首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The stylet penetration behavior of Nilaparvata lugens (Hemiptera: Delphacidae) in rice plants (Oryza sativa) was evaluated through the use of an electrical penetration graph (EPG). To accomplish this, we classified the EPG signals into seven different waveforms, np, N1, N2, N3, N4-a, N4-b, and N5, according to their shapes, amplitudes, and frequencies. The N4-b waveform was always preceded by N3 and N4-a, in that order. Continuous honeydew excretion only occurred during the N4-b period, and the honeydew deposited on a filter paper containing ninhydrin reagent during the N4-b period was stained violet. The tips of the stylets that were severed in the N3, N4-a, and N4-b periods were in the phloem region of rice. Moreover, the flow of plant sap after stylectomy only occurred during the N4-b period. Finally, sucrose was the only carbohydrate component identified when HPLC analysis of the plant sap was conducted. On the other hand, honeydew excretion hardly occurred during the N5 period and the tips of the stylets that were severed during the N5 period were located in the xylem region of rice. Based on the location of the stylets and honeydew excretion, the EPG waveforms for the stylet penetration behaviors of N. lugens were assigned to the following groups; np: non-penetration of stylets, N1: penetration initiation, N2: salivation and stylet movement, N3: an extracellular activity near the phloem region, N4-a: an intracellular activity in phloem region, N4-b: phloem sap ingestion, and N5: activity in the xylem region.  相似文献   

2.
不同形态N素对水曲柳幼苗生长的影响   总被引:18,自引:3,他引:18  
在温室内用砂培的方法研究了NO^-3-N、NH^+4-N及其不同配比对水曲柳(Fraxinus mandshurica)幼苗生长的影响。结果表明,水曲柳幼苗在营养液NO^-3-N:NH^+4-N为75:25时生长最好,营养液中NH^+4-N比例继续增加则生长下降。过量的NH^+4-N可抑制水曲柳幼苗根系生长,降低幼苗的地下/地上比。营养液中NH^+4-N比例增加,水曲柳幼苗的净光合速率下降,体内P  相似文献   

3.
N4-Aminocytidine, a nucleoside analog, is strongly mutagenic to various organisms including Escherichia coli. Using E. coli WP2 (trp), we measured the incorporation of [5-3H]N4-aminocytidine into DNA and at the same time measured the frequency of reversion of the wild type, thereby attempting to correlate the incorporation with mutation induction. First, we observed that N4-aminocytidine uptake by the E. coli cells was as efficient as cytidine uptake. High-pressure liquid chromatographic analysis of nucleoside mixtures obtained by enzymatic digestion of isolated cellular DNA showed that the DNA contained [3H]N4-aminodeoxycytidine, corresponding to 0.01 to 0.07% of the total nucleoside; the content was dependent on the dose of N4-aminocytidine. There was a linear relationship between the N4-aminocytosine content in DNA and the mutation frequency observed. These results constitute strong evidence for the view that the N4-aminocytidine-induced mutation in E. coli is caused by the incorporation of this agent into DNA as N4-aminodeoxycytidine. We also found that the major portion of radioactivity in DNA of cells that had been treated with [5-3H]N4-aminocytidine was in the deoxycytidine fraction. We propose a metabolic pathway for N4-aminocytidine in cells of E. coli. This pathway involves the formation of both N4-aminodeoxycytidine 5'-triphosphate and deoxycytidine 5'-triphosphate; the deoxycytidine 5'-triphosphate formation is initiated by conversion of N4-aminocytidine into uridine. In support of this proposed scheme, a cytidine deaminase preparation obtained from E. coli catalyzed the decomposition of N4-aminocytidine into uridine and hydrazine.  相似文献   

