首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 671 毫秒
1.
Nicholas J. Walton 《Planta》1982,155(3):218-224
Hydrogen peroxide-dependent glyoxylate decarboxylation occurring during glycollate oxidation by pea leaf extracts (Pisum sativum L.) has been studied in relation to the effects of glyoxylate and extract concentration. With a saturating concentration of glycollate, decarboxylation was greatly stimulated by raising the glyoxylate concentration; at 30°C and with approx. 0.04 nkat of glycollate oxidase (as leaf extract) in the reaction mixture, CO2 release in the presence of 5 mM glycollate and 5 mM glyoxylate was equal to about 45% of glycollate oxidation. However, CO2 release at these substrate concentrations was not linearly proportional to the amount of extract supplied and was equal to a diminishing proportion of glycollate oxidation as the amount of extract was increased. This was shown to be due to the low affinity of catalase for H2O2, so that the endogenous catalase was able to destroy a larger proportion of the H2O2 generated at higher extract concentrations. It is argued that although at high glycoxylate concentrations (5–10 mM) in vitro, glyoxylate decarboxylation can be made to equal more than a third of the glycollate oxidised, less than 10% of the glyoxylate generated in vivo is likely to be decarboxylated in peroxisomes where high concentrations of glycollate oxidase and catalase are localised and where high concentrations of glyoxylate are unlikely to be maintained.Abbreviation PHMS pyrid-2-yl--hydroxymethane sulphonic acid  相似文献   

2.
The effect of temperature on glycollate decarboxylation in leaf peroxisomes   总被引:1,自引:1,他引:0  
B. Grodzinski  V. S. Butt 《Planta》1977,133(3):261-266
[1-14C]glycollate was oxidised to14CO2 by peroxisomes isolated from leaves of spinach beet about 3 times as rapidly at 35°C as at 25°C; the rate was further increased with rise in temperature to a maximum at 55°C. These increases are shown to be mainly due to the increased H2O2 available to oxidise glyoxylate non-enzymically as a result of the higher temperature coefficient of glycollate oxidase activity relative to that of catalase. These results are compared with similar increases in the rate of14CO2 release between 25°C and 35°C when [1-14C]glycollate was supplied to leaf discs in light or darkness. The role of these reactions in accounting for the temperature effect on the release of photorespiratory CO2 is discussed.Abbreviations PHMS Pyrid-2-yl--hydroxymethane sulphonate - FMN flavin mononucleotide  相似文献   

3.
Homogenates of Dunaliella primolecta, D. salina and D. tertiolecta were assayed for glycollate oxidase and glycollate dehydrogenase. Both D. primolecta and D. salina but not D. tertiolecta showed substantial glycollate-dependent O2-uptake which is characteristic of glycollate oxidase. L-Lactate was an alternative substrate and both glycollate- and L-lactate-dependent O2 uptake were insensitive to 2 mM cyanide. Glycollate dehydrogenase, measured by following the glycollate-dependent reduction of 2,6-dichlorophenolindophenol under aerobic conditions, was present in D. primolecta, D. salina and D. tertiolecta. In the presence of glycollate and D-lactate, rates were additive so both glycollate and D-lactate dehydrogenases are present in the homogenates. Glycollate and D-lactate oxidation were both inhibited by 2 mM cyanide. Organelles released from phototrophically grown cells of D. primolecta were separated by isopycnic centrifugation on sucrose gradients. Glycollate oxidase was present in the peroxisome fraction at an equilibrium density of 1.25 g/cm3, while the major peak of glycollate dehydrogenase activity was in the mitochondrial fraction at an equilibirium density of 1.22 g/cm3.  相似文献   

