首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Certain decapod crustaceans can catabolize internal reservesto undergo partial or full larval development. This featureis termed secondary lecithotrophy, if energy used results fromplankton derived organic matter accumulated by earlier larvalstages. The present work reports the ability of Lysmata seticaudatamegalopa to molt to the first juvenile stage in the absenceof food. Unlike previous records of secondary lecithotrophydisplayed by non-feeding last larval stages of hermit crabsand spiny lobsters, the megalopa of L. seticaudata retains itsfeeding capacity. This is the first time such a feature hasbeen reported in decapods, and the term facultative secondarylecithotrophy is proposed. The build up of energy reserves continuesduring the last zoeal stage of L. seticaudata, with starvedzoea IX failing to molt to megalopa. Energy reserves that enablestarved megalopa to molt to juvenile seem to be partially depleted,with starved juveniles produced either from starved or fed megalopaebeing unable to molt to the next juvenile stage. The longerresistance of starved juveniles produced from fed megalopae(nine days), compared to that of starved juveniles producedfrom starved megalopae (five days), indicates that some energyreserves may pass to the juvenile, not being totally depletedat metamorphosis.  相似文献   

2.
Protists are a diverse group of eukaryotes that possess a unicellular level of organization. As unicellular organisms, the differentiation of cells into tissues does not occur, although when cell differentiation does occur, it is limited to sexual reproduction, alternate vegetative morphologies or quiescent life history stages. Protistan parasites may possess simple or complex life histories that are important factors to consider when investigating protistan diseases of decapods. Unfortunately, the life histories of many protistan parasites of decapods are insufficiently described, resulting in the fact that modes of infection and transmission are often unidentified. This is surprising considering the economic importance of many marine decapods and the ability of protistan parasites to produce significant, but generally transient and area limited mortalities. However, the marine disease landscape is changing and will continue to change as climate change and ocean acidification will play important roles in disease occurrence and distribution. As a result, the following discussion attempts to summarize current knowledge on several crab diseases, their protistan etiological agents, the impact of disease on economically important crab populations and draw attention to areas of needed research. The discussion is not complete as only selected diseases are addressed, or perfect as the Microsporidia are included in the discussion (a traditional error continued in this summary) despite the recent, but controversial placement of the taxon with the fungi.  相似文献   

3.
Ageing and longevity is a neglected field of crustacean biology. Information on longevity is available for less than 2% of the extant species of the Decapoda. Maximum ages reliably determined range from 40 days to 72 years corresponding to a life span difference of a factor of 650. The shortest-lived decapods are planktonic dendrobranchiate shrimps, and particularly long-lived species with life spans of decades are found in the Astacidea. Most decapods seem to live for 1-10 years. High geographical latitude, the deep sea and freshwater caves promote longevity. The majority of the Decapoda is indeterminately growing and presumably characterized by negligible senescence. The adults of the determinately growing decapods like some brachyuran crabs suffer from mechanical senescence and are unable to regenerate lost appendages. The decapod crustaceans have developed many effective anti-ageing mechanisms including moulting, detoxification of free radicals, removal of cellular waste, renewal of tissues by life-long stem cell activity, regeneration of appendages, detoxification of environmental pollutants and isolation of pathogens and diseased tissue areas by melanisation and encapsulation. Age related diseases including cancer are virtually unknown. The present compilation of data on longevity and senescence in decapods is the first one that covers the whole spectrum of a higher invertebrate taxon. It is hoped to provide an interesting source of information for carcinologists and biogerontologists. Further improvement of knowledge on ageing and longevity in the Decapoda would be beneficial for crustacean aquaculture, fisheries and ecological modelling. Some decapods even have good potential to become models for general ageing research.  相似文献   

