyketide pathway. However, so far only two genes have been isolated as prenyltransferases involved in the biosynthesis of prenylated flavonoids, namely naringenin 8-dimethylallyltransferase from Sophora flavescens (SfN8DT-1) specific for some limited flavanones and glycinol 4-dimethylallyltransferase from Glycine max (G4DT), specific for pterocarpan substrate. We have in this study isolated two novel genes coding for membrane-bound flavonoid prenyltransferases from S. flavescens, an isoflavone-specific prenyltransferase (SfG6DT) responsible for the prenylation of the genistein at the 6-position and a chalcone-specific prenyltransferase designated as isoliquiritigenin dimethylallyltransferase (SfiLDT). These prenyltransferases were enzymatically characterized using a yeast expression system. Analysis on the substrate specificity of chimeric enzymes between SfN8DT-1 and SfG6DT suggested that the determinant region for the specificity of the flavonoids was the domain neighboring the fifth transmembrane α-helix of the prenyltransferases.  相似文献   

4.
5.
An investigation of the HPLC analytical conditions for simple isoflavones, prenylated isoflavones and some of their glucosyl derivatives resulted in reasonable separation and total elution in 35 min when using a reversed-phase C18 Lichrospher column and a gradient elution system of MeCN-THF-H2O. This method was successfully applied to quantify the changes in isoflavonoid constituents in white lupin (Lupinus albus L.) tissues: (a) young legumes (pods and seeds) during maturation, and (b) soaked, germinating seeds. In developing legumes, genistein and 2'-hydroxygenistein, as well as their prenylated derivatives, were present in the pods as the major components, together with minor amounts of glucosides, whereas only minute amounts of isoflavonoids were detectable in the ripening seeds. When soaked with water, mature lupin seeds which normally contain trace amounts of isoflavonoids, started rapidly to biosynthesize simple isoflavones and accumulate large amounts of genistein 7-O-glucoside and its 6"-O-malonyl derivative. These dynamic changes are discussed in relation to the role of isoflavonoids in the lupin defense system.  相似文献   

6.
Prenylated flavonoids are natural compounds that often represent the active components in various medicinal plants and exhibit beneficial effects on human health. Prenylated flavonoids are hybrid products composed of a flavonoid core mainly attached to either 5-carbon (dimethylallyl) or 10-carbon (geranyl) prenyl groups derived from isoprenoid (terpenoid) metabolism, and the prenyl groups are crucial for their biological activity. Prenylation reactions in vivo are crucial coupling processes of two major metabolic pathways, the shikimate-acetate and isoprenoid pathways, in which these reactions are also known as a rate-limiting step. However, none of the genes responsible for the prenylation of flavonoids has been identified despite more than 30 years of research in this field. We have isolated a prenyltransferase gene from Sophora flavescens, SfN8DT-1, responsible for the prenylation of the flavonoid naringenin at the 8-position, which is specific for flavanones and dimethylallyl diphosphate as substrates. Phylogenetic analysis shows that SfN8DT-1 has the same evolutionary origin as prenyltransferases for vitamin E and plastoquinone. The gene expression of SfN8DT-1 is strictly limited to the root bark where prenylated flavonoids are solely accumulated in planta. The ectopic expression of SfN8DT-1 in Arabidopsis thaliana resulted in the formation of prenylated apigenin, quercetin, and kaempferol, as well as 8-prenylnaringenin. SfN8DT-1 represents the first flavonoid-specific prenyltransferase identified in plants and paves the way for the identification and characterization of further genes responsible for the production of this large and important class of secondary metabolites.  相似文献   

7.
Sugiyama A  Shitan N  Yazaki K 《Plant physiology》2007,144(4):2000-2008
Legume plants have an ability to fix atmospheric nitrogen into nutrients via symbiosis with soil microbes. As the initial event of the symbiosis, legume plants secrete flavonoids into the rhizosphere to attract rhizobia. Secretion of flavonoids is indispensable for the establishment of symbiotic nitrogen fixation, but almost nothing is known about the membrane transport mechanism of flavonoid secretion from legume root cells. In this study, we performed biochemical analyses to characterize the transport mechanism of flavonoid secretion using soybean (Glycine max) in which genistein is a signal flavonoid. Plasma membrane vesicles prepared from soybean roots showed clear transport activity of genistein in an ATP-dependent manner. This transport activity was inhibited by sodium orthovanadate, a typical inhibitor of ATP-binding cassette (ABC) transporters, but was hardly affected by various ionophores, such as gramicidin D, nigericin, or valinomycin, suggesting involvement of an ABC transporter in the secretion of flavonoids from soybean roots. The K(m) and V(max) values of this transport were calculated to be 158 mum and 322 pmol mg protein(-1) min(-1), respectively. Competition experiments using various flavonoids of both aglycone and glucoside varieties suggested that this ABC-type transporter recognizes genistein and daidzein, another signaling compound in soybean root exudates, as well as other isoflavonoid aglycones as its substrates. Transport activity was constitutive regardless of the availability of nitrogen nutrition. This is, to our knowledge, the first biochemical characterization of the membrane transport of flavonoid secretion from roots.  相似文献   