4.
The linked utilization of glycollate and L-serine has been studied in peroxisomal preparations from leaves of spinach beet (Beta vulgaris L.). The generation of glycine from glycollate was found to be balanced by the production of hydroxypyruvate from serine and similarly by 2-oxoglutarate when L-glutamate was substituted for L-serine. In the presence of L-malate and catalytic quantities of NAD+, about 40% of the hydroxypyruvate was converted further to glycerate, whereas with substrate quantities of NADH, this conversion was almost quantitative. CO2 was released from the carboxyl groups of both glycollate and serine. Since the decarboxylation of both substrates was greatly in creased by the catalase inhibitor, 3-amino-1,2,4-triazole, and abolished by bovine liver catalase, it was attributed to the nonenzymic attack of H2O2, generated in glycollate oxidation, upon glyoxylate and hydroxypyruvate respectively. At 25–30° C, about 10% of the glyoxylate and hydroxypyruvate accumulated was decarboxylated, and the release of CO2 from each keto-acid was related to the amounts present. It is suggested that hydroxypyruvate decarboxylation might contribute significantly to photorespiration and provide a metabolic route for the complete oxidation of glycollate, the magnitude of this contribution depending upon the concentrations of glyoxylate and hydroxypyruvate in the peroxisomes.  相似文献   

5.
Autotrophic cultures of the facultative chemolithotrophAlcaligenes eutrophus have been found to excrete glycollate. This excretion was greatly stimulated by the incorporation of up to 20% (v/v) oxygen in the hydrogen used for gassing. The stimulatory effect of oxygen was prevented by the addition of 10% (v/v) CO2 to the gassing mixture. Glycollate excretion only in the presence of oxygen was increased by the addition of 2-pyridyl-hydroxymethane sulphonic acid (HPMS), an inhibitor of glycollate oxidation, indicating that glycollate formation itself was stimulated by oxygen. No glycollate excretion by cultures grown heterotrophically on pyruvate was detected, either in the absence or presence of HPMS, under heterotrophic or autotrophic conditions.Extracts from autotrophic cells showed phosphoglycollate phosphatase and glycollate oxidoreductase activities, which were considerably lower in extracts prepared from pyruvate- or fructose-grown (heterotrophic) cells. The increase in activity of both enzymes upon cell transfer from heterotrophic to autotrophic growth was prevented by chloramphenicol and resembled the induction ofd0ribulose 1,5-diphosphate carboxylase under the same conditions.Abbreviations DTE dithioerythritol - EDTA ethylenediamine tetraacetate - HPMS 2-pyridyl-hydroxymethane sulphonie acid - RuDP d-ribulose 1,5-diphosphate  相似文献   

6.
Glyoxylate decarboxylation during photorespiration   总被引:4,自引:0,他引:4  
Bernard Grodzinski 《Planta》1978,144(1):31-37
At 25° C under aerobic conditions with or without gluamate 10% of the [1-14C]glycollate oxidised in spinach leaf peroxisomes was released as 14CO2. Without glutamate only 5% of the glycollate was converted to glycine, but with it over 80% of the glycollate was metabolised to glycine. CO2 release was probably not due to glycine breakdown in these preparations since glycine decarboxylase activity was not detected. Addition of either unlabelled glycine or isonicotinyl hydrazide (INH) did not reduce 14CO2 release from either [1-14C]glycollate or [1-14C]glyoxylate. Furthermore, the amount of available H2O2 (Grodzinski and Butt, 1976) was sufficient to account for all of the CO2 release by breakdown of glyoxylate. Peroxisomal glycollate metabolism was unaffected by light and isolated leaf chloroplasts alone did not metabolise glycollate. However, in a mixture of peroxisomes and illuminated chloroplasts the rate of glycollate decarboxylation increased three fold while glycine synthesis was reduced by 40%. Although it was not possible to measure available H2O2 directly, the data are best explained by glyoxylate decarboxylation. Catalase reduced CO2 release and enhanced glycine synthesis. In addition, when a model system in which an active preparation of purified glucose oxidase generating H2O2 at a known rate was used to replace the chloroplasts, similar rates of 14CO2 release and [14C]glycine synthesis from [1-14C]glycollate were measured. It is argued that in vivo glyoxylate metabolism in leaf peroxisomes is a key branch point of the glycollate pathway and that a portion of the photorespired CO2 arises during glyoxylate decarboxylation under the action of H2O2. The possibility that peroxisomal catalase exerts a peroxidative function during this process is discussed.Abbreviations HEPES N-2-hydroxyethylpiperazine-N-2-ethanesulphonic acid - INH isonicotinylhydrazide - PHMS pyridyl-2-yl--hydroxymethane sulphonic acid  相似文献   