4.
To assess whether the annual killifish Nothobranchius wattersi responds plastically to a desiccation risk and whether this response is life stage dependent, life‐history traits such as maturation time, fecundity and life span were experimentally measured in N. wattersi that were subjected to a drop in water level either as juveniles, as adults or both as juveniles and adults. Fish that were exposed to simulated pool drying as juveniles did not show changes in reproductive output or life span. Adults reacted by doubling short term egg deposition at the cost of a shorter lifespan. Overall, these results suggest that annual fish species can use phenotypic plasticity to maximize their reproductive output when faced with early pond drying, but this response appears to be life‐stage specific. In addition to frogs and aquatic insects, phenotypic plasticity induced by forthcoming drought is now also confirmed in annual fishes and could well be a common feature of the limited number of fish taxa that manage to survive in this extreme environment.  相似文献   

5.
The transition from marine to freshwater habitats is one of the major steps in the evolution of life. In the decapod crustaceans, four groups have colonized fresh water at different geological times since the Triassic, the freshwater shrimps, freshwater crayfish, freshwater crabs and freshwater anomurans. Some families have even colonized terrestrial habitats via the freshwater route or directly via the sea shore. Since none of these taxa has ever reinvaded its environment of origin the Decapoda appear particularly suitable to investigate life‐history adaptations to fresh water. Evolutionary comparison of marine, freshwater and terrestrial decapods suggests that the reduction of egg number, abbreviation of larval development, extension of brood care and lecithotrophy of the first posthatching life stages are key adaptations to fresh water. Marine decapods usually have high numbers of small eggs and develop through a prolonged planktonic larval cycle, whereas the production of small numbers of large eggs, direct development and extended brood care until the juvenile stage is the rule in freshwater crayfish, primary freshwater crabs and aeglid anomurans. The amphidromous freshwater shrimp and freshwater crab species and all terrestrial decapods that invaded land via the sea shore have retained ocean‐type planktonic development. Abbreviation of larval development and extension of brood care are interpreted as adaptations to the particularly strong variations of hydrodynamic parameters, physico‐chemical factors and phytoplankton availability in freshwater habitats. These life‐history changes increase fitness of the offspring and are obviously favoured by natural selection, explaining their multiple origins in fresh water. There is no evidence for their early evolution in the marine ancestors of the extant freshwater groups and a preadaptive role for the conquest of fresh water. The costs of the shift from relative r‐ to K‐strategy in freshwater decapods are traded‐off against fecundity, future reproduction and growth of females and perhaps against size of species but not against longevity of species. Direct development and extension of brood care is associated with the reduction of dispersal and gene flow among populations, which may explain the high degree of speciation and endemism in directly developing freshwater decapods. Direct development and extended brood care also favour the evolution of social systems, which in freshwater decapods range from simple subsocial organization to eusociality. Hermaphroditism and parthenogenesis, which have evolved in some terrestrial crayfish burrowers and invasive open water crayfish, respectively, may enable populations to adapt to restrictive or new environments by spatio‐temporal alteration of their socio‐ecological characteristics. Under conditions of rapid habitat loss, environmental pollution and global warming, the reduced dispersal ability of direct developers may turn into a severe disadvantage, posing a higher threat of extinction to freshwater crayfish, primary freshwater crabs, aeglids and landlocked freshwater shrimps as compared to amphidromous freshwater shrimps and secondary freshwater crabs.  相似文献   

6.
The penetration of second stage juveniles of Meloidogyne javanica started within 12 hours after inoculation and the rate of penetration gradually increased with the passage of time up to the fifth day in the plants inoculated with root-knot nematode alone and up to the sixth day when plants were infected with root-knot nematode and root-rot fungus. Mostly, the penetration of second stage juveniles of Meloidogyne javanica took place in the meristematic region but in some cases the juveniles also penetrated into the root tips and oriented themselves near the stellar region almost parallel to the longitudinal axis of the roots. The life cycle of Meloidogyne javanica on balsam was completed within 25 days, whereas the duration of the life cycle and fecundity of females was adversely affected in the presence of fungus (Macrophomina phaseolina) and it took about 33 days to complete the life cycle, i.e. the presence of Macrophomina phaseolina delayed the life cycle of the root-knot nematode (Meloidogyne javanica) by eight days.  相似文献   