8.
9.
Prenylation plays a major role in the diversification of aromatic natural products, such as phenylpropanoids, flavonoids, and coumarins. This biosynthetic reaction represents the crucial coupling process of the shikimate or polyketide pathway providing an aromatic moiety and the isoprenoid pathway derived from the mevalonate or methyl erythritol phosphate (MEP) pathway, which provides the prenyl (isoprenoid) chain. In particular, prenylation contributes strongly to the diversification of flavonoids, due to differences in the prenylation position on the aromatic rings, various lengths of prenyl chain, and further modifications of the prenyl moiety, e.g., cyclization and hydroxylation, resulting in the occurrence of ca. 1000 prenylated flavonoids in plants. Many prenylated flavonoids have been identified as active components in medicinal plants with biological activities, such as anti-cancer, anti-androgen, anti-leishmania, and anti-nitric oxide production. Due to their beneficial effects on human health, prenylated flavonoids are of particular interest as lead compounds for producing drugs and functional foods. However, the gene coding for prenyltransferases that catalyze the key step of flavonoid prenylation have remained unidentified for more than three decades, because of the membrane-bound nature of these enzymes. Recently, we have succeeded in identifying the first prenyltransferase gene SfN8DT-1 from Sophora flavescens, which is responsible for the prenylation of the flavonoid naringenin at the 8-position, and is specific for flavanones and dimethylallyl diphosphate (DMAPP) as substrates. Phylogenetic analysis showed that SfN8DT-1 has the same evolutionary origin as prenyltransferases for vitamin E and plastoquinone. A prenyltransferase GmG4DT from soybean, which is involved in the formation of glyceollin, was also identified recently. This enzyme was specific for pterocarpan as its aromatic substrate, and (?)-glycinol was the native substrate yielding the direct precursor of glyceollin I. These enzymes are localized to plastids and the prenyl chain is derived from the MEP pathway. Further relevant genes involved in the prenylation of other types of polyphenol are expected to be cloned by utilizing the sequence information provided by the above studies.  相似文献   

10.
NphB is a soluble prenyltransferase from Streptomyces sp. strain CL190 that attaches a geranyl group to a 1,3,6,8-tetrahydroxynaphthalene-derived polyketide during the biosynthesis of anti-oxidant naphterpin. Here we report multiple chemoenzymatic syntheses of various prenylated compounds from aromatic substrates including flavonoids using two prenyltransferases NphB and SCO7190, a NphB homolog from Streptomyces coelicolor A3(2), as biocatalysts. NphB catalyzes carbon-carbon-based and carbon-oxygen-based geranylation of a diverse collection of hydroxyl-containing aromatic acceptors. Thus, this simple method using the prenyltransferases can be used to explore novel prenylated aromatic compounds with biological activities. Kinetic studies with NphB reveal that the prenylation reaction follows a sequential ordered mechanism.  相似文献   

11.
Liquid chromatography with ultraviolet and mass spectrometric detection was applied to monitor changes in profiles of isoflavonoid glycosides and free isoflavonoid aglycones in Lupinus albus L. Four isoflavonoid aglycones, fourteen isoflavonoid glycosides, four flavonol glycosides and flavone glycoside were identified in lupin tissue after LC/ESI/MS analyses. An elicitor preparation from purified yeast cell wall was used to inject the shoots of 3-week old seedlings or to infiltrate the cut lupin leaves. Qualitative and quantitative changes of isoflavonoids were measured at different time points after elicitation. In elicited lupin seedlings increased amounts of prenylated isoflavone aglycones were identified. The concentrations of glycosidic conjugates of isoflavones present in plant tissue were less affected.  相似文献   

