首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ribosome recycling factor (RRF) of Thermotoga maritima was expressed in Escherichia coli from the cloned T. maritima RRF gene and purified. Expression of T. maritima RRF inhibited growth of the E. coli host in a dose-dependent manner, an effect counteracted by the overexpression of E. coli RRF. T. maritima RRF also inhibited the E. coli RRF reaction in vitro. Genes encoding RRFs from Streptococcus pneumoniae and Helicobacter pylori have been cloned, and they also impair growth of E. coli, although the inhibitory effect of these RRFs was less pronounced than that of T. maritima RRF. The amino acid sequence at positions 57 to 62, 74 to 78, 118 to 122, 154 to 160, and 172 to 176 in T. maritima RRF differed totally from that of E. coli RRF. This suggests that these regions are important for the inhibitory effect of heterologous RRF. We further suggest that bending and stretching of the RRF molecule at the hinge between two domains may be critical for RRF activity and therefore responsible for T. maritima RRF inhibition of the E. coli RRF reaction.  相似文献   

2.
3.
Subunits 70S, 50S, and 30S of ribosomes of E. coli and T. maritima have been studied by atomic force microscopy. A considerable heterogeneity of structures was visualized when 70S and 30S subunits were sorbed on mica. The linear size and the height of molecules were estimated. It was found that the heights of ribosomes of E. coli and T. maritima substantially differ. The average height of 70S ribosomes of E. coli was 9.4 + 0.01 nm and that of T. maritima was 10.35 +/- 0.02 nm. The differences in the dimensions were probably determined by special organization of the mobile ribosomal element the L7/L12-stalk.  相似文献   

4.
Nielsen JS  Møller BL 《Plant physiology》2000,122(4):1311-1321
Two cDNA clones encoding cytochrome P450 enzymes belonging to the CYP79 family have been isolated from Triglochin maritima. The two proteins show 94% sequence identity and have been designated CYP79E1 and CYP79E2. Heterologous expression of the native and the truncated forms of the two clones in Escherichia coli demonstrated that both encode multifunctional N-hydroxylases catalyzing the conversion of tyrosine to p-hydroxyphenylacetaldoxime in the biosynthesis of the two cyanogenic glucosides taxiphyllin and triglochinin in T. maritima. This renders CYP79E functionally identical to CYP79A1 from Sorghum bicolor, and unambiguously demonstrates that cyanogenic glucoside biosynthesis in T. maritima and S. bicolor is catalyzed by analogous enzyme systems with p-hydroxyphenylacetaldoxime as a free intermediate. This is in contrast to earlier reports stipulating p-hydroxyphenylacetonitrile as the only free intermediate in T. maritima. L-3,4-Dihydroxyphenyl[3-(14)C]Ala (DOPA) was not metabolized by CYP79E1, indicating that hydroxylation of the phenol ring at the meta position, as required for triglochinin formation, takes place at a later stage. In S. bicolor, CYP71E1 catalyzes the subsequent conversion of p-hydroxyphenylacetaldoxime to p-hydroxymandelonitrile. When CYP79E1 from T. maritima was reconstituted with CYP71E1 and NADPH-cytochrome P450 oxidoreductase from S. bicolor, efficient conversion of tyrosine to p-hydroxymandelonitrile was observed.  相似文献   