7.
Concurrent, distribution-wide abundance declines of some Pacific salmon species, including Chinook salmon (Oncorhynchus tshawytscha), highlights the need to understand how vulnerability at different life stages to climate stressors affects population dynamics and fisheries sustainability. Yukon River Chinook salmon stocks are among the largest subarctic populations, near the northernmost extent of the species range. Existing research suggests that Yukon River Chinook salmon population dynamics are largely driven by factors occurring between the adult spawner life stage and their offspring's first summer at sea (second year post-hatching). However, specific mechanisms sustaining chronic poor productivity are unknown, and there is a tremendous sense of urgency to understand causes, as declines of these stocks have taken a serious toll on commercial, recreational, and indigenous subsistence fisheries. Therefore, we leveraged multiple existing datasets spanning parent and juvenile stages of life history in freshwater and marine habitats. We analyzed environmental data in association with the production of offspring that survive to the marine juvenile stage (juveniles per spawner). These analyses suggest more than 45% of the variability in the production of juvenile Chinook salmon is associated with river temperatures or water discharge levels during the parent spawning migration. Over the past two decades, parents that experienced warmer water temperatures and lower discharge in the mainstem Yukon River produced fewer juveniles per spawning adult. We propose the adult spawner life stage as a critical period regulating population dynamics. We also propose a conceptual model that can explain associations between population dynamics and climate stressors using independent data focused on marine nutrition and freshwater heat stress. It is sobering to consider that some of the northernmost Pacific salmon habitats may already be unfavorable to these cold-water species. Our findings have immediate implications, given the common assumption that northern ranges of Pacific salmon offer refugia from climate stressors.  相似文献   

8.
The relative sizes of 30 lobes of the brains of 63 species of cephalopods have been compared. Some of the observed differences could be related to the way of life of the animal and others to the taxonomic relationships. The octopods are separated from the decapods by their larger brachial and other suboesophageal lobes, larger inferior frontal systems and smaller optic lobes. Vampyroteulhis lies somewhat between these two main groups. The vertical lobe system is large in sepioids and loliginids, smaller in decapods from deeper water, but large in Vampyroteuthis. In octopods, it is large in the typical epibenthic forms but smaller in those from deeper water and very small in cirrates. The inferior frontal system is very large in epibenthic octopods and Benthoctopus and in cirrates, but smaller in epipelagic and bathypelagic forms. The optic lobes are larger in decapods than in octopods from comparable depths and are especially large in deep-sea decapods. They are larger in epipelagic octopods than in the typical benthic forms. The photosensitive vesicles vary by nearly two orders of magnitude. They are very small in squids living in surface waters, larger in mesopelagic forms and enormous in some cranchiids and in Balhyteuthis. In Histioteulhis , the side with the larger eye had an optic lobe twice as big as that on the side of the smaller eye, but with only slight differences in other parts of the brain. In the octopods, the inferior frontal system was generally large, being concerned with the tactile memory system, and tends to be inversely related to the size of the optic lobe.  相似文献   

9.
The developmental perspectives of animal personality enhance our understanding of how personality structure changes in relation to life stage. Clonal animals are ideal models for developmental studies because personality differences can be solely attributed to environmental factors. Here, I investigated the presence of personality within a species of clonal gecko, Lepidodactylus lugubris, at different developmental stages. For juveniles and adult geckos, I measured exploration (reaction to a novel situation) and boldness (risk-prone tendency) and evaluated repeatability and correlation of these behavioural traits. Each gecko exhibited different exploration and boldness with significant repeatability through time but no correlation between these behavioural traits. Small juveniles were composed of only bold and low explorative individuals but large juveniles and adults were composed of various personality type individuals. These results demonstrate that subject geckos have a similar personality structure across life stages and that exploration and boldness are independent personality without forming behavioural syndrome structure. Biased composition of personality type between life stages suggests that appearance of different personality type individuals during an early ontogenetic stage generates personality variation within the clonal population. This study provides developmental insight about personality structure and its composition in clonal animals living in the wild.  相似文献   