7.
A release of ammonium by non-nitrogen-fixing Anabaena cylindrica (grown on NH4Cl) in the presence of MSX (methionine sulfoximine) and absence of any external nitrogen source was found. In the light the release was maximal at 0.2 mM MSX, a concentration which did not affect net CO2 fixation nor the glycollate excretion, but inhibited the glutamine synthetase activity and the reassimilation of ammonium. It is suggested that the major source of the ammonium released is the photorespiratory conversion of glycine to serine as (1) the release was stimulated by increase in light intensity, (2) high CO2 (3%) lowered the release, if not given as a longer pretreatment (as CO2 or HCO 3 - ) when a stimulation was observed, (3) glyoxylate and glutamate stimulated the release, the latter compound particularly under nitrogen-deficient conditions and (4) isonicotinic acid hydrazide caused a reduced release of ammonium. Furthermore, a substantial part of the ammonium released by N2-fixing A. cylindrica in presence of MSX may thus originate from the glycollate pathway. The data show that in the light the glycine to serine conversion is active in cyanobacteria with a concomitant production of ammonium which is assimilated by glutamine synthetase.Abbreviations MSX L-methionine-Dl-sulfoximine - INH isonicotinic acid hydrazide - RuDP ribulose 1,5-diphosphate - Hepes N-2-hydroxyethylpiperazine-N-2-ethanesulfonic acid - GS glutamine synthetase - GOGAT glutamate synthase - DTT Dl-dithiothreitol  相似文献   

8.
Purification of glycollate oxidase from greening cucumber cotyledons   总被引:7,自引:0,他引:7  
Glycollate oxidase (glycollate: oxygen oxidoreductase, EC 1.1.3.1) was purified to apparent homogeneity from crude extracts of greening cucumber cotyledons (Cucumis sat vus). Molecular sieving and chromatofocusing resulted in 700-fold purification and specific activity of 1 kat mg-1 protein. The enzyme exhibited a Mr of 180,000, or 700,000, respectively, and is a tetramer or 16-mer made of identical subunits of Mr 43,000. Monospecific antibodies were raised against the homogeneous protein.  相似文献   

9.
The pathway of autotrophic CO2 fixation in Methanobacterium thermoautotrophicum has been investigated by long term labelling of the organism with isotopic acetate and pyruvate while exponentially growing on H2 plus CO2. Maximally 2% of the cell carbon were derived from exogeneous tracer, 98% were synthesized from CO2. Since growth was obviously autotrophic the labelled compounds functioned as tracers of the cellular acetyl CoA and pyruvate pool during cell carbon synthesis from CO2. M. thermoautotrophicum growing in presence of U-14C acetate incorporated 14C into cell compounds derived from acetyl CoA (N-acetyl groups) as well as into compounds derived from pyruvate (alanine), oxaloacetate (aspartate), -ketoglutarate (glutamate), hexosephosphates (galactosamine), and pentosephosphates (ribose). The specific radioactities of N-acetylgroups and of the three amino acids were identical. The hexosamine exhibited a two times higher specific radioactivity, and the pentose a 1.6 times higher specific radioactivity than e.g. alanine. M. thermoautotrophicum growing in presence of 3-14C pyruvate, however, did not incorporate 14C into cell compounds directly derived from acetyl CoA. Those compounds derived from pyruvate, dicarboxylic acids and hexosephosphates became labelled. The specific radioactivities of alanine, aspartate and glutamate were identical; the hexosamine had a specific radioactivity twice as high as e.g. alanine.The finding that pyruvate was not incorporated into compounds derived from acetyl CoA, whereas acetate was incorporated into derivatives of acetyl CoA and pyruvate in a 1:1 ratio demonstrates that pyruvate is synthesized by reductive carboxylation of acetyl CoA. The data further provide evidence that in this autotrophic CO2 fixation pathway hexosephosphates and pentosephosphates are synthesized from CO2 via acetyl CoA and pyruvate.  相似文献   