5.
As a step towards studying representative members of the two-component family of signal transduction proteins, we have cloned genes encoding a histidine protein kinase and a response regulator from the hyperthermophilic bacterium Thermotoga maritima. The genes have been designated HpkA and drrA, respectively. The deduced HpkA sequence contains all five characteristic histidine protein kinase motifs with the same relative order and spacing found in the mesophilic bacterial proteins. A hydropathy profile indicates that HpkA possesses only one membrane-spanning segment located at the extreme N terminus. The N-terminal region of DrrA exhibits all of the characteristics of the conserved domains of mesophilic bacterial response regulators, and the C-terminal region shows high similarity to the OmpR-PhoB subfamily of DNA-binding proteins. Recombinant T. maritima proteins, truncated HpkA lacking the putative membrane-spanning N- terminal amino acids and DrrA, were expressed in Escherichia coli. Partial purification of T. maritima proteins was achieved by heat denaturation of E. coli host proteins. In an in vitro assay, truncated HpkA protein was autophosphorylated in the presence of ATP. Thus, the N-terminal hydrophobic region is not required for kinase activity. Phosphotransfer between truncated HpkA and DrrA was demonstrated in vitro with the partially purified proteins. The phosphorylation reactions were strongly temperature dependent. The results indicate that the recombinant T. maritima two-component proteins overexpressed in E. coli are stable as well as enzymatically active at elevated temperatures.  相似文献   

6.
红海葱(Urginea maritima)是一种可用于治疗多种疾病的常见药用植物,过去临床上常用于治疗咳嗽、水肿、消化不良及肢体疼痛等疾病。现代研究表明,红海葱的主要化学成分为三萜类和黄酮类,具有强心、平喘、抗肿瘤、利尿、祛痰、抗病毒抗菌、抗炎、抗氧化、杀虫等多种药理作用。目前,海葱药理作用研究主要集中在抗肿瘤、抗心衰、平喘方面,然对其具体药效物质基础、作用机制及相应构效关系研究甚少。本文通过查阅国内外与红海葱相关的文献,概述其主要化学成分的结构和药理活性的研究进展,为进一步深入研究红海葱的药效作用机制、提高其利用价值提供参考依据。  相似文献   

7.
Topoisomerases, by controlling DNA supercoiling state, are key enzymes for adaptation to high temperatures in thermophilic organisms. We focus here on the topoisomerase I from the hyperthermophilic bacterium Thermotoga maritima (optimal growth temperature, 80 degrees C). To determine the properties of the enzyme compared with those of its mesophilic homologs, we overexpressed T. maritima topoisomerase I in Escherichia coli and purified it to near homogeneity. We show that T. maritima topoisomerase I exhibits a very high DNA relaxing activity. Mapping of the cleavage sites on a variety of single-stranded oligonucleotides indicates a strong preference for a cytosine at position -4 of the cleavage, a property shared by E. coli topoisomerase I and archaeal reverse gyrases. As expected, the mutation of the putative active site Tyr 288 to Phe led to a totally inactive protein. To investigate the role of the unique zinc motif (Cys-X-Cys-X(16)-Cys-X-Cys) present in T. maritima topoisomerase I, experiments have been performed with the protein mutated on the tetracysteine motif. Strikingly, the results show that zinc binding is not required for DNA relaxation activity, contrary to the E. coli enzyme. Furthermore, neither thermostability nor cleavage specificity is altered in this mutant. This finding opens the question of the role of the zinc-binding motif in T. maritima topoisomerase I and suggests that this hyperthermophilic topoisomerase possesses a different mechanism from its mesophilic homolog.  相似文献   

8.
Adaptation in bacterial chemotaxis involves reversible methylation of specific glutamate residues within the cytoplasmic domains of methyl-accepting chemotaxis proteins. The specific sites of methylation in Salmonella enterica and Escherichia coli chemoreceptors, identified 2 decades ago, established a consensus sequence for methylation by methyltransferase CheR. Here we report the in vitro methylation of chemoreceptors from Thermotoga maritima, a hyperthermophile that has served as a useful source of chemotaxis proteins for structural analysis. Sites of methylation have been identified by liquid chromatography-mass spectrometry/mass spectrometry. Fifteen sites of methylation were identified within the cytoplasmic domains of four different T. maritima chemoreceptors. The results establish a consensus sequence for chemoreceptor methylation sites in T. maritima that is distinct from the previously identified consensus sequence for E. coli and S. enterica. These findings suggest that consensus sequences for posttranslational modifications in one organism may not be directly extrapolated to analogous modifications in other bacteria.  相似文献   