10.
A cattle-drinking pool in nature reserve "Zwin" on the Belgian coast contained free-living third-stage infective filaroid juveniles. These juveniles clearly differ morphologically from all known nematodes. Morphological and molecular analyses indicate a position within the Filaroidea. The aberrant biology of this nematode, namely, a free-living stage in an aquatic environment, is unknown within this superfamily, and the evolution of the parasitic phenotype to a free-living state is generally thought to be unlikely. However, the obtained placement in the small subunit molecular phylogenetic tree suggests that this free-living stage is most likely a secondary adaptation. It is reasonable to assert that nematodes with complex life cycles still have the genetic potential for a reversion from parasitism to a (partial) free-living stage.  相似文献   

11.
Recently, we briefly reported on the first case of parthenogenesis in the decapod Crustacea which was found in the Marmorkrebs or marbled crayfish, a cambarid species of unknown geographic origin and species identity. Curiously, this animal is known only from aquarium populations, where it explosively propagates. By means of light and electron microscopic techniques we have now investigated the reproductive components of this crayfish, using more than 100 specimens ranging from hatchling to repeatedly spawned adult. Additionally, we documented its principal life stages. Our results revealed that the external sexual characters and also the gonads of the marbled crayfish are purely female, making this fast-reproducing species a good model for investigating female reproductive features in crayfish. Testicular tissues, ovotestes, or male gonoducts, gonopores, or gonopods were never found, either in small juveniles or large adult specimens, confirming the parthenogenetic nature of this crayfish. Parthenogenesis may have arisen spontaneously or by interspecific hybridization since Wolbachia-like feminizing microorganisms were not found in the ovaries. The external sexual characters of the marbled crayfish are first recognized in Stage 4 juveniles and are structurally complete approximately 2 months after hatching in specimens of approximately 2 cm total length. In the same life stage the ovary is fully differentiated as well, although the oocytes are in previtellogenic and primary vitellogenic stages only. The architecture of the mature ovary and also the synchronous maturation of cohorts of primary vitellogenic oocytes by secondary vitellogenesis are in general agreement with data published on ovaries of bisexual crayfish. New results were obtained with respect to the muscular nature of the ovarian envelope and its extensive proliferation after the first spawning, the distribution of hemal sinuses in the ovarian envelope and in the interstitium around the oogenetic pouches, the high transport activity of the follicle cells, and the colonization of oogenetic pouches by previtellogenic oocytes that originate in the germaria. Investigation of the nuclei of oocytes in the germaria and oogenetic pouches revealed no signs of meiosis, as usually found in females of bisexual decapods, suggesting that parthenogenesis in the marbled crayfish might be an apomictic thelytoky. The detection of new rickettsial and coccidian infections in the ovary and further organs raises fears that the marbled crayfish might endanger native European species by transmission of pathogens once escaped into the wild.  相似文献   

12.
It is assumed that most diseases arise from multiple causes, and that diseases have the characteristics of polythetic classes. The signs and symptoms of clinically-apparent disease are epiphenomena, or emergent properties from the interaction among multiple biochemical etiologic factors, intrinsic and acquired. Each individual carries a unique set of intrinsic biochemical defects that are subsets of diseases to which he is predisposed. He acquires additional defects throughout life. Such biochemical defects can be detected by laboratory testing.Clinically-apparent diseases are sets consisting of multiple laboratory-test anomalies associated with clinical signs and symptoms. Smaller sets are formed by laboratory-test anomalies pertaining to the functional state of major organ systems, without localizing signs and symptoms. The latter sets are termed preclinical disease. Small sets of laboratory-test anomalies, reflecting mainly intrinsic (genetic) defects, represent potential disease. Under appropriate conditions, elements can be added to or subtracted from the sets, so that diseases may evolve to a more advanced stage or regress under therapy. Ideally, sets of biochemical anomalies should be identified at an early stage, before expansion of the sets eventuates in clinically-apparent disease.  相似文献   

