首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Yeast rad51 mutants are viable, but extremely sensitive to gamma-rays due to defective repair of double-strand breaks. In contrast, disruption of the murine RAD51 homologue is lethal, indicating an essential role of Rad51 in vertebrate cells. We generated clones of the chicken B lymphocyte line DT40 carrying a human RAD51 transgene under the control of a repressible promoter and subsequently disrupted the endogenous RAD51 loci. Upon inhibition of the RAD51 transgene, Rad51- cells accumulated in the G2/M phase of the cell cycle before dying. Chromosome analysis revealed that most metaphase-arrested Rad51- cells carried isochromatid-type breaks. In conclusion, Rad51 fulfils an essential role in the repair of spontaneously occurring chromosome breaks in proliferating cells of higher eukaryotes.  相似文献   

3.
4.
5.
6.
The Survival of Motor Neurons (SMN) is the disease gene of spinal muscular atrophy. We have previously established a genetic system based on the chicken pre-B cell line DT40, in which expression of SMN protein is regulated by tetracycline, to study the function of SMN in vivo. Depletion of SMN protein is lethal to these cells. Here we tested the functionality of mutant SMN proteins by determining their capacity to rescue the cells after depletion of wild-type SMN. Surprisingly, all of the spinal muscular atrophy-associated missense mutations tested were able to support cell viability and proliferation. Deletion of the amino acids encoded by exon 7 of the SMN gene resulted in a partial loss of function. A mutant SMN protein lacking both the tyrosine/glycine repeat (in exon 6) and exon 7 failed to sustain viability, indicating that the C terminus of the protein is critical for SMN activity. Interestingly, the Tudor domain of SMN, encoded by exon 3, does not appear to be essential for SMN function since a mutant deleted of this domain restored cell viability. Unexpectedly, a chicken SMN mutant (DeltaN39) lacking the N-terminal 39 amino acids that encompass the Gemin2-binding domain also rescued the lethal phenotype. Moreover, the level of Gemin2 in DeltaN39-rescued cells was significantly reduced, indicating that Gemin2 is not required for DeltaN39 to perform the essential function of SMN in DT40 cells. These findings suggest that SMN may perform a novel function in DT40 cells.  相似文献   

7.
We previously developed a method termed "toxin receptor-mediated cell knockout" (TRECK). By the TRECK method, a single or repeated shot(s) of diphtheria toxin (DT) conditionally ablates a specific cell population from transgenic mice expressing the DT receptor transgene under the control of a cell type-specific promoter. In some cases of TRECK, frequent and high-dose administration of DT is required, raising the concern that these frequent injections of DT could cause production of anti-DT antibody, which would neutralize further DT administration. To solve this problem, we aimed to generate transgenic mice genetically expressing a nontoxic DT mutant, with the expectation that they may naturally acquire immune tolerance to DT. Unexpectedly, the G52E DT mutant, which is well known as the nontoxic DT variant cross reacting material 197 (CRM197), exhibited cytotoxicity in yeast and mammalian cells. Cytotoxicity of CRM197 was abrogated in cells mutated for elongation factor 2 (EF-2), indicating that CRM197 exerts its toxic effects through EF-2, similar to wild-type DT. On the other hand, the K51E/E148K DT mutant exhibited no detectable cytotoxicity. This led us to successfully obtain DT gene transgenic mice, which exhibited no histological abnormalities, and indeed acquired immune tolerance to DT.  相似文献   

8.
9.
Chromatin assembly factor-1 (CAF-1) is essential for chromatin assembly in eukaryotes, and comprises three subunits of 150 kDa (p150), 60 kDa (p60), and 48 kDa (p48). We cloned and sequenced cDNA encoding the small subunit of the chicken CAF-1, chCAF-1p48. It consists of 425 amino acid residues including a putative initiation Met, possesses seven WD repeat motifs, and contains only one amino acid change relative to the human and mouse CAF-1p48s. The immunoprecipitation experiment followed by Western blotting revealed that chCAF-1p48 interacts with chicken histone deacetylases (chHDAC-1 and -2) in vivo. The glutathione S-transferase pulldown affinity assay revealed the in vitro interaction of chCAF-1p48 with chHDAC-1, -2, and -3. We showed that the p48 subunit tightly binds to two regions of chHDAC-2, located between amino acid residues 82-180 and 245-314, respectively. We also established that two N-terminal, two C-terminal, or one N-terminal and one C-terminal WD repeat motif of chCAF-1p48 are required for this interaction, using deletion mutants of the respective regions. These results suggest that chCAF-1p48 is involved in many aspects of DNA-utilizing processes, through alterations in the chromatin structure based on both the acetylation and deacetylation of core histones.  相似文献   

