首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
Oxidative stress, originating from reactive oxygen species (ROS), has been implicated in aging and various human diseases. The ROS generated can oxidize proteins producing protein carbonyl derivatives. The level of protein carbonyls in blood plasma has been used as a measure of overall oxidative stress in the body. Classically, protein carbonyls have been quantitated spectrophotometrically by directly reacting them with 2,4-dinitrophenylhydrazine (DNPH). However, the applicability of this method to biological samples is limited by its low inherent sensitivity. This limitation has been overcome by the development of sensitive enzyme-linked immunosorbent assay (ELISA) methods to measure protein carbonyls. As part of the Healthy Aging in Neighborhoods of Diversity across the Lifespan (HANDL) study, oxidative stress in humans was quantified by measuring blood plasma protein carbonyls using the two commercially available ELISA kits and the spectrophotometric DNPH assay. Surprisingly, two ELISA methods gave very different values for protein carbonyls, both of which were different from the value of the spectrophotometric method. We have developed a fluorescent semi-microplate format assay of protein carbonyls involving direct reaction of protein carbonyls with fluorescein thiosemicarbazide that correlates (R = 0.992) with the direct spectrophotometric method. It has a coefficient of variation of 4.99% and is at least 100 times more sensitive than the spectrophotometric method.  相似文献   

2.
Using an experimental in vitro glycation model, long-term incubations of bovine serum albumin with glucose (fructose) resulted in a significant increase in protein content of 2,4-dinitrophenylhydrazine (DNPH)-reactive carbonyl groups, which could be strongly inhibited by anaerobiosis and metal chelation. The pattern of yields of the protein-bound DNPH was not in accordance with that of the sugar-derived carbonyls determined as the ketoamine Amadori product. In spite of the fact that the contribution of the final advanced glycation end-products to the total DNPH-reactivity of glycation-altered protein remains unclear, the present results stress the need of oxidative steps in formation of most of the DNPH-reactive carbonyl compounds generated by glycation. The results provide evidence that, in protein glycoxidation, the DNPH assay is selective enough to discriminate between protein-bound carbonyls produced by metal-catalysed oxidations and those formed in the early glycation steps.  相似文献   

3.
Abstract

Using an experimental in vitro glycation model, long-term incubations of bovine serum albumin with glucose )fructose) resulted in a significant increase in protein content of 2,4-dinitrophenyl-hydrazine (DNPH)-reactive carbonyl groups, which could be strongly inhibited by anaerobiosis and metal chelation. The pattern of yields of the protein-bound DNPH was not in accordance with that of the sugar-derived carbonyls determined as the ketoamine Amadori product. In spite of the fact that the contribution of the final advanced glycation end-products to the total DNPH-reactivity of glycation-altered protein remains unclear, the present results stress the need of oxidative steps in formation of most of the DNPH-reactive carbonyl compounds generated by glycation. The results provide evidence that, in protein glycoxidation, the DNPH assay is selective enough to discriminate between protein-bound carbonyls produced by metal-catalysed oxidations and those formed in the early glycation steps.  相似文献   

4.
Many assays are available for the detection of protein carbonyls (PCs). Currently, the measurement of PC groups after their derivatization with 2,4-dinitrophenol hydrazine (DNPH) is widely used for measuring protein oxidation in biological samples. However, this method includes several washing steps. In this context, we have developed a rapid, sensitive, and accurate fluorimetric method adapted to 96-well microplates for the convenient assessment of protein carbonyl level in biological samples. The method reported here is based on the reaction of carbonyl content in proteins with 7-hydrazino-4-nitrobenzo-2,1,3-oxadiazole (NBDH) to form highly fluorescent derivatives via hydrazone formation. PCs were determined using the DNPH and NBDH assays in fully reduced bovine serum albumin (BSA) and plasma and liver homogenates obtained from healthy control rats up the addition of various amounts of HOCl-oxidized BSA (OxBSA). Using the NBDH assay, PC concentrations as low as 0.2 nmol/mg were detected with precision as low as 5%. Matrix-assisted laser desorption/ionization time-of-flight (MALDI–TOF) mass spectroscopy was used to successfully identify the formation of the NBDH adducts after derivatization with standard oxidized peptides. Finally, the two methods were further used for PC determination in plasma and liver samples from diabetic and normal rats, showing that the NBDH assay can be reliably used in biological experiments.  相似文献   