13.
The early life stage of long-lived species is critical to the viability of population, but is poorly understood. Longitudinal studies are needed to test whether juveniles are less efficient foragers than adults as has been hypothesized. We measured changes in the diving behaviour of 17 one-year-old king penguins Aptenodytes patagonicus at Crozet Islands (subantartic archipelago) during their first months at sea, using miniaturized tags that transmitted diving activity in real time. We also equipped five non-breeder adults with the same tags for comparison. The data on foraging performance revealed two groups of juveniles. The first group made shallower and shorter dives that may be indicative of early mortality while the second group progressively increased their diving depths and durations, and survived the first months at sea. This surviving group of juveniles required the same recovery durations as adults, but typically performed shallower and shorter dives. There is thereby a relationship between improved diving behaviour and survival in young penguins. This long period of improving diving performance in the juvenile life stage is potentially a critical period for the survival of deep avian divers and may have implications for their ability to adapt to environmental change.  相似文献   

14.
Accounts are given of the structure and some aspects of the biology of three commensal crustaceans from Singapore. One of these represents a new genus of prawns of the subfamily Pontoniinae; the others are little known members of the family Porcellanidae.
It is suggested that the apparent rarity of these and other tropical commensal decapods is probably a spurious phenomenon resulting from inadequate collecting methods.
The functional taxonomy of these commensals is discussed and it is suggested that many of their structural peculiarities can be interpreted as adaptations to their mode of life.  相似文献   

15.
通过室内显微观察和测定不同时期长枝木霉分生孢子悬浮液对小麦禾谷孢囊线虫2龄幼虫的致死作用,初步研究了长枝木霉分生孢子悬浮液对小麦禾谷孢囊线虫的防治潜力和作用机理.结果表明: 侵染初期大量分生孢子吸附或寄生于虫体体壁,并且在分生孢子寄生的部位出现明显的缢缩.侵染后期寄生于虫体的分生孢子萌发产生大量菌丝,并形成致密的菌网将虫体缠绕或穿透虫体体壁,甚至有的虫体完全被分解.不同浓度长枝木霉分生孢子悬浮液对2龄幼虫具有明显的致死和寄生作用,且不同浓度之间存在显著差异.致死和寄生作用随着长枝木霉分生孢子悬浮液浓度的增加而增强,浓度为1.5×107 cfu·mL-1的长枝木霉分生孢子悬浮液处理后72 h,2龄幼虫的死亡率和校正死亡率分别为91.3%和90.4%,14 d后对2龄幼虫的寄生率为88.7%.表明长枝木霉分生孢子悬浮液对小麦禾谷孢囊线虫的致死作用较强,该菌具有对小麦禾谷孢囊线虫的防治潜力.  相似文献   

16.
Animals are exposed to different predators over their lifespan. This raises the question of whether exposure to predation risk in an early life stage affects the response to predators in subsequent life stages. In this study, we used wood frogs (Rana sylvatica) to test whether exposure to cues indicating predation risk from dragonfly larvae during the wood frog larval stage affected post‐metamorphic activity level and avoidance of garter snake chemical cues. Dragonfly larvae prey upon wood frogs only during the larval stage, whereas garter snakes prey upon wood frogs during both the larval stage and the post‐metamorphic stage. Exposure to predation risk from dragonflies during the larval stage caused post‐metamorphic wood frog juveniles to have greater terrestrial activity than juvenile wood frogs that were not exposed to larval‐stage predation risk from dragonflies. However, exposure to predation risk as larvae did not affect juvenile wood frog responses to chemical cues from garter snakes. Wood frogs exposed as larvae to predation risk from dragonfly larvae avoided garter snake chemical cues to the same extent as wood frog larvae not exposed to predation risk from dragonfly larvae. Our results demonstrate that while some general behaviors exhibit carry‐over effects from earlier life stages, behavioral responses to predators may remain independent of conditions experienced in earlier life stages.  相似文献   

