首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Concentrations of selected members of cytochrome P450 1A, 3A, 1E, 2C, and 2D subfamilies were measured on a triple quadrupole mass spectrometer using the method of multiple reaction monitoring (MRM). The procedure was developed and tested on samples of mouse liver microsomes from control and phenobarbital or methylcholanthrene-induced groups. The procedure enabled the mass spectrometric quantitation of individual P450 isoforms without using isotopic labels or chemical derivatization. Quantitation results for certain P450 isoforms correlated with the changes in enzyme activity measured using isoform-specific marker substrates.  相似文献   

2.
Cytochrome P450 (P450) is a ubiquitous family of enzymes responsible for the metabolism of a wide variety of drugs and their metabolites, including cocaine. To investigate the effects of cocaine on myocardial injuries and cardiac P450 expression, BALB/c mice were injected daily intraperitoneally with cocaine (30 mg/kg) or cocaine plus pretreatment of P450 inhibitors for 14 days. Tumor necrosis factor-alpha (TNF-alpha) content and creatine phosphokinase (CPK) activity in mice hearts and serums were significantly increased after long-term treatment with cocaine. Pretreatment with the P450 inhibitor, cimetidine (Cime, 50 mg/kg) or metyrapone (Mety, 40 mg/kg) abolished or significantly attenuated the effects of cocaine on TNF-alpha and CPK activity. Western blot analysis shows that mouse cardiac tissues express the P450 isoforms CYP1A1, CYP1A2, and CYP2J2. The protein levels normalized with cyclophilin A were 1.20 plus minus 0.07, 0.67 plus minus 0.03, and 1.48 plus minus 0.01 for CYP1A1, CYP1A2, and CYP 2J2, respectively. After cocaine administration, CYP2J2 increased by 43.6% and CYP1A1 increased by 108.5%, but CYP1A2 was not significantly altered. However, the cytochrome P450 inhibitors Cime and Mety suppressed the cocaine-induced increase in CYP1A1 and CYP2J2 expression. Moreover, application of Cime or Mety alone did not alter the level of cardiac TNF-alpha or the expression of P450. Our results demonstrate that long-term exposure to cocaine causes an increase in cardiac CYP1A1 and CYP2J2 concentration. We speculate that induction of P450 isoforms may cause cardiac injury due to cocaine metabolites locally catalyzed by P450 or the increase in P450 expression itself.  相似文献   

3.
Numerous cytochrome P450 inhibitors have been described as effective modulators of cytochrome P450 isoforms activity in vitro. Their inhibitory efficiency may be considerably modified after in vivo application. The aim of this study was to examine the effect of oral administration of diallyl sulfide--a cytochrome P450 2E1 inhibitor and cimetidine--a cytochrome P450 2C6 and 2C11 inhibitor on rat serum concentration of phenacetin and its metabolite acetaminophen. Both inhibitors increased area under the curve (AUC(0-4 h)) for phenacetin by 50%. Only cimetidine reduced AUC(0-4 h) for acetaminophen indicating inhibition of O-deethylation activity. Quinidine--a cytochrome P450 2D subfamily and P-glycoprotein inhibitor did not change significantly phenacetin bioavailability. These results suggest that diallyl sulfide inhibits the deacetylation pathway catalysed by arylamine N-acetyl transferase. Beside cytochrome P450 1A2 other cytochrome P450 isoforms (2A6 and/or 2C11) are involved in phenacetin O-deethylation in rat.  相似文献   

4.
5.
Hard conditions of long-term manned spaceflight can affect functions of many biological systems including a system of drug metabolism. The cytochrome P450 (CYP) superfamily plays a key role in the drug metabolism. In this study we examined the hepatic content of some P450 isoforms in mice exposed to 30 days of space flight and microgravity. The CYP content was established by the mass-spectrometric method of selected reaction monitoring (SRM). Significant changes in the CYP2C29, CYP2E1 and CYP1A2 contents were detected in mice of the flight group compared to the ground control group. Within seven days after landing and corresponding recovery period changes in the content of CYP2C29 and CYP1A2 returned to the control level, while the CYP2E1 level remained elevated. The induction of enzyme observed in the mice in the conditions of the spaceflight could lead to an accelerated biotransformation and change in efficiency of pharmacological agents, metabolizing by corresponding CYP isoforms. Such possibility of an individual pharmacological response to medication during long-term spaceflights and early period of postflight adaptation should be taken into account in space medicine.  相似文献   