12.
Prenylated flavonoids are attractive specialized metabolites with a wide range of biological activities and are distributed in several plant families. The prenylation catalyzed by prenyltransferases represents a Friedel-Crafts alkylation of the flavonoid skeleton in the biosynthesis of natural prenylated flavonoids and contributes to the structural diversity and biological activities of these compounds. To date, all identified plant flavonoid prenyltransferases (FPTs) have been identified in Leguminosae. In the present study two new FPTs, Morus alba isoliquiritigenin 3′-dimethylallyltransferase (MaIDT) and Cudrania tricuspidata isoliquiritigenin 3′-dimethylallyltransferase (CtIDT), were identified from moraceous plants M. alba and C. tricuspidata, respectively. MaIDT and CtIDT shared low levels of homology with the leguminous FPTs. MaIDT and CtIDT are predicted to be membrane-bound proteins with predicted transit peptides, seven transmembrane regions, and conserved functional domains that are similar to other homogentisate prenyltransferases. Recombinant MaIDT and CtIDT were able to regioselectively introduce dimethylallyl diphosphate into the A ring of three flavonoids with different skeleton types (chalcones, isoflavones, and flavones). Phylogenetic analysis revealed that MaIDT and CtIDT are distantly related to their homologs in Leguminosae, which suggests that FPTs in Moraceae and Leguminosae might have evolved independently. MaIDT and CtIDT represent the first two non-Leguminosae FPTs to be identified in plants and could thus lead to the identification of additional evolutionarily varied FPTs in other non-Leguminosae plants and could elucidate the biosyntheses of prenylated flavonoids in various plants. Furthermore, MaIDT and CtIDT might be used for regiospecific prenylation of flavonoids to produce bioactive compounds for potential therapeutic applications due to their high efficiency and catalytic promiscuity.  相似文献   

13.
Chromatographic investigation of a methanolic extract of white lupin roots has revealed the presence of six new dihydrofuranoisoflavones (lupinisoflavones A-F). Three monoprenylated (3,3-dimethylallyl-substituted) isoflavones (wighteone, luteone and licoisoflavone A), two diprenylated isoflavones [6,3′-di(3,3-dimethylallyl)genistein (lupalbigenin) and 6,3′-di(3,3-dimethylallyl)-2′-hydroxygenistein (2′-hydroxylupalbigenin)] and two pyranoisoflavones (parvisoflavone B and licoisoflavone B) have also been isolated from the same source. In addition to genistein, leaf extracts of L. italbus contain 3′-O-methylorobol which is presumed to be the precursor of lupisoflavone [5,7,4′-trihydroxy-3′-methoxy-6-(3,3-dimethylallyl)isoflavone]. Probable biogenetic relationships between the prenylated, and dihydrofurano-and pyrano-substituted isoflavones in roots and leaves of L. albus are briefly discussed.  相似文献   

14.
Three different prenyltransferases attach isoprenyl anchors to C-terminal motifs in substrate proteins. These lipid anchors serve for membrane attachment or protein-protein interactions in many pathways. Although well-tolerated selective prenyltransferase inhibitors are clinically available, their mode of action remains unclear since the known substrate sets of the various prenyltransferases are incomplete. The Prenylation Prediction Suite (PrePS) has been applied for large-scale predictions of prenylated proteins. To prioritize targets for experimental verification, we rank the predictions by their functional importance estimated by evolutionary conservation of the prenylation motifs within protein families. The ranked lists of predictions are accessible as PRENbase (http://mendel.imp.univie.ac.at/sat/PrePS/PRENbase) and can be queried for verification status, type of modifying enzymes (anchor type), and taxonomic distribution. Our results highlight a large group of plant metal-binding chaperones as well as several newly predicted proteins involved in ubiquitin-mediated protein degradation, enriching the known functional repertoire of prenylated proteins. Furthermore, we identify two possibly prenylated proteins in Mimivirus. The section HumanPRENbase provides complete lists of predicted prenylated human proteins-for example, the list of farnesyltransferase targets that cannot become substrates of geranylgeranyltransferase 1 and, therefore, are especially affected by farnesyltransferase inhibitors (FTIs) used in cancer and anti-parasite therapy. We report direct experimental evidence verifying the prediction of the human proteins Prickle1, Prickle2, the BRO1 domain-containing FLJ32421 (termed BROFTI), and Rab28 (short isoform) as exclusive farnesyltransferase targets. We introduce PRENbase, a database of large-scale predictions of protein prenylation substrates ranked by evolutionary conservation of the motif. Experimental evidence is presented for the selective farnesylation of targets with an evolutionary conserved modification site.  相似文献   

15.
Two major isoprenoids, farnesyl pyrophosphate and geranylgeranyl pyrophosphate, serve as lipid donors for the posttranslational modification (known as prenylation) of proteins that possess a characteristic C-terminal motif. The prenylation reaction is catalyzed by prenyltransferases. The lipid prenyl group facilitates to anchor the proteins in cell membranes and mediates protein-protein interactions. A variety of important intracellular proteins undergo prenylation, including almost all members of small GTPase superfamilies as well as heterotrimeric G protein subunits and nuclear lamins. These prenylated proteins are involved in regulating a wide range of cellular processes and functions, such as cell growth, differentiation, cytoskeletal organization, and vesicle trafficking. Prenylated proteins are also implicated in the pathogenesis of different types of diseases. Consequently, isoprenoids and/or prenyltransferases have emerged as attractive therapeutic targets for combating various disorders. This review attempts to summarize the pharmacological agents currently available or under development that control isoprenoid availability and/or the process of prenylation, mainly focusing on statins, bisphosphonates, and prenyltransferase inhibitors. Whereas statins and bisphosphonates deplete the production of isoprenoids by inhibiting the activity of upstream enzymes, prenyltransferase inhibitors directly block the prenylation of proteins. As the importance of isoprenoids and prenylated proteins in health and disease continues to emerge, the therapeutic potential of these pharmacological agents has expanded across multiple disciplines. This review mainly discusses their potential application in Alzheimer's disease.  相似文献   