4.
运用15N稳定性同位素技术,对15N标记的硝酸盐和铵盐在输入小嵩草(KobresiapygaeaC.B.Clarke)草甸11~13个月后的运移规律进行了研究。在经历11~13个月后,进入无机氮库中的15N很少,一般不超过所输入氮素的1%,而较多的15N为土壤有机质、土壤微生物和植物所固持。NO3--15N和NH4 -15N在小嵩草草甸中的运移规律差异很大。在11、12和13个月后,NO3--15N的总恢复率分别为92.83%、92.64%和79.96%;而NH4 -15N的则分别为49.6%、63.33%和66.22%。两者的差异在土壤有机质、土壤微生物和植物等库之间的分配中更加明显。输入NO3--15N时在11、12个月后植物所固持的15N最多,而土壤微生物和土壤有机质所固持的15N比较接近,而在13个月后,土壤有机质和植物所固持的15N接近,而土壤微生物所固持的15N下降许多;当输入NH4 -15N,土壤有机质所固持的15N比植物和土壤微生物所固持的都多,而且植物所固持的15N比较稳定,而土壤微生物所固持的15N则有较大变化。这表明在较长的时间内嵩草草甸对NO3-和NH4 的固持能力是不一样的。  相似文献   

5.
运用^15N稳定性同位素示踪技术,对高寒草甸植物和土壤微生物固持沉降氮的能力及沉降氮在小嵩草(Kobresia pygaea)草甸中的运移规律进行了研究。施肥2周后,NO3^--^15N和NH4^ -^15N的总恢复率分别为73.5%和78%。无论是NO3^--^15N,还是NH4^ -^15N植物所固持的^15N总是比土壤有机质或者是土壤微生物固持的多。4周后,70.6%的NO3^--^15N和57.4%的NH4^ -^15N被固持在土壤和植物中。其中,土壤微生物所固持。在施肥6周和8周后,NO3^--^15N的总恢复率分别为58.4%和67%,而NH4^ -^15N的总恢复率分别为43.1%和49%。植物和土壤微生物所固持的NO3^--^15N比NH4^ -^15N多。在整个实验期间,植物固持的NO3^-N较多,而且比土壤微生物固持了较多^15N。由于无机氮的含量一直很低,无机氮库所固持的^15N一般不超过1%。上述结果意味着短期内植物在高寒草甸中对沉降氮的去向起着决定作用。  相似文献   

6.
To determine the effects of nitrogen source on rates of net N transfer between plants connected by a common mycorrhizal network, we measured transfer of N supplied as 15NH4 14NO3 or 14NH4 15NO3 in three Casuarina/Eucalyptus treatments interconnected by a Pisolithus sp. The treatments were nonnodulated nonmycorrhizal/nonmycorrhizal; nonnodulated mycorrhizal/mycorrhizal; and nodulated mycorrhizal/mycorrhizal. Mycorrhization was 67% in Eucalyptus and 36% in Casuarina. N2 fixation supplied 38% of the N in Casuarina. Biomass, N and 15N contents were lowest in nonmycorrhizal plants and greatest in plants in the nodulated/mycorrhizal treatment. Nitrogen transfer was enhanced by mycorrhization and by nodulation, and was greater when N was supplied as 15NH4+ than 15NO3-. Nitrogen transfer rates were lowest in the nonmycorrhizal treatment for either 15N source, and greatest in the nodulated, mycorrhizal treatment. Transfer was greater to Casuarina than to Eucalyptus and where ammonium rather than nitrate was the N source. Irrespective of 15N source and of whether Casuarina or Eucalyptus was the N sink, net N transfer was low and was similar in both nonnodulated treatments. However, when Casuarina was the N sink in the nodulated, mycorrhizal treatment, net N transfer was much greater with 15NH4+ than with 15NO3-. High N demand by Casuarina resulted in greater net N transfer from the less N-demanding Eucalyptus. Net transfer of N from a non-N2-fixing to an N2-fixing plant may reflect the very high N demand of N2-fixing species.  相似文献   

7.
Klebsiella pneumoniae nitrogenase reduced azide, at 30 degrees C and pH 6.8-8.2, to yield ammonia (NH3), dinitrogen (N2) and hydrazine (N2H4). Reduction of (15N = 14N = 14N)-followed by mass-spectrometric analysis showed that no new nitrogen-nitrogen bonds were formed. During azide reduction, added 15N2H4 did not contribute 15N to NH3, indicating lack of equilibration between enzyme-bound intermediates giving rise to N2H4 and N2H4 in solution. When azide reduction to N2H4 was partially inhibited by 15N2, label appeared in NH3 but not in N2H4. Product balances combined with the labelling data indicate that azide is reduced according to the following equations: (formula: see text); N2 was a competitive inhibitor and CO a non-competitive inhibitor of azide reduction to N2H4. The percentage of total electron flux used for H2 evolution concomitant with azide reduction fell from 26% at pH 6.8 to 0% at pH 8.2. Pre-steady-state kinetic data suggest that N2H4 is formed by the cleavage of the alpha-beta nitrogen-nitrogen bond to bound azide to leave a nitride (= N) intermediate that subsequently yields NH3.  相似文献   