6.
A turpentine-induced inflammatory reaction (TIIR) down-regulates multiple isoforms of hepatic cytochrome P450 (P450) and increases microsomal lipid peroxidation. Since the synthesis of nitric oxide (NO*) is stimulated by inflammatory reactions, and NO* can depress the P450, it was of interest to investigate in vivo whether L-NAME and theophylline, by its anti-inflammatory properties, could prevent the depression of P450 caused by a TIIR. Control and rabbits with a TIIR received L-NAME for 72 h, and the activity of P450 was assessed in vivo and in vitro. In vivo, TIIR reduced theophylline systemic clearance by 50% (p<0.05), P450 total content by 67%, and the amount of CYP1A1/2 proteins by around 60% (p<0.05). L-NAME partially prevented the decrease in theophylline systemic clearance and in P450 total content, as well as the increase in lipid peroxidation; however, L-NAME did not hinder CYP1A1/2 proteins down-regulation. L-NAME did not modify the in vitro ability of the serum of rabbits with TIIR to decrease P450 activity, suggesting that the effect of L-NAME is not associated to a decrease in serum mediators. As assessed by the concentration in seromucoids, theophylline did not modify the severity of the inflammatory reaction, nor did it prevent the decrease in P450 activity. In conclusion, a TIIR down-regulates and reduces P450 activity, decrease that is at least in part mediated by NO*; theophylline does not prevent TIIR-induced P450 decrease in activity.  相似文献   

7.
Proteomic approaches have been used for detection and identification of cytochromes P450 forms from highly purified membrane preparations of human liver. These included the protein separation by 2D-and/or 1D-electrophoresis and molecular scanning of a SDS-PAGE gel fragment in a range 45–66 kDa (this area corresponds molecular weights of cytochromes P450). The analysis of protein content was statistically evaluated by means of an original 1D-ZOOMER software package which allowed to carry out the processing of mass spectra mixture instead of individual mass spectra used by standard techniques. In the range 45–66 kDa we identified 13 microsomal membrane proteins including such cytochrome P450 forms as CYPs 1A2, 1B1, 2A6, 2E1, 2C8, 2C9, 2C10, 2D6, 3A4, 4A11, 4F2. Study of enzymatic activities of human liver microsomal cytochrome P450 isoforms CYP 1A, 2B, 3A, and 2E revealed the decrease in the rates of O-dealkylation and N-demethylation catalyzed by CYP 450 1A1/1A2 and 3A4 under pathological conditions, whereas 7-benzyloxyresorufin-O-debenzylase activity (which characterizes the total activity of CYP 2B and CYP 2C), the activities of CYP 2E1 (methanol oxidation), 7-pentoxyresorufin-O-dealkylation (CYP 2B), 7-ethoxy-and 7-methoxycoumarin-O-dealkylases (CYP 2B1) remained basically unchanged.  相似文献   

8.
Diethylstilbestrol (DES) or catecholestrogens are metabolized by microsomal enzymes to quinones, DES Q or catecholestrogen quinones, respectively, which have been shown to bind covalently to DNA and to undergo redox cycling. The isoforms of cytochrome P450 catalyzing this oxidation of estrogens to genotoxic intermediates were not known and have been identified in this study by (a) using microsomes of rats treated with various inducers of cytochrome P450; (b) using purified cytochrome P450 isoforms; and (c) examining the peroxide cofactor concentrations necessary for this oxidation by microsomes or pure isoenzymes. The highest rate of oxidation of DES to DES Q was obtained using beta-naphthoflavone-induced microsomes (14.0 nmol DES Q/mg protein/min) or cytochrome P450 IA1 (6.4 pmol DES Q/min/pmol P450). Isosafrole-induced microsomes or cytochrome P450 IA2 oxidized DES to quinone at one-third or one-fifth of that rate, respectively. Low or negligible rates of oxidation were measured when oxidations were catalyzed by microsomal rat liver enzymes induced by phenobarbital, ethanol, or pregnenolone-16 alpha-carbonitrile or by pure cytochromes P450 IIB1, IIB4, IIC3, IIC6, IIE1, IIE2, IIG1, or IIIA6. Cytochrome P450 IA1 also catalyzed the oxidation of 2- or 4-hydroxyestradiol to their corresponding quinones. The beta-naphthoflavone-induced microsomes and cytochrome P450 IA1 had the highest "affinity" for cumene hydroperoxide cofactor (Km = 77 microM). Cofactor concentrations above 250 microM resulted in decreased rates of oxidation. The other cytochrome P450 isoforms required much higher cofactor concentrations and were not inactivated at high cofactor concentrations. The data demonstrate that beta-naphthoflavone-inducible cytochrome P450 IA family enzymes catalyze most efficiently the oxidation of estrogenic hydroquinones to corresponding quinones. This oxidation may represent a detoxification pathway to keep organic hydroperoxides at minimal concentrations. The resulting quinone metabolites may be detoxified by other pathways. However, in cells with decreased detoxifying enzyme activities, quinones metabolites may accumulate and initiate carcinogenesis or cell death by covalent arylation of DNA or proteins.  相似文献   