10.
The chicken HMG-17 gene is dispensable for cell growth in vitro.   总被引:1,自引:0,他引:1       下载免费PDF全文
HMG-17 is a highly conserved and ubiquitous nonhistone chromosomal protein that binds to nucleosome core particles. HMG-17 and HMG-14 form a family of chromosomal proteins that have been reported to bind preferentially to regions of active chromatin structure. To study the functional role of the single-copy chicken HMG-17 gene, null mutants were generated by targeted gene disruption in a chicken lymphoid cell line, DT40. Heterozygous and homozygous null mutant cell lines were generated by two independent selection strategies. Heterozygous null mutant lines produced about half the normal level of HMG-17 protein, and homozygous null lines produced no detectable HMG-17. No significant changes in cell phenotype were observed in cells harboring either singly or doubly disrupted HMG-17 genes, and no compensatory changes in HMG-14 or histone protein levels were observed. It is concluded that HMG-17 protein is not required for normal growth of avian cell lines in vitro, nor does the absence of HMG-17 protein lead to any major changes in cellular phenotype, at least in lymphoid cells.  相似文献   

11.
The Drosophila melanogaster flightless I gene is required for normal cellularization of the syncytial blastoderm. Highly conserved homologues of flightless I are present in Caenorhabditis elegans, mouse, and human. We have disrupted the mouse homologue Fliih by homologous recombination in embryonic stem cells. Heterozygous Fliih mutant mice develop normally, although the level of Fliih protein is reduced. Cultured homozygous Fliih mutant blastocysts hatch, attach, and form an outgrowing trophoblast cell layer, but egg cylinder formation fails and the embryos degenerate. Similarly, Fliih mutant embryos initiate implantation in vivo but then rapidly degenerate. We have constructed a transgenic mouse carrying the complete human FLII gene and shown that the FLII transgene is capable of rescuing the embryonic lethality of the homozygous targeted Fliih mutation. These results confirm the specific inactivation of the Fliih gene and establish that the human FLII gene and its gene product are functional in the mouse. The Fliih mouse mutant phenotype is much more severe than in the case of the related gelsolin family members gelsolin, villin, and CapG, where the homozygous mutant mice are viable and fertile but display alterations in cytoskeletal actin regulation.  相似文献   

12.
13.
Caspases play a key role during apoptotic execution. In an attempt to elucidate the specific role of caspase-7 we generated a chicken DT40 cell line in which both alleles of the gene were disrupted. Viability assays showed that caspase-7-/- clones are more resistant to the common apoptosis-inducing drugs etoposide and staurosporine. Caspase-7-/- cells show a delay in phosphatidylserine externalization and DNA fragmentation as well as cleavage of the caspase substrates poly(ADP-ribose) polymerase 1 and lamins B1 and B2. Caspase affinity labeling and activity assays indicated that deficient cells exhibit a delay in caspase activation compared with wild type DT40 cells, providing an explanation for the differences in apoptotic execution between caspase-7 null and wild type DT40 cells. These results strongly suggest that caspase-7 is involved earlier than other effector caspases in the apoptotic execution process in DT40 B lymphocytes.  相似文献   

14.
c-Abl is activated by DNA damage in an ataxia telangiectasia mutated (ATM)-dependent manner and plays important roles in growth arrest and apoptosis induced by DNA damage. c-Abl also interacts physically and functionally with Rad51, a key molecule in homologous recombinational (HR) DNA repair. To study further the roles of c-Abl in HR DNA repair, we generated c-Abl(-/-) and ATM(-/-)/c-Abl(-/-) mutant cell lines from a chicken B lymphocyte DT40 cell line, comparing the phenotypes of these mutants to those of ATM(-/-) DT40 cells that we had created previously. We found that the time course of radiation-induced Rad51 focus formation is abnormal in ATM(-/-) DT40 cells, consistent with the observation that ATM(-/-) DT40 cells display hypersensitivity to ionizing radiation and highly elevated frequencies of both spontaneous and radiation-induced chromosomal aberrations. In contrast, c-Abl(-/-) cells did not show these ATM-related defects in their cellular response to radiation, nor did the disruption of c-Abl in ATM(-/-) DT40 cells exacerbate these ATM-related defects. However, c-Abl(-/-) DT40 cells, but not ATM(-/-) DT40 cells, were resistant to radiation-induced apoptosis, indicating an important role for c-Abl in this cellular response to ionizing radiation. These results therefore indicate that, although ATM plays an important role in genome maintenance, c-Abl is not essential for this ATM function. These findings suggest that c-Abl and ATM play important roles in the maintenance of the cell homeostasis in response to DNA damage that are, at least in part, independent.  相似文献   