8.
9.
10.
Purine nucleotide synthesis and interconversion were examined over a range of purine base and nucleoside concentrations in intact N4 and N4TG (hypoxanthine-guanine phosphoribosyltransferase (HGPRT) deficient) neuroblastoma cells. Adenosine was a better nucleotide precursor than adenine, hypoxanthine or guanine at concentrations greater than 100 μM. With hypoxanthine or guanine, N4TG cells had less than 2% the rate of nucleotide synthesis of N4 cells. At substrate concentrations greater than 100 μM the rates for deamination of adenosine and phosphorolysis of guanosine exceeded those for any reaction of nucleotide synthesis. Labelled inosine and guanosine accumulated from hypoxanthine and guanine, respectively, in HGPRT-deficient cells and the nucleosides accumulated to a greater extent in N4 cells indicating dephosphorylation of newly synthesized IMP and GMP to be quantitatively significant. A deficiency of xanthine oxidase, guanine deaminase and guanosine kinase activities was found in neuroblastoma cells. Hypoxanthine was a source for both adenine and guanine nucleotides, whereas adenine or guanine were principally sources for adenine (>85%) or guanine (>90%) nucleotides, respectively. The rate of [14C]formate incorporation into ATP, GTP and nucleic acid purines was essentially equivalent for both N4 and N4TG cells. Purine nucleotide pools were also comparable in both cell lines, but the concentration of UDP-sugars was 1.5 times greater in N4TG than N4 cells.  相似文献   

11.
12.
Summary The behavior of soil N, fertilizer N and plant N was studied in a greenhouse experiment with 2 plant densities of rice (IR 36) under flooded conditions. Increasing plant density from 25 hills m2 to 50 hills m2 increased tiller number and panicle number but had no influence on grain yield. The yield of grain was linearly related to N content of the above ground dry matter at harvest (r2=.96) and thus the effect of manipulating the N supply on yield was directly related to N uptake.Mixing of (NH4)2SO4 with the soil volume before transplanting resulted in increases in N in the aboveground dry matter equal to 87% of the applied N. When (NH4)2SO4 was broadcast into the flood water at 4 stages of growth beginning 25 DAT, the corresponding increase was 77% of the applied N. When (NH4)2SO4 was split between shallow mixing before transplanting and a broadcast application of 32 DAT, the corresponding increase was 42%. Thus several applications of fertilizer N increased grain production per unit of applied N.Inorganic N extractable by KCl was a useful but not an infailible guide to the behavior of the soil and fertilizer inorganic N.  相似文献   

13.
模拟氮沉降对克氏针茅草原土壤有机碳的短期影响   总被引:2,自引:0,他引:2  
祁瑜  段雷  黄永梅 《生态学报》2015,35(4):1104-1113
为更好地了解天然草地土壤有机碳对氮沉降增加的响应,2011年在内蒙古太仆寺旗的克氏针茅(Stipa krylovii)草原上开展了模拟氮沉降的控制实验,设置对照(CK)和5个模拟氮沉降(NO-3)处理,分别为2(N1)、5(N2)、10(N3)、25(N4)和50 g N m-2a-1(N5)。生长季末,采集每个样地中0—2 cm和2—10 cm深度土壤进行有机碳含量及组成的分析,并进行实验室矿化培养。结果表明,土壤颗粒态有机碳(POC)对氮添加响应敏感,N1和N2处理下的POC含量高于CK,N3、N4和N5处理则低于CK。5个模拟氮沉降处理下的矿质结合态有机碳(MOC)含量均高于对照,但差别不显著。不同氮沉降水平下0—2 cm土层的碳矿化潜势为N2N1N4N3CKN5,且N1,N2,N3和N4处理均显著高于CK和N5;2—10 cm土层的碳矿化潜势为N2N1N3CKN4N5,N1、N2和N3显著高于CK、N4及N5。不同施氮处理对群落净第一性生产力有明显影响,N5的净第一性生产力和地上生物量显著低于对照和其它施氮处理,N1的0—10 cm地下生物量显著高于对照和其它处理,N5的凋落物量显著高于对照。模拟氮沉降短期内对土壤总有机碳(SOC)含量无显著影响。  相似文献   