9.
Two in vitro studies assessed the potential of daptomycin (Cubicin), a newly marketed antibiotic, to affect the cytochrome P450 (CYP450) isoforms in primary cultured human hepatocytes. Both induction and inhibition of isoforms 1A2, 2A6, 2C9, 2C19, 2D6, 2E1, and 3A4 were evaluated. The highest concentrations of daptomycin used in both the induction and inhibition assays were approximately eight-fold higher than the peak total drug concentration (50-60 microg/mL), or the peak free drug concentration (estimated 5-6 microg/mL), in plasma at the clinical dose regimen of 4 mg/kg qd. Results in primary human hepatocytes indicate that daptomycin, at concentrations up to 400 microg total drug/mL, demonstrated no biologically significant induction of any of the CYP450 isoform activities in comparison with the negative control or known inducers. At daptomycin concentrations up to 40 microg free drug/mL, no biologically significant inhibition of the activities of these CYP450 isoforms was observed as compared with known inhibitors. The human hepatocyte results demonstrate that daptomycin has no effects on hepatic CYP450-mediated drug metabolism and, therefore, suggest that daptomycin is unlikely to show potential for pharmacokinetic interactions with concomitantly administered drugs that are metabolized by CYP450 isoforms.  相似文献   

10.
Chronic treatment of rats with N(omega)-nitro-L-arginine methyl ester (L-NAME), an inhibitor of nitric oxide (NO) biosynthesis, results in hypertension mediated partly by enhanced angiotensin-I-converting enzyme (ACE) activity. We examined the influence of L-NAME on rat liver morphology, on hepatic glycogen, cholesterol, and triglyceride content, and on the activities of the cytochrome P450 isoforms CYP1A1/2, CYP2B1/2, CYP2C11, and CYP2E1. Male Wistar rats were treated with L-NAME (20 mg/rat per day via drinking water) for 2, 4, and 8 weeks, and their livers were then removed for analysis. Enzymatic induction was produced by treating rats with phenobarbital (to induce CYP2B1/2), beta-naphthoflavone (to induce CYP1A1/2), or pyrazole (to induce CYP2E1). L-NAME significantly elevated blood pressure; this was reversed by concomitant treatment with enalapril (ACE inhibitor) or losartan (angiotensin II AT(1) receptor antagonist). L-NAME caused vascular hypertrophy in hepatic arteries, with perivascular and interstitial fibrosis involving collagen deposition. Hepatic glycogen content also significantly increased. L-NAME did not affect fasting glucose levels but significantly reduced insulin levels and increased the insulin sensitivity of rats, based on an intraperitoneal glucose tolerance test. Immunoblotting experiments indicated enhanced phosphorylation of protein kinase B and of glycogen synthase kinase 3. All these changes were reversed by concomitant treatment with enalapril or losartan. L-NAME had no effect on hepatic cholesterol or triglyceride content or on the basal or drug-induced activities and protein expression of the cytochrome P450 isoforms. Thus, the chronic inhibition of NO biosynthesis produced hepatic morphological alterations and changes in glycogen metabolism mediated by the renin-angiotensin system. The increase in hepatic glycogen content probably resulted from enhanced glycogen synthase activity following the inhibition of glycogen synthase kinase 3 by phosphorylation.  相似文献   