15.
16.
Cytoplasmic activation/proliferation-associated protein-1 (Caprin-1) is a cytoplasmic phosphoprotein that is the prototype of a novel family of highly conserved proteins. Its levels, except in the brain, are tightly correlated with cellular proliferation. We disrupted caprin-1 alleles in the chicken B lymphocyte line DT40 using homologous recombination. We readily obtained clones with one disrupted allele (31% of transfectants), but upon transfection of heterozygous cells we obtained a 10-fold lower frequency of clones with disruption of the remaining allele. Clones of caprin-1-null DT40 cells exhibited marked reductions in their proliferation rate. To obviate the problem that we had selected for caprin-1-null clones with characteristics that partially compensated for the lack of Caprin-1, we generated clones of DT40 cells heterozygous for the caprin-1 gene in which, during disruption of the remaining wild-type allele of the chicken caprin-1 gene, the absence of endogenous Caprin-1 would be complemented by conditional expression of human Caprin-1. Suppression of expression of human Caprin-1 resulted in slowing of the proliferation rate, due to prolongation of the G1 phase of the cell cycle, formally demonstrating that Caprin-1 was essential for normal cellular proliferation.  相似文献   

17.
CENP-I is essential for centromere function in vertebrate cells   总被引:14,自引:0,他引:14  
We identified a novel essential centromere protein, CENP-I, which shows sequence similarity with fission yeast Mis6 protein, and we showed that CENP-I is a constitutive component of the centromere that colocalizes with CENP-A, -C, and -H throughout the cell cycle in vertebrate cells. To determine the precise function of CENP-I, we examined its role in centromere function by generating a conditional loss-of-function mutant in the chicken DT40 cell line. In the absence of CENP-I, cells arrested at prometaphase with misaligned chromosomes for long periods of time. Eventually, cells exited mitosis without undergoing cytokinesis. Immunocytochemical analysis of CENP-I-deficient cells demonstrated that both CENP-I and CENP-H are necessary for localization of CENP-C but not CENP-A to the centromere.  相似文献   

18.
Obtaining random homozygous mutants in mammalian cells for forward genetic studies has always been problematic due to the diploid genome. With one mutation per cell, only one allele of an autosomal gene can be disrupted, and the resulting heterozygous mutant is unlikely to display a phenotype. In cells with a genetic background deficient for the Bloom's syndrome helicase, such heterozygous mutants segregate homozygous daughter cells at a low frequency due to an elevated rate of crossover following mitotic recombination between homologous chromosomes. We constructed DNA vectors that are selectable based on their copy number and used these to isolate these rare homozygous mutant cells independent of their phenotype. We use the piggyBac transposon to limit the initial mutagenesis to one copy per cell, and select for cells that have increased the transposon copy number to two or more. This yields homozygous mutants with two allelic mutations, but also cells that have duplicated the mutant chromosome and become aneuploid during culture. On average, 26% of the copy number gain events occur by the mitotic recombination pathway. We obtained homozygous cells from 40% of the heterozygous mutants tested. This method can provide homozygous mammalian loss-of-function mutants for forward genetic applications.  相似文献   

19.
CENP-H is a constitutive centromere component that localizes to the centromere throughout the cell cycle. Because CENP-H is colocalized with CENP-A and CENP-C, it is thought to be an inner centromere protein. We previously generated a conditional loss-of-function mutant of CENP-H and showed that CENP-H is required for targeting of CENP-C to the centromere in chicken DT40 cells. In the present study, we used this mutant to identify the functional region of chicken CENP-H necessary for centromere targeting and cell viability. This region was found by yeast two-hybrid analysis to interact with Hec1, which is a member of the Nuf2 complex that transiently localizes to the centromere during mitosis. Coimmunoprecipitation experiments revealed that CENP-H interacts with the Nuf2 complex in chicken DT40 cells. Photobleaching experiments showed that both Hec1 and CENP-H form stable associations with the centromeres during mitosis, suggesting that Hec1 acts as a structural component of centromeres during mitosis. On the basis of these results and previously published data, we propose that the Nuf2 complex functions as a connector between the inner and outer kinetochores.  相似文献   

20.
Vinblastine and other microtubule-damaging agents, such as nocodazole and paclitaxel, cause cell cycle arrest at the G2/M transition and promote apoptosis in eukaryotic cells. The roles of these drugs in disrupting microtubule dynamics and causing cell cycle arrest are well characterized. However, the mechanisms by which these agents promote apoptosis are poorly understood. We disrupted the MEKK1 kinase domain in chicken bursal B-cell line DT40 by homologous recombination and have shown that it is essential for both vinblastine-mediated apoptosis and vinblastine-mediated c-Jun N-terminal protein kinase activation. In addition, our data indicate that vinblastine-mediated apoptosis in DT40 cells requires new protein synthesis but does not require G2/M arrest, suggesting that vinblastine-mediated cell cycle arrest and apoptosis are two independent processes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号