5.
Oxidized proteins in Alzheimer's plasma   总被引:5,自引:0,他引:5  
The levels of oxidatively modified proteins were examined in blood from Alzheimer's disease (AD) patients, non-AD controls, and AD relatives. Oxidative modification was measured by reacting the protein carbonyls with 2,4-dinitrophenyl hydrazine (DNPH). The total oxidized proteins were determined by HPLC, while specific protein oxidation was assessed from Western blots of electrophoretic gels using antibody to the DNP derivatives. Statistically significant elevations (P < 0.05) of total oxidized proteins were observed in both AD subjects and AD relatives when compared with non-AD controls. Moreover, a protein band (e.g., MW = 78-kDa) was uniquely oxidized in the plasma of AD subjects. Furthermore, this protein from AD subjects was more susceptible to in vitro oxidation. These data suggest that such oxidized proteins may be useful as biomarkers for the detection and evaluation of AD.  相似文献   

6.
In this paper we describe a reductive amination procedure that can be employed in the preparation of a novel class of pseudopeptides in which a specific amide bond is replaced by a CH(Ar)NH group. The developed methodology, performed using NaBH(3)CN and TiCl(4), is characterized by the formation of diastereomeric intermediates in a relative 1:1 ratio. It provides aryl aminomethin pseudopeptides in moderate but satisfactory yields and with definite stereochemistry on the asymmetric centres next to the modified peptide bond.  相似文献   

7.
In leukocytes a dynamic relationship between the reduced form of ascorbic acid (AA) and its oxidized product dehydro-AA has been described. It is therefore important to know which form of the vitamin predominates when choosing a methodology. The purpose of this study was to find out if the majority of ascorbate in human leukocytes isolated by centrifugation through Percoll is in the reduced AA form by measuring reduced AA by HPLC and comparing the values to those obtained by using the 2,4-dinitrophenylhydrazine (DNPH) method which measures total ascorbate, and quantifying the reduced and oxidized forms of the vitamin in leukocytes using a modification of the DNPH method. There was no significant difference (P greater than .05) between the HPLC and DNPH values for 12 individuals and 87% of the AA was found to be in the reduced form. These results support the assumption that the majority of AA found in a mixed leukocyte population isolated through Percoll is in the reduced form and that both methods can be used for AA measurements.  相似文献   

8.
Oxidative stress plays a critical role in the pathogenesis of a number of diseases. The carbonyl end products of protein oxidation are among the most commonly measured markers of oxidation in biological samples. Protein carbonyl functional groups may be derivatized with 2,4-dinitrophenylhydrazine (DNPH) to render a stable 2,4-dinitrophenylhydrazone-protein (DNP-protein) and the carbonyl contents of individual proteins then determined by two-dimensional electrophoresis followed by immunoblotting using specific anti-DNP antibodies. Unfortunately, derivatization of proteins with DNPH could affect their mass spectrometry (MS) identification. This problem can be overcome using nontreated samples for protein identification. Nevertheless, derivatization could also affect their mobility, which might be solved by performing the derivatization step after the initial electrophoresis. Here, we compare two-dimensional redox proteome maps of mouse cerebellum acquired by performing the DNPH derivatization step before or after electrophoresis and detect differences in protein patterns. When the same approach is used for protein detection and identification, both methods were found to be useful to identify carbonylated proteins. However, whereas pre-DNPH derivatized proteins were successfully analyzed, high background staining complicated the analysis when the DNPH reaction was performed after transblotting. Comparative data on protein identification using both methods are provided.  相似文献   