10.
Alcaligenes eutrophus and three other hydrogen bacteria exposed to plasmid-curing agents generated autotrophic-minus mutants at high frequency. These mutants were blocked in the metabolism of H2 as an energy source and had normal levels of enzymes involved in CO2 fixation. The loss of hydrogenase activity in A. eutrophus was accompanied by the loss or alteration of a plasmid that had molecular weight of approximately 200×106. Mobilization of this plasmid from wild-type A. eutrophus strains into cured hydrogenase-minus derivatives restored hydrogenase function. It is concluded that A. eutrophus contains a large plasmid required for hydrogen metabolism and thereby autotrophic growth.Abbreviations Aut autotrophic - Hup hydrogen uptake - NTG N-methyl-N-nitro-N-nitrosoguanidine - RuBP ribulose bisphosphate - RuMP ribulose monophosphate - Kan kanamycin - Nal nalidixic acid - Rif rifampicin - Tet tetracycline  相似文献   

11.
Growth of Thermoproteus neutrophilus at 85°C was studied using an improved mineral medium with CO2, CO2 plus acetate, CO2 plus propionate, or CO2 plus succinate as carbon sources; sulfur reduction with H2 to H2S was the sole source of energy. None of the carbon compounds added was oxidized to CO2. The organism grew autotrophically with a generation time of 9–14 h, up to a cell density of 0.5 g dry weight per liter (2×109 cells/ml). Propionate did not stimulate, succinate slightly stimulated the growth rate. Acetate, even at low concentrations (0.5 mM), stimulated the growth rate, the generation time being shortened to 3–4 h. Acetate provided 70% of the cell carbon, which shows that Thermoproteus neutrophilus is a facultative autotroph. The path of these carbon precursors into cell compounds was studied by 14C long-term labelling and investigation of enzyme activities. Propionate could not be used as a major carbon source and was incorporated only into isoleucine, probably via the citramalate pathway. Acetate was a preferred carbon source which suppressed autotrophic CO2 fixation: acetate grown cells exhibited an incomplete citric acid cycle in which 2-oxoglutarate dehydrogenase was present, but fumarate reductase was repressed. The succinate incorporation pattern and enzyme pattern indicated that autotrophic CO2 fixation proceeded via a yet to be defined reductive citric acid cycle.  相似文献   

12.
Gibberellic acid at 10-4 Mxxx was optimal for enhancement of growth, O2 evolution, photosystem II and I and the activity of glycollate dehydrogenase of Anacystis nidulans. A stimulatory effect was observed on photosystem II. Other concentrations of gibberellic acid were inhibitory to O2 evolution and photosystem I. Syntheses of phycocyanin, phycoerythrin and -carotene were significantly enhanced after 48 h incubation with gibberellic acid at 10-3 Mxxx but the chlorophyll content began to increase 3 h after adding 10-4 Mxxx gibberellic acid.The author is with the Department of Biological Sciences, Faculty of Science, University of Science and Technology, Irbid, Jordan.  相似文献   

13.
Thiobacillus neapolitanus grown in minerals medium in a thiosulfate-limited chemostat excreted 15% of all the carbon dioxide fixed as 14C-organic compounds at a dilution rate (D) of 0.03 h-1. At D=0.36 h-1 this excretion was 8.5%. Up to a D of 0.2h-1 glycolate was the major excretion product. Glycolate excretion was maximal at a pO2 of 100% air saturation (a.s.) and not detectable at a pO2 of 5% (a.s.). Increasing the pCO2 of the gassing mixture to 5% (v/v), at a pO2 of 50% a.s. resulted in a lowering of the glycolate excretion from 3.5% of the total CO2 fixed to 1.8%. These results indicate that glycolate excretion in T. neapolitanus is due to oxygenase activity of D-ribulose-1,5-bisphosphate carboxylase. HPMS (2-pyridylhydroxymethanesulfonate), an inhibitor of glycolate metabolism, did not stimulate the glycolate production in T. neapolitanus. Glycolate excretion was not observed in thiosulfate-limited chemostat cultures of the obligately chemolithotrophic Thiomicrospira pelophila or in thiosulfate- or formate-grown cultures of the facultatively chemolithotrophic Thiobacillus A2.Abbreviation HPMS 2-pyridylhydroxymethanesulfonate  相似文献   