11.
Six substituted alkoxyphenoxazones (resorufins) and four inhibitors of P450‐dependent mixed‐function oxygenases (MFO) were used to probe the breadth and extent of P450 metabolism induced by pretreatment with five xenobiotic chemicals in liver microsomes of the American alligator, Alligator mississippiensis. Phenobarbital (PB), 3‐methylcholanthrene (3MC), and PB–3MC co‐pretreatment elicited major induction of alligator MFO activity measured by alkoxyresorufin O‐dealkylation (AROD). The induced levels of activities observed with appropriate substrate, 7‐ethoxy, 7‐methoxy, 2‐phenylbenzyloxy, 7‐pentoxy, or 7‐benzyloxyresorufin (EROD, MROD, PBROD, PROD and BROD, respectively), were 10 to 100 times lower in alligator as compared to rat. The exception was a higher level of isopropoxyresorufin O‐dealkylation (IPROD) in alligator. The induction regimes used in alligator and rat revealed marked differences in substrate preference, discrimination factors (DF) for various inducible P450 isoforms. EROD, a classic indicator of CYP1A activity in rat, had a low DF in alligator. MROD was the best discriminator in alligator of CYP1A‐type induction. In contrast to rats, pretreatment of alligators with Aroclor 1254, 2,2′,4,4′ tetrachlorobiphenyl, and clofibrate caused minor alterations in AROD relative to untreated controls. The inhibitors, α‐napthaflavone, 1‐ethynylpyrene, SKF 525A, and 9‐ethynylphenanthrene, inhibited AROD activity of the expected P450 isoform. For example, 10 μM α‐napthaflavone inhibited liver microsomal EROD catalyzed by 3MC‐inducible isoforms from alligator by 90% and from rat by 97%. Similarly, 10 μM SKF 525A inhibited PROD catalyzed by PB‐inducible isoforms by 63% and 79% in alligator and rat liver microsomes, respectively. To the best of our knowledge, the present studies are the first to show PB induction of P450 activities typical of the mammalian CYP2 family and their inhibition with classical inhibitors in alligator liver. While our data indicate metabolism of P450 substrates with preferences to certain isoforms, it remains to be established which isoforms exert catalytic function in alligator and whether these are homologues or orthologues of mammalian isoforms. © 1998 John Wiley & Sons, Inc. J Biochem Toxicol 13: 17–27, 1999  相似文献   

12.
Despite the very small amounts of cytochrome P450 (P450, CYP) enzymes expressed in different areas and cell populations of the brain as compared with the liver, there is significant evidence for their specific involvement in brain development, function and plasticity. Nevertheless, the current discussion about occurrence and importance of cerebral cytochrome P450s is determined by inconsistent interpretations of their function in general and with respect to single isoforms. Continuing a series of publications about brain P450 isoforms, we now present evidence for the constitutive expression of CYP2B1 and CYP2B2 mRNAs in rat brain. Immunocytochemical and non-radioactive in situ hybridization studies revealed the same expression pattern throughout the brain predominantly in neuronal populations, but to some extent in astrocytes of corpus callosum and olfactory bulb. The well known testosterone-metabolizing capacity and the presence of CYP2B isoforms shown in steroid hormone-sensitive areas and neurones (e.g. hippocampus) clarify the significance of isoforms like CYP2B1 and CYP2B2 for impairment of steroid hormone actions by P450 inducing environmental substances. We argue that cerebral P450 isoforms which are induced by xenobiotics and are able to metabolize these as well as endogenous substrates help us to understand fundamental aspects of brain's functioning.  相似文献   

13.
This investigation was designed to determine whether St. John's wort (SJW)(435 mg/kg/d), a readily available antidepressant, or its purported active constituents hypericin (1 mg/kg/d) and hyperforin (10 mg/kg/d) were able to induce various hepatic cytochrome P450 (CYP450) isoforms. SJW, hypericin and hyperforin were administered to male Swiss Webster mice for four consecutive days and hepatic microsomes were prepared on day 5. None of the three treatments resulted in a statistical change in total hepatic CYP450 (SJW treated 0.95 +/- 0.09 nmol/mg vs control 1.09 +/- 0.14 nmol/mg). Furthermore, the catalytic activities of CYP1A2. CYP2E1 and CYP3A were unchanged from control following all three treatments as determined by ethoxyresorufin O-deethylation, p-nitrophenol hydroxylation and erythromycin N-demethylation respectively. Additionally, western immunoblotting demonstrated that there was no significant change in the polypeptide levels of any of the three isoforms. These results indicate that four days of treatment with moderate to high doses of SJW, hyperforin or hypericin fails to induce these CYP450 isoforms in the male Swiss Webster mouse.  相似文献   