9.
Oxidative stress is known to cause oxidative protein modification and the generation of reactive aldehydes derived from lipid peroxidation. Extent and kinetics of both processes were investigated during oxidative damage of isolated rat liver mitochondria treated with iron/ascorbate. The monofunctional aldehydes 4-hydroxynonenal (4-HNE), n-hexanal, n-pentanal, n-nonanal, n-heptanal, 2-octenal, 4-hydroxydecenal as well as thiobarbituric acid reactive substances (TBARS) were detected. The kinetics of aldehyde generation showed a lag-phase preceding an exponential increase. In contrast, oxidative protein modification, assessed as 2,4-dinitrophenylhydrazine (DNPH) reactive protein-bound carbonyls, continuously increased without detectable lag-phase. Western blot analysis confirmed these findings but did not allow the identification of individual proteins preferentially oxidized. Protein modification by 4-HNE, determined by immunoblotting, was in parallel to the formation of this aldehyde determined by HPLC. These results suggest that protein oxidation occurs during the time of functional decline of mitochondria, i.e. in the lagphase of lipid peroxidation. This protein modification seems not to be caused by 4-HNE.  相似文献   

10.
This work proposes a modification of the 2,4-dinitrophenylhydrazine (DNPH) spectrophotometric assay commonly used to evaluate the concentration of carbonyl groups in oxidized proteins. In this approach NaOH is added to the protein solution after the addition of DNPH, shifting the maximum absorbance wavelength of the derivatized protein from 370 to 450 nm. This reduces the interference of DNPH and allows the direct quantification in the sample solution without the need for the precipitation, washing, and resuspension steps that are carried out in the traditional DNPH method. The two methods were compared under various conditions and are statistically equivalent.  相似文献   

11.
A novel ratiometric Raman spectroscopic (RMRS) method has been developed for quantitative determination of protein carbonyl levels. Oxidized bovine serum albumin (BSA) and oxidized lysozyme were used as model proteins to demonstrate this method. The technique involves conjugation of protein carbonyls with dinitrophenyl hydrazine (DNPH), followed by drop coating deposition Raman spectral acquisition (DCDR). The RMRS method is easy to implement because it requires only one conjugation reaction, uses a single spectral acquisition, and does not require sample calibration. Characteristic peaks from both protein and DNPH moieties are obtained in a single spectral acquisition, allowing the protein carbonyl level to be calculated from the peak intensity ratio. Detection sensitivity for the RMRS method is approximately 0.33 pmol carbonyl per measurement. Fluorescence and/or immunoassay-based techniques only detect a signal from the labeling molecule and, thus, yield no structural or quantitative information for the modified protein, whereas the RMRS technique allows protein identification and protein carbonyl quantification in a single experiment.  相似文献   

12.
Lipid peroxidation in cellular membranes leads to the formation of toxic aldehydes. One product provided with particular reactivity has been identified as 4-hydroxynonenal and thoroughly studied as one of the possible mediators of the cellular injury induced by pro-oxidants. In the present study we have searched for the presence of 4-hydroxynonenal and other lipid peroxidation products in the liver of bromobenzene-poisoned mice, since under this experimental condition the level of lipid peroxidation is much greater than in the case of CCl4 or BrCCl3 hepatotoxicity. 4-Hydroxynonenal was looked for in liver extracts as either free aldehyde or its 2,4-dinitrophenylhydrazone derivative. In both cases, by means of thin-layer chromatography (TLC) and high-pressure liquid chromatography, a well resolved peak corresponding to the respective standards (free aldehyde or 2,4-dinitrophenylhydrazone derivative) was obtained. Total carbonyls present in the liver of intoxicated animals were detected as 2,4-dinitrophenylhydrazone derivatives. The hydrazones were pre-separated by TLC into three fractions according to different polarity (polar, non-polar, fraction I, and non-polar, fraction II). The amounts of carbonyls present in each fraction were determined by ultraviolet-visible spectroscopy. 'Non-polar carbonyls, fraction II' were further fractionated by TLC. The fraction containing alkanals and alk-2-enals was analyzed by high-pressure liquid chromatography and several aldehydes were identified. In addition, protein bound carbonyls were determined in the liver of bromobenzene-treated mice. The biological implications of the finding of 4-hydroxynonenal and other carbonyls in vivo in an experimental model of hepatotoxicity are discussed.  相似文献   