14.
Deprotection of methylphosphonate oligonucleotides with ethylenediamine was evaluated in a model system. Methylphosphonate sequences of the form 5'-TTTNNTTT, where N was either N4-bz-dC, N4-ibu-dC, N2-ibu-O6-DPC-dG, N2-ibu-dG, N6-bz-dA, or T, were used to determine the extent of modifications that occur during deprotection. Up to 15% of N4-bz-dC was found to transaminate at the C4 position when treated with ethylenediamine. A similar displacement reaction with ethylenediamine was observed at the O6 position of N2-ibu-O6-DPC-dG, and to a much lesser extent of N2-ibu-dG. Side reactions were not observed when oligonucleotides containing N4-ibu-dC, N6-bz-dA, or T were treated with ethylenediamine. A novel method of deprotecting methylphosphonate oligonucleotides was developed from these studies. The method incorporates a brief treatment with dilute ammonia for 30 minutes followed by addition of ethylenediamine for 6 hours at room temperature to complete deprotection in a one-pot format. The solution is then diluted and neutralized to stop the reaction and prepare the crude product for chromatographic purification. This method was used to successfully deprotect a series of oligonucleotides at the 1, 100, and 150 mumole scales. These deprotection results were compared to a commonly used two-step method and found to be superior in yield of product by as much as 250%.  相似文献   

15.
无机氮对土壤甲烷氧化作用的影响   总被引:13,自引:2,他引:13  
无机氮输入(施氮肥和大气N沉降)对土壤CH4氧化作用的影响取决于甲烷氧化菌类型、输N种类和量以及土壤状况.这种作用既有抑制作用,又有刺激作用,但文献报道的抑制作用多于刺激作用,NH4^ 对CH4氧化的抑制作用多于NO3^-.随着全球N输入的增加,应在广泛的土壤类型和气候带观测和评价无机氯对土壤CH4氧化作用的影响.无机氮对土壤CH4氧化的抑制作用表现为立即或直接抑制、延迟抑制以及缺乏抑制等多种模式.尽管目前—些学者用酶基质竞争、增高的阈值、盐作用和离子交换、N转化率和N浓度等来解释抑制现象,但抑制机理依旧不完全清楚.因此,抑制机理是本领域未来研究的主要目标之一.  相似文献   

16.
N4-Aminocytidine induced mutation to 6-thioguanine resistance in Chinese hamster lung V79 cells in culture. Previous studies with experimental systems of in vitro DNA synthesis and of phage and bacterial mutagenesis have shown that this nucleoside analog induces base-pair transitions through its incorporation into DNA, with its erroneous base-pairing property. Incorporation of exogenously added [5-3H]N4-aminocytidine into the DNA of V79 cells was in fact observed in the present study. N4-Aminodeoxycytidine was not mutagenic for the V79 cells. Several alkylated N4-aminocytidine derivatives were tested for their mutagenicity in this system. Those with an alkyl group on the N'-nitrogen of the hydrazino group at position 4 of N4-aminocytidine were mutagenic, but those having an alkyl on the N4-nitrogen were not. These results are consistent with those previously observed in the bacterial mutagenesis systems, and agree with a mechanism of mutation in which a tautomerization of N4-aminocytosine is the necessary step for causing the erroneous base pairing.  相似文献   

17.
A/duck/Shanghai/28-1/2009(H4N2) (DK28) was isolated from a live poultry market in Shanghai, China. Using PCR and sequencing analysis, we obtained the complete genome sequences of the DK28 virus. The sequence analysis demonstrated that this H4N2 virus was a novel multiple-gene reassortant avian influenza virus (AIV) whose genes originated from H1N1, H1N3, H3N3, H4N2, and H4N6. Knowledge regarding the complete genome sequences of the DK28 virus will be useful for epidemiological surveillance.  相似文献   