9.
Uracil-DNA glycosylase (UDG) is a ubiquitous enzyme found in eukaryotes and prokaryotes [1][2][3]. This enzyme removes uracil bases that are present in DNA as a result of either deamination of cytosine or misincorporation of dUMP instead of dTMP [4] [5], and it is the primary activity in the DNA base excision repair pathway. Although UDG activities have been shown to be present in several thermophiles [6][7][8], no sequences have been found that are complementary to the Escherichia coli ung gene, which encodes UDG [9]. Here, we describe a UDG from the thermophile Thermotoga maritima. The T. maritima UDG gene has a low level of homology to the E. coli G-T/U mismatch-specific DNA glycosylase gene (mug). The expressed protein is capable of removing uracil from DNA containing either a U-A or a U-G base pair and is heat-stable up to 75 degrees C. The enzyme is also active on single-stranded DNA containing uracil. Analogous genes appear to be present in several prokaryotic organisms, including thermophilic and mesophilic eubacteria as well as archaebacteria, the human-disease pathogens Treponema palladium and Rickettsia prowazekii, and the extremely radioresistant organism Deinococcus radiodurans. These findings suggest that the T. maritima UDG is a member of a new class of DNA repair enzymes.  相似文献   

10.
The pgk-tpi gene locus of Thermotoga maritima encodes both phosphoglycerate kinase (PGK) and a bienzyme complex consisting of a fusion protein of PGK with triosephosphate isomerase (TIM). No separate tpi gene for TIM is present in T. maritima. A frame-shift at the end of the pgk gene has been previously proposed as a mechanism to regulate the expression of the two protein variants [Schurig et al., EMBO J. 14 (1995), 442-451]. Surprisingly, the complete T. maritima genome was found to contain a pgk-tpi sequence not requiring the proposed frameshift mechanism. To clarify the apparent discrepancy, a variety of DNA sequencing techniques were applied, disclosing an anomalous local variability in the pgk-tpi fusion region. The comparison of different DNA samples and the mass spectrometric analysis of the amino acid sequence of the natural fusion protein from T. maritima MSB8 confirmed the local variability of the DNA variants. Since not all peptide masses could be assigned, further variations are conceivable, suggesting an even higher heterogeneity of the T. maritima MSB8 strain.  相似文献   

11.
Abstract: Six metal-tolerant populations and sub-populations of Armeria maritima ssp. halleri, ssp. hornburgensis, and ssp. bottendorfensis and two non-tolerant populations of ssp. elongata in Central and Northeast Germany have been analysed using RAPD markers. The populations show very strong genetic differentiation (ΦST = 0.46), corresponding gene flow between them is low (Nem = 0.29). A moderate positive correlation between the matrices of genetic and geographical distances was found between the seven populations and sub-populations of central Germany (r = 0.68, p < 0.001). Calculated parameters of genetic variability are molecular variance, percentage of heterozygosity and percentage of polymorphic loci. A significant correlation between population size and parameters of genetic variability was not recognisable. Genetic structure was investigated by an analysis of molecular variance (AMOVA). The studied populations show strong genetic differentiation. Genetic variation within populations ("normal" as well as metalliferous) is higher (53.9 %) than among them (46.1 %). Six hypotheses of possible genetic relatedness between the studied populations have been tested by AMOVA. A data set structure above the populational level is hardly recognisable. It was impossible to combine the populations to edaphic (tolerant and "non-tolerant") or taxonomic groups. A. maritima ssp. halleri of the north Harz mountains and ssp. hornburgensis are clearly separated from a geographical group containing all other populations (across taxonomic and edaphic boundaries). These results are a further indication for a polyphyletic origin of metal-tolerant populations of A. maritima s.l. by multiple colonizations of metalliferous sites from neighbouring populations on non-metalliferous soil.  相似文献   