13.
Glutardialdehyde (GDA) is the most commonly used disinfectant for flexible endoscopes. After inappropriate rinsing of endoscopes residual GDA in the narrow endoscope channels may lead to toxic effects in patients. Common methods for determination of aldehydes in water involve derivatization with 2,4-dinitrophenylhydrazine (DNPH), liquid-liquid or solid-phase extraction and HPLC determination. Since derivatization and extraction is both time-consuming and labor-intensive only a small number of samples can be measured. Thus, we developed a fully automated method which includes a conventional HPLC system, a programmable autosampler, and UV detection. After GDA derivatization using DNPH the samples remain in the aqueous phase and no preconcentration of the analyte is necessary. The samples are automatically derivatized through the autosampler. While derivatization in one sample takes place the previous sample is injected and measured by HPLC. Our method is well suited for screening residual GDA in endoscopes as it is both time- and labor-saving.  相似文献   

14.
Homogeneous diamine oxidase (EC 1.4.3.6) from porcine kidney was treated with the inhibitor 2,4-dinitrophenylhydrazine (DNPH). The coloured compounds formed were detached with pronase and purified to homogeneity. When the reaction with DNPH was conducted under an O2 atmosphere, the product (obtained in a yield of 55%) was the C(5)-hydrazone of pyrroloquinoline quinone (PQQ) and DNPH, as revealed by its chromatographic behaviour, absorption spectrum and 1H-NMR spectrum. Only 6% of this hydrazone was formed under air, the main product isolated being an unidentified reaction product of DNPH with the enzyme. Porcine kidney diamine oxidase is the second mammalian enzyme shown to have PQQ as its prosthetic group. In view of the requirements for hydrazone formation with DNPH, it is incorrect to assume that inhibition of this type of enzymes with common hydrazines is simply due to blocking of the carbonyl group of its cofactor.  相似文献   

15.
A HPLC method has been developed to measure phosphatidylcholine (PC) containing reactive carbonyl functions in the sn-acyl residue in order to study processes in which such reactive carbonyls can be formed due to e.g. oxidative fragmentation. The method has been applied to determine PC-bound carbonyls as 2, 4-dinitrophenylhydrazones (DNPH) in plasma of burn patients. Plasma from healthy volunteers served as controls. Additionally, in vitro oxidation experiments (A: plasma, buffer diluted; B: plasma + iron-EDTA complex and C: plasma + iron-EDTA complex + H2O2) have been performed to obtain and to identify 2, 4-dinitrophenylhydrazine derivatizable carbonyl functions in plasma PC. Both, the PC-aldehydes and PC-aldehyde DNPH derivatives were cleavable with phospholipase C. Quantification was based on thin-layer chromatography purified soybean phosphatidylcholine, which was identically oxidized and derivatized as the plasma lipids in vitro.  相似文献   

16.
Most of the assays for detection of carbonylated proteins, the most general and widely used marker of severe protein oxidation, involve derivatization of the carbonyl group with 2,4-dinitrophenylhydrazine (DNPH), which leads to formation of a stable dinitrophenyl hydrazone product. Here, by using a Cys-containing model peptide and high-resolution mass spectrometry, we demonstrate that DNPH is not exclusively selective for carbonyl groups, because it also reacts with sulfenic acids, forming a DNPH adduct, through the acid-catalyzed formation of a thioaldehyde intermediate that is further converted to an aldehyde. β-Mercaptoethanol prevents the formation of the DNPH derivative because it reacts with the oxidized Cys residue, forming the corresponding disulfide.  相似文献   

17.
A method is described for quantifying the positional isomers in monounsaturated fatty acid methyl ester (FAME) fractions. The procedure involves the preparation of 2,4-dinitrophenylhydrazones (DNPH) of the fragments generated during reductive ozonolysis of FAME, class isolation of the aldehyde and aldehyde ester DNPH, and separation of the aldehyde ester derivatives by high performance liquid chromatography (HPLC). The high extinction coefficient of the DNPH provides for a sensitive assay which is linear for a large range of components over a concentration range of 0.075-5 nmol/component, and the stability of the DNPH permits the independent analysis of the aldehyde and aldehyde ester fragments generated during reductive ozonolysis. The reductive ozonolysis-DNPH-HPLC method developed is as sensitive, reproducible, and accurate as reductive ozonolysis-gas-liquid chromatography and does not suffer from some of the drawbacks of the classical procedure.  相似文献   