16.
The internal concentration of isoflavonoids in white lupin (Lupinus albus) cluster roots and the exudation of isoflavonoids by these roots were investigated with respect to the effects of phosphorus (P) supply, root type and cluster-root developmental stage.To identify and quantify the major isoflavonoids exuded by white lupin roots, we used high-pressure liquid chromatography (HPLC) coupled to electrospray ionization (ESI) in mass spectrometry (MS).The major exuded isoflavonoids were identified as genistein and hydroxygenistein and their corresponding mono- and diglucoside conjugates. Exudation of isoflavonoids during the incubation period used was higher in P-deficient than in P-sufficient plants and higher in cluster roots than in noncluster roots. The peak of exudation occurred in juvenile and immature cluster roots, while exudation decreased in mature cluster roots.Cluster-root exudation activity was characterized by a burst of isoflavonoids at the stage preceding the peak of organic acid exudation. The potential involvement of ATP-citrate lyase in controlling citrate and isoflavonoid exudation is discussed, as well as the possible impact of phenolics in repelling rhizosphere microbial citrate consumers.  相似文献   

17.

Background  

White lupin (Lupinus albus L.) roots efficiently take up and accumulate (heavy) metals, adapt to phosphate deficiency by forming cluster roots, and secrete antimicrobial prenylated isoflavones during development. Genomic and proteomic approaches were applied to identify candidate genes and proteins involved in antimicrobial defense and (heavy) metal uptake and translocation.  相似文献   

18.
A further investigation of the isoflavonoid constituents occurring in roots of the white lupin (Lupinus albus L. cv. Kievskij Mutant) has yielded five new coumaronochromones named lupinalbin A (la), B (2a), C (3), D (4) and E (5). These isoflavonoids were identified by physicochemical methods involving the use of biogenetically related 2′-hydroxyisoflavones as reference compounds. The presence of the rare dihydrofurano-isoflavone, erythrinin C (16), in white lupin roots has also been established.  相似文献   

19.
Prenylated polyphenols are secondary metabolites beneficial for human health because of their various biological activities. Metabolic engineering was performed using Streptomyces and Sophora flavescens prenyltransferase genes to produce prenylated polyphenols in transgenic legume plants. Three Streptomyces genes, NphB, SCO7190, and NovQ, whose gene products have broad substrate specificity, were overexpressed in a model legume, Lotus japonicus, in the cytosol, plastids or mitochondria with modification to induce the protein localization. Two plant genes, N8DT and G6DT, from Sophora flavescens whose gene products show narrow substrate specificity were also overexpressed in Lotus japonicus. Prenylated polyphenols were undetectable in these plants; however, supplementation of a flavonoid substrate resulted in the production of prenylated polyphenols such as 7-O-geranylgenistein, 6-dimethylallylnaringenin, 6-dimethylallylgenistein, 8-dimethylallynaringenin, and 6-dimethylallylgenistein in transgenic plants. Although transformants with the native NovQ did not produce prenylated polyphenols, modification of its codon usage led to the production of 6-dimethylallylnaringenin and 6-dimethylallylgenistein in transformants following naringenin supplementation. Prenylated polyphenols were not produced in mitochondrial-targeted transformants even under substrate feeding. SCO7190 was also expressed in soybean, and dimethylallylapigenin and dimethylallyldaidzein were produced by supplementing naringenin. This study demonstrated the potential for the production of novel prenylated polyphenols in transgenic plants. In particular, the enzymatic properties of prenyltransferases seemed to be altered in transgenic plants in a host species-dependent manner.  相似文献   

20.
Quantification of the flavonoids in yellow lupin (Lupinus luteus; Leguminosae) seedlings revealed that a flavone glucoside, 7-O-beta-(2-O-beta-rhamnosyl)glucosyl-4',5,7-trihydroxyflavone (apigenine 7-O-beta-neohesperidoside), is rich in the epicotyl and cotyledon. In hypocotyls and roots, 8-C-beta-glucosyl-4',5,7-trihydroxyisoflavone (genistein 8-C-beta-glucoside) was a predominant flavonoid constituent. The roles of the localized flavonoids are briefly discussed relating to defense against biotic and abiotic external stresses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号