12.
13.
An endonuclease IV homolog was identified as the product of a conceptual open reading frame in the genome of the hyperthermophilic bacterium Thermotoga maritima. The T. maritima endonuclease IV gene encodes a 287-amino-acid protein with 32% sequence identity to Escherichia coli endonuclease IV. The gene was cloned, and the expressed protein was purified and shown to have enzymatic activities that are characteristic of the endonuclease IV family of DNA repair enzymes, including apurinic/apyrimidinic endonuclease activity and repair activities on 3'-phosphates, 3'-phosphoglycolates, and 3'-trans-4-hydroxy-2-pentenal-5-phosphates. The T. maritima enzyme exhibits enzyme activity at both low and high temperatures. Circular dichroism spectroscopy indicates that T. maritima endonuclease IV has secondary structure similar to that of E. coli endonuclease IV and that the T. maritima endonuclease IV structure is more stable than E. coli endonuclease IV by almost 20 degrees C, beginning to rapidly denature only at temperatures approaching 90 degrees C. The presence of this enzyme, which is part of the DNA base excision repair pathway, suggests that thermophiles use a mechanism similar to that used by mesophiles to deal with the large number of abasic sites that arise in their chromosomes due to the increased rates of DNA damage at elevated temperatures.  相似文献   

14.
15.
In lysine biosynthesis, dihydrodipicolinate reductase (DHDPR) catalyses the formation of tetrahydrodipicolinate. Unlike DHDPR enzymes from Escherichia coli and Mycobacterium tuberculosis, which have dual specificity for both NADH and NADPH as co-factors, the enzyme from Thermotoga maritima has a significantly greater affinity for NADPH. Despite low sequence identity with the E. coli and M. tuberculosis DHDPR enzymes, DHDPR from T. maritima has a similar catalytic site, with many conserved residues involved in interactions with substrates. This suggests that as the enzyme evolved, the co-factor specificity was relaxed. Kinetic studies show that the T. maritima DHDPR enzyme is inhibited by high concentrations of its substrate, DHDP, and that at high concentrations NADH also acts as an inhibitor of the enzyme, suggesting a novel method of regulation for the lysine biosynthetic pathway. Increased thermal stability of the T. maritima DHDPR enzyme may be associated with the lack of C-terminal and N-terminal loops that are present in the E. coli DHDPR enzyme.  相似文献   

16.
Abstract. The levels of soluble carbohydrates, polyols, betaines and free proline have been determined in different organs of sixteen plants collected on coastal salt marshes. Among the carbohydrates, sucrose, fructose and glucose accumulated at quite high levels. Sucrose is particularly abundant in the monocots Juncus maritima, Phragmites communis and Scirpus maritimus. Maltose is quite abundant in Atriplex hastata and rhamnose in Plantago maritima roots. High levels of polyols were detected in Aster tripolium, Juncus maritimus, Plantago maritima and Phragmites communis. According to their capacity to accumulate carbohydrates and (or) nitrogenous solutes, halophytic higher plants can be divided into three main groups: (1) species producing high levels of soluble carbohydrates only, (2) species accumulating both carbohydrates and nitrogenous compounds, (3) species producing more nitrogenous solutes than soluble carbohydrates. The possible functions of these various organic solutes, including a role in equalizing the relative water potentials of cytoplasm and vacuole and to lower the internal potential, are discussed.  相似文献   

17.
The substrate specificity of recombinant full-length diguanylate cyclase (DGC) of Thermotoga maritima with mutant allosteric site was investigated. It has been originally shown that the enzyme could use GTP closest analogues – 2′-deoxyguanosine-5′-triphosphate (dGTP) and 9-β-D-arabinofuranosyl-guanine-5′-triphosphate (araGTP) as the substrates. The first demonstrations of an enzymatic synthesis of bis-(3′-5′)-cyclic dimeric deoxyguanosine monophosphate (c-di-dGMP) and the previously unknown bis-(3′-5′)-cyclic dimeric araguanosine monophosphate (c-di-araGMP) using DGC of T. maritima in the form of inclusion bodies have been provided.  相似文献   