18.
Quantitation of oxidative damage to tissue proteins.   总被引:8,自引:0,他引:8  
Active oxygen species are thought to be involved in many physiological and pathological processes and are known to oxidatively modify DNA, lipids and proteins. One such modification is the addition of carbonyl groups to amino acid residues in proteins. The number of carbonyl groups on proteins can be quantitated spectrophotometrically using 2,4-dinitrophenylhydrazine (DNPH). The DNPH assay described in the literature was found to be unreliable in samples containing high amounts of chromophore (e.g. hemoglobin, myoglobin, retinoids). By using an HCl-acetone wash, hemes from the chromophores could be extracted, enabling the determination of carbonyl content to be made even in highly colored tissue extracts. Residual DNPH, which was also found to interfere with the assay, was removed by additional washes with trichloroacetic acid and ethanol-ethylacetate. These improvements are known to remove lipids, do not lengthen the time required to do the assay, permit quantification of carbonyl content in 1-4 mg protein from a variety of tissue types and provide a sensitive and reliable method for assessing oxidative damage to tissue proteins.  相似文献   

19.
A highly sensitive quantitative LC-MS/MS method was developed for measuring urinary malondialdehyde (MDA). With the use of an isotope internal standard and online solid-phase extraction, urine samples can be directly analyzed within 10 min after 2,4-dinitrophenylhydrazine (DNPH) derivatization. The detection limit was estimated as 0.08 pmol. This method was further applied to assess the optimal addition of DNPH for derivatization and to measure urinary MDA in 80 coke oven emission (COE)-exposed and 67 nonexposed workers. Derivatization optimization revealed that to achieve complete derivatization reaction, an excess of DNPH is required (DNPH/MDA molar ratio: 893-8929) for urine samples that is about 100 times higher than that of MDA standard solutions (molar ratio: 10-80). Meanwhile, the mean urinary concentrations of MDA in COE-exposed workers were significantly higher than those in nonexposed workers (0.23±0.17 vs 0.14±0.05 μmol/mmol creatinine, P<0.005). Urinary MDA concentrations were also significantly associated with the COE (P<0.005) and smoking exposure (P<0.05). Taken together, this method is capable of routine high-throughput analysis and accurate quantification of MDA and would be useful for assessing the whole-body burden of oxidative stress. Our findings, however, raise the issue that derivatization optimization should be performed before it is put into routine biological analysis.  相似文献   

20.
Considerable evidence has accumulated that oxygen free radicals play a major role in ischemic injury, particularly when followed by reperfusion. Few reports have demonstrated the occurrence of oxidative damage during the ischemic period, itself. Our laboratory has demonstrated that events occurring during an ischemic period with adequate oxygen supply can mimic the "oxygen paradox," using lipid peroxidation as an index of oxidative stress and lung edema as an index of tissue injury. The present study compares lipid peroxidation and oxidation of soluble (100,000g supernatant) protein during ischemia and reperfusion in isolated rat lung model perfused with artificial medium and ventilated with varying alveolar oxygen tension. Protein oxidation was determined by a modified dinitrophenylhydrazine (DNPH) method using Sephadex G-25 column chromatography to isolate the DNPH bound proteins. Global ischemia was produced by discontinuing perfusion while ventilation continued with gas mixtures containing 5% CO2 and a fixed oxygen concentration between 0 and 95%. After 1 h ischemia in the isolated rat lung ventilated with 20% oxygen, protein carbonyls and thiobarbituric acid reactive substances (TBARS) increased significantly compared with controls. These changes were more pronounced after 60 min of reperfusion with 95% oxygen in the ventilation gas. With 0% oxygen (95% nitrogen and 5% CO2) content of the ventilating gas during ischemia, TBARS and protein carbonyls remained at the control level. The wet/dry weight ratio showed changes parallel to the indices of tissue oxidation. The presence of 5,8,11,14-eicosatetraynoic, an inhibitor of cyclooxygenase and lipoxygenase pathways, in the perfusate had no effect on the generation of protein carbonyls although inhibition of lipid peroxidation was demonstrated. This implies that the oxidation of soluble protein is not mediated by the eicosanoid metabolic cascade. These data indicate that oxidative processes occur during ischemia and are dependent on the alveolar oxygen concentration. Oxidation of soluble protein can be used as an index of oxidative damage during lung ischemia and reperfusion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号