17.
The Caribbean spiny lobster Panulirus argus, an important fisheries species, is host to Panulirus argus virus 1 (PaV1), a lethal, unclassified virus--the first found in any species of lobster--prevalent in juvenile lobsters. We describe a series of laboratory experiments aimed at assessing the likely modes of disease transmission, determining the survival of lobsters relative to each transmission pathway and identifying potential alternate hosts. Given evidence for lower prevalence of PaV1 in large lobsters, the effect of lobster size on susceptibility was also examined. Results demonstrated that PaV1 can be transmitted to juvenile lobsters via inoculation, ingestion of diseased tissue, contact with diseased lobsters and--among the smallest juveniles--through water over distances of a few meters. Contact and waterborne transmission, the most likely modes of transmission in the wild, were less efficient than inoculation or ingestion. Nevertheless, about half of the smallest lobsters in contact and waterborne trials contracted the disease and died within 3 mo. Other decapods that co-occur with P. argus (e.g. spotted lobster P. guttatus, stone crab Menippe mercenaria, channel crab Mithrax spinosissimus) did not acquire the disease after inoculation with PaV1-infected hemolymph. Our results confirmed that PaV1 is highly infectious and lethal to juvenile P. argus, particularly early benthic juveniles in the wild, and, hence, is a threat to mariculture.  相似文献   

18.
Ontogenetic changes in disease susceptibility have been demonstrated in many vertebrate taxa, as immature immune systems and limited prior exposure to pathogens can place less developed juveniles at a greater disease risk. By causing the disease chytridiomycosis, Batrachochytrium dendrobatidis (Bd) infection has led to the decline of many amphibian species. Despite increasing knowledge on how Bd varies in its effects among species, little is known on the interaction between susceptibility and development within host species. We compared the ontogenetic susceptibility of post-metamorphic green and golden bell frogs Litoria aurea to chytridiomycosis by simultaneously measuring three host-pathogen responses as indicators of the development of the fungus—infection load, survival rate, and host immunocompetence—following Bd exposure in three life stages (recently metamorphosed juveniles, subadults, adults) over 95 days. Frogs exposed to Bd as recently metamorphosed juveniles acquired higher infection loads and experienced lower immune function and lower survivorship than subadults and adults, indicating an ontogenetic decline in chytridiomycosis susceptibility. By corresponding with an intrinsic developmental maturation in immunocompetence seen in uninfected frogs, we suggest these developmental changes in host susceptibility in L. aurea may be immune mediated. Consequently, the physiological relationship between ontogeny and immunity may affect host population structure and demography through variation in life stage survival, and understanding this can shape management targets for effective amphibian conservation.  相似文献   

19.
Mehmet Karakaş 《Biologia》2007,62(3):320-322
The life cycle and mating behavior of Helicotylenchus multicinctus (Nematoda: Hoplolaimidae) were observed in vitro on excised roots of Musa cavendishii in gnotobiotic culture. Eggs hatched into juveniles whose appearance and structure were similar to those of the adults. Juveniles grew in size and each juvenile stage was terminated by a molt. H. multicinctus had four juvenile stages. The first molt occurred outside the egg shortly after hatching. After the final molt the juveniles differentiated into adult males and females. Mating was required for reproduction. After mating, fertilized females began to lay eggs. The life cycle from second stage juvenile to second stage juvenile was completed in 39 days.  相似文献   

20.
Cholesterol is an essential component for neuronal physiology not only during development stage but also in the adult life. Cholesterol metabolism in brain is independent from that in peripheral tissues due to bloodbrain barrier. The content of cholesterol in brain must be accurately maintained in order to keep brain function well. Defects in brain cholesterol metabolism has been shown to be implicated in neurodegenerative diseases, such as Alzheimer’s disease (AD), Huntington’s disease (HD), Parkinson’s disease (PD), and some cognitive deficits typical of the old age. The brain contains large amount of cholesterol, but the cholesterol metabolism and its complex homeostasis regulation are currently poorly understood. This review will seek to integrate current knowledge about the brain cholesterol metabolism with molecular mechanisms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号