18.
Interspecific hybridization events have been reported in the genus Spartina Schreb. (Poaceae), involving the east American species Spartina alterniflora, and including either introgression (e.g., with the western American Spartina foliosa) or allopolyploid speciation (e.g., with the Euro-African Spartina maritima). Molecular phylogenetic analysis of the genus has been undertaken in order to understand phylogenetic relationships and genetic divergence among these hybridizing species. Twelve Spartina species have been sequenced for two nuclear DNA regions (ITS of ribosomal DNA, and part of the Waxy gene) and one chloroplast DNA spacer (trnT-trnL). Separate and conditional combined phylogenetic analyses using Cynodon dactylon as the outgroup have been conducted. Spartina is composed of two lineages. The first clade includes all hexaploid species: the Euro-African S. maritima (2n = 60), the East-American S. alterniflora (2n = 62) and the West-American S. foliosa (2n = 60). Spartina alterniflora appears as a closely related sister species to S. foliosa. Although belonging to the same lineage, Spartina maritima appears consistently more genetically differentiated from S. alterniflora than S. foliosa. The tetraploid species S. argentinensis (2n = 40) is placed at the base of this first clade according to the Waxy data, but its position is not well resolved by the other sequences. The second well-supported main lineage within genus Spartina includes the other tetraploid American species. Significant incongruence has been encountered between the waxy based tree and both the ITS and trnT-trnL trees concerning the position of S. densiflora, suggesting a possible reticulate evolution for this species. The results agree with hybridization patterns occurring in Spartina: introgression involving closely related species (S. alterniflora and S. foliosa) on one hand, and alloploid speciation involving more differentiated species (S. alterniflora and S. maritima) on the other hand.  相似文献   

19.
Characterization of ribonuclease P RNAs from thermophilic bacteria.   总被引:11,自引:5,他引:6       下载免费PDF全文
The catalytic RNA component of bacterial RNase P is responsible for the removal of 5' leader sequences from precursor tRNAs. As part of an on-going phylogenetic comparative characterization of bacterial RNase P, the genes encoding RNase P RNA from the thermophiles Thermotoga maritima, Thermotoga neapolitana, Thermus aquaticus, and a mesophilic relative of the latter, Deinococcus radiodurans, have been cloned and sequenced. RNAs transcribed from these genes in vitro are catalytically active in the absence of other components. Active holoenzymes have been reconstituted from the T.aquaticus and T.maritima RNAs and the protein component of RNase P from Escherichia coli. The RNase P RNAs of T.aquaticus and T.martima, synthesized in vitro, were characterized biochemically and shown to be inherently resistant to thermal disruption. Several features of these RNAs suggest mechanisms contributing to thermostability. The new sequences provide correlations that refine the secondary structure model of bacterial RNase P RNA.  相似文献   

20.
The aim of this study was to estimate the influence of biotic and abiotic factors on Suaeda maritima reproduction on a salt marsh. Individuals of Suaeda maritima were submitted in natural conditions to four series of densities (100, 1,000, 4,000 and 8,000 plants/m2). When density increases, individuals tend to be less or non-branched, while individual biomass decreases. Consequently, individual seed production decreases as density increases. Despite morphological modifications, Suaeda maritima present density-dependent mortality. For a unit area, total biomass and seed production are higher at intermediate density (1,000 plants/m2). Environmental factors could interfere with self-thinning. They seem to limit the effect of competition on mortality and to have an influence on individual and total seed production. This experiment stressed the importance of a biotic factor such as intra-specific competition, which occurs at the same time as abiotic factors, in Suaeda maritima dynamics in the field.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号