14.
Cytochromes P450 CYP102 A1, 1A2, and 3A4, all belonging to the class II type of P450 enzymes, were studied by resonance Raman spectroscopy. Spectra were measured for the oxidized substrate-free, oxidized substrate-bound, and reduced forms of each of these P450s. The analysis of the resonance Raman spectra indicates that the individual isoforms differ with respect to orientation and conformations of the heme side chains, whereas the overall porphyrin geometry is essentially the same. In the oxidized state, the vinyl groups exhibit both a coplanar and an out-of-plane orientation with respect to the heme, albeit with different relative propensities in the various isoforms. In the reduced state, both vinyl groups are forced into a coplanar orientation. In addition to the differences in behavior of the vinyl groups, the redox-linked spectral changes also include the bending mode of the propionate side chains. The spectral differences associated with the porphyrin substituents are likely to reflect subtle conformational differences in the heme pocket of various P450 isoforms which may constitute the structural basis for the known variability of their functions.  相似文献   

15.
The mechanism of nitrate tolerance is poorly defined. We studied the rat P450 (CYP)-catalyzed conversion of organic nitrate to nitric oxide (NO) by purified CYP isoforms and the relationship between P450 expression and nitrate tolerance following continuous infusion of organic nitrates in rats. CYP1A2 effectively formed NO from isosorbide dinitrate and nitroglycerine (NTG). The hypotensive effect of an NTG bolus injection was abolished in rats which had been previously given a continuous 48 h infusion of NTG. Nitrate tolerance was reversible to control levels 2 days after cessation of the continuous infusion. At 48 h after infusion, NTG-induced NO generation of the vessels increased in acetone (a P450 inducer)-pretreated rats, and nitrite and nitrate levels were markedly greater than in normal rats. The appearance and disappearance of P450 isoforms paralleled the conversion of organic nitrates to NO as assessed by immunohistochemistry and Western blotting. Our observations indicate that nitrate tolerance is in large part the result of decreased P450 expression and activity. Interventions that maintain or increase P450 activity may be a useful strategy to provide sustained relief from ischemic conditions in humans.  相似文献   

16.
We carried out this experiment to evaluate the relationship between isoforms of cytochrome P450 (P450) and liver injury in lipopolysaccharide (LPS)-induced endotoxemic rats. Male rats were intraperitoneally administered phenobarbital (PB), a P450 inducer, for 3 days, and 1 day later, they were intravenously given LPS. PB significantly increased P450 levels (200% of control levels) and the activities (300-400% of control) of the specific isoforms (CYP), CYP3A2 and CYP2B1, in male rats. Plasma AST and ALT increased slightly more in PB-treated rats than in PB-nontreated (control) rats with LPS treatment. Furthermore, either troleandomycin or ketoconazole, specific CYP3A inhibitors, significantly inhibited LPS-induced liver injury in control and PB-treated male rats. To evaluate the oxidative stress in LPS-treated rats, in situ superoxide radical detection using dihydroethidium (DHE), hydroxy-2-nonenal (HNE)-modified proteins in liver microsomes and 8-hydroxydeoxyguanosine (8-OHdG) in liver nuclei were measured in control and PB-treated rats. DHE signal intensity, levels of HNE-modified proteins, and 8-OHdG increased significantly in PB-treated rats. LPS further increased DHE intensity, HNE-modified proteins, and 8-OHdG levels in normal and PB-treated groups. CYP3A inhibitors also inhibited the increases in these items. Our results indicate that the induction or preservation of CYP isoforms further promotes LPS-induced liver injury through mechanisms related to oxidative stress. In particular, CYP3A2 of P450 isoforms made an important contribution to this LPS-induced liver injury.  相似文献   