18.
N4-Hydroxy-dCMP (N4-OH-dCMP), N4-methoxy-dCMP (N4-OMe-dCMP), and their 5-fluoro congeners (syntheses of which are described) were all slow-binding inhibitors of Ehrlich carcinoma thymidylate synthase (TS), competitive with respect to dUMP, and had differing kinetic constants describing interactions with the two TS binding sites. N4-OH-dCMP was not a substrate (no dihydrofolate produced; no tritium released with 5-3H-labeled molecule), and its inactivation of TS was methylenetetrahydrofolate-dependent, hence mechanism-based, with arrest of a step posterior to addition of cofactor and blocking abstraction of the C(5) hydrogen. Ki values for N4-OH-dCMP and its 5-fluoro analogue were in the range 10(-7) - 10(-8) M, 2-3 orders of magnitude higher for the corresponding N4-OMe analogues. The 5-methyl analogue of N4-OH-dCMP was 10(4)-fold less potent, pointing to the anti rotamer of the imino form of exocyclic N4-OH, relative to the ring N(3), as the active species. This is consistent with weaker slow-binding inhibition of the altered enzyme from 5-FdUrd-resistant, relative to parent, L1210 cells by both FdUMP and N4-OH-dCMP, suggesting interaction of both N4-OH and C(5)-F groups with the same region of the active center. Kinetic studies with purified enzyme from five sources, viz., Ehrlich carcinoma, L1210 parental, and 5-FdUrd-resistant cells, regenerating rat liver, and the tapeworm Hymenolepis diminuta, demonstrated that addition of a 5-fluoro substituent to N4-OH-dCMP increased its affinity from 2- to 20-fold for the enzyme from different sources.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
6个棉花品种幼苗对低温胁迫的响应   总被引:1,自引:0,他引:1  
4 ℃低温条件处理6个不同熟性棉花品种幼苗,测定供试材料叶片中SOD活性、POD活性、超氧阴离子含量、可溶性糖含量、可溶性蛋白含量、MDA、相对电导率以及根系活体染色等8项指标,比较不同棉花品种苗期抗冷性差异.对测定指标进行综合评价结果显示:4 ℃低温胁迫1 d后,6个品种耐冷性由强到弱依次为中50>N203>N52>K-1>N181>N177;4 ℃低温胁迫2 d后,耐冷性顺序为中50>N177>N52>K-1>N203>N181;4 ℃低温胁迫3d后N52>中50>N203>K-1>N177>N181.各生理指标综合评判结果为早熟品种中50和N52耐受性较强.  相似文献   

20.
目的 研究膀胱癌FFPE组织切片的N-连接糖链,发现膀胱癌FFPE肿瘤组织的异常N-连接糖链修饰情况。方法 发展基于FFPE组织切片原位提取N-连接糖链的实验流程。通过PNGase F酶切FFPE组织解释放N-连接糖链。对N-连接糖链自由端进行全甲基化修饰。通过MALDI-TOF/TOF-MS检测N-连接糖链的相对含量。进行数据库匹配,确定N-连接糖链的可能糖型。ROC分析用于预测显著差异N-连接糖链作为预测膀胱癌生物标志物的准确度。结果 MALDI-TOF/TOF-MS检测泛甲基化修饰N-连接糖链的数据显示,在16例膀胱癌患者的肿瘤和癌旁组织的3次重复实验中,肿瘤组织中蛋白质高甘露糖型N2H6、N2H7、N2H8、N2H9和复杂型N5H6F1糖链修饰水平显著上升,同时高甘露糖型N2H5、杂合型N3H5以及复杂型N3H4、N4H4、N5H6F1S2糖链修饰水平显著下降。ROC分析显示,双天线型N-连接糖链N3H4(AUC=0.90)和N4H4(AUC=0.91)在单独或者共同区分膀胱癌患者肿瘤组织和癌旁组织中都具有很好的可靠性,可能成为膀胱癌的潜在生物标志物。结论 膀胱癌FFPE肿瘤组织中存在蛋白质异常N-糖基化修饰,N-连接糖链N3H4和N4H4或可成为膀胱癌的潜在生物标志物。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号