17.
Cytochrome P450 enzymes (CYP or P450) 46A1 and 27A1 play important roles in cholesterol elimination from the brain and retina, respectively, yet they have not been quantified in human organs because of their low abundance and association with membrane. On the basis of our previous development of a multiple reaction monitoring (MRM) workflow for measurements of low-abundance membrane proteins, we quantified CYP46A1 and CYP27A1 in human brain and retina samples from four donors. These enzymes were quantified in the total membrane pellet, a fraction of the whole tissue homogenate, using 1?N-labled recombinant P450s as internal standards. The average P450 concentrations/mg of total tissue protein were 345 fmol of CYP46A1 and 110 fmol of CYP27A1 in the temporal lobe, and 60 fmol of CYP46A1 and 490 fmol of CYP27A1 in the retina. The corresponding P450 metabolites were then measured in the same tissue samples and compared to the P450 enzyme concentrations. Investigation of the enzyme-product relationships and analysis of the P450 measurements based on different signature peptides revealed a possibility of retina-specific post-translational modification of CYP27A1. The data obtained provide important insights into the mechanisms of cholesterol elimination from different neural tissues.  相似文献   

18.
The aim of the study was to evaluate the effect of acetaminophen (APAP) and/or trichloroethylene (TRI) on the liver cytochrome P450-dependent monooxygenase system, CYP2E1 and CYP1A2 (two important P450 isoforms), and liver glutathione (GSH) content in rats. Rats were given three different doses of APAP (250, 500 and 1000 mg/kg b...) and then the above-mentioned parameters were measured for 48 h. The lowest APAP dose produced small changes in the cytochrome P450 content of liver. At 500 mg/kg APAP increased the cytochrome P450 content to 230% of the control. The inductive effect was seen at 1000 mg/kg dose but at 24 h and later. NADPH-cytochrome P450 reductase activity was the highest after the lowest dose of APAP, while after the highest dose it was equal to the control value. TRI increased both the cytochrome P450 content and the NADPH-cytochrome P450 reductase activity. When TRI was combined with APAP, both these parameters increased in the first hours of observation, but they returned to the control values at 24 h. When APAP was given at 250 mg/kg, GSH levels decreased to 55% of the control at 8 h and returned to the control values at 24 h. The higher doses of APAP decreased GSH levels more than the lowest dose, but after 24 h GSH levels did not differ from those of the control. When TRI was given at 250 mg/kg, the GSH levels decreased to 68% of the control at 2 h and then they increased gradually and tended to exceed the control values at 48 h. The effect of TRI combined with APAP on the level of GSH was virtually the same as that of APAP alone given at 500 mg/kg.  相似文献   

19.
Established that CoCl2 induced oxidative stress activates xanthine oxidase, inhibit nitric oxide synthase and cytochrome P450 in the rat liver in vivo. The concentration of S-nitrosothiols was respectively decreased and PKC was activated. The quantities of general cytochrome P450 as well as its 1A1, 1A2 and 1B1 isoforms were decreased.  相似文献   

20.
Carbaryl is a widely used anticholinesterase carbamate insecticide. Although previous studies have demonstrated that carbaryl can be metabolized by cytochrome P450 (CYP), the identification and characterization of CYP isoforms involved in metabolism have not been described either in humans or in experimental animals. The in vitro metabolic activities of human liver microsomes (HLM) and human cytochrome P450 (CYP) isoforms toward carbaryl were investigated in this study. The three major metabolites, i.e. 5-hydroxycarbaryl, 4-hydroxycarbaryl and carbaryl methylol, were identified after incubation of carbaryl with HLM or individual CYP isoforms and analysis by HPLC. Most of the 16 human CYP isoforms studied showed some metabolic activity toward carbaryl. CYP1A1 and 1A2 had the greatest ability to form 5-hydroxycarbaryl, while CYP3A4 and CYP1A1 were the most active in generation of 4-hydroxycarbaryl. The production of carbaryl methylol was primarily the result of metabolism by CYP2B6. Differential activities toward carbaryl were observed among five selected individual HLM samples with the largest difference occurring in the production of carbaryl methylol. Co-incubations of carbaryl and chlorpyrifos in HLM greatly inhibited carbaryl metabolism. The ability of HLM to metabolize carbaryl was also reduced by pre-incubation of HLM with chlorpyrifos. Chlorpyrifos inhibited the generation of carbaryl methylol, catalyzed predominately by CYP2B6, more than other pathways, correlating with an earlier observation that chlorpyrifos is metabolized to its oxon primarily by CYP2B6. Therefore, carbaryl metabolism in humans and its interaction with other chemicals is reflected by the concentration of CYP isoforms in HLM and their activities in the metabolic pathways for carbaryl. (Supported by NCDA Environmental Trust Fund)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号