14.
Chloroflexus aurantiacus OK-70 fl was grown photoautotrophically with hydrogen as electron source. The cultures were subjected to long term labelling experments with 13C-labelled acetate or alanine in the presence of sodium fluoroacetate. The presence of fluoroacetate caused the cells to accumulate large amounts of polyglucose which was hydrolysed and analysed by NMR. The labelling patterns of glucose were symmetric and in agreement with carbohydrate synthesis from acetate and CO2 via pyruvate synthase. The content of carbon derived from added acetate was highest in C2 and C5 of glucose, at least 20% higher than in C1 and C6. About one third of the glucose carbon was derived from added acetate, the rest being from CO2. Contrary to expectations, in glucose formed in the presence of C1-labelled acetate C1 and C6 contained more label than C2 and C5, and with C2-labelled acetate as the tracer glucose was mainly labelled in C2 and C5. Labelled CO2 was formed from acetate labelled at either position. The labelling data indicate a new metabolic pathway in C. aurantiacus. It is suggested that the cells form C1-labelled acetyl-CoA from C2-labelled acetyl-CoA and vice versa by a cyclic mechanism involving concomitant CO2 fixation and that this cycle is the part of the autotrophic CO2 fixation pathways in C. aurantiacus in which acetyl-CoA is formed from CO2.The polyglucose of C. aurantiacus appears to have predominantly (1–4)-linked structure with about 10% (1–6)-linkages as revealed by 13C-NMR.  相似文献   

15.
A. Yokota  S. Kitaoka 《Planta》1987,170(2):181-189
The rate of glycolate excretion in Euglena gracilis Z and some microalgae grown at the atmospheric level of CO2 was determined using amino-oxyacetate (AOA). The extracellular O2 concentration was kept at 240 M by bubbling the incubation medium with air. Glycolate, the main excretion product, was excreted by Euglena at 6 mol·h-1·(mg chlorophyll (Chl))-1. Excretion depended on the presence of AOA, and was saturated at 1 mM AOA. A substituted oxime formed from glyoxylate and AOA was also excreted. Bicarbonate added at 0.1 mM did not prevent the excretion of glycolate. The excretion of glycolate increased with higher O2 concentrations in the medium, and was competitively inhibited by much higher concentrations of bicarbonate. Aminooxyacetate also caused excretion of glycolate from the green algae, Chlorella pyrenoidosa, Scenedesmus obliquus and Chlamydomonas reinhardtii grown on air, at the rates of 2–7 mol·h-1·(mg Chl)-1 in the presence of 0.2–0.6 mM dissolved inorganic carbon, but the cyanobacterium, Anacystis nidulans, grown in the same way did not excrete glycolate. The efficiency of the CO2-concentrating mechanism to suppress glycolate formation is discussed on the basis of the magnitude of glycolate formation in these low-CO2-grown cells.Abbreviations AOA aminooxyacetate - Chl chlorophyll - DIC dissolved inorganic carbon - HPLC high-pressure liquid chromatography - Rubisco ribulose-1,5-bisphosphate carboxylase/oxygenase This is the 16th paper in a series on the metabolism of glycolate in Euglena gracilis. The 15th paper is Yokota et al. (1985c)  相似文献   

16.
A simple approach to determine CO2/O2 specificity factor () of ribulose 1,5-bisphosphate carboxylase/oxygenase is described. The assay measures the amount of CO2 fixation at varying [CO2]/[O2] ratios after complete consumption of ribulose 1,5-bisphosphate (RuBP). Carbon dioxide fixation catalyzed by the carboxylase was monitored by directly measuring the moles of 14CO2 incorporated into 3-phosphoglycerate (PGA). This measurement at different [CO2]/[O2] ratios is used to determine graphically by several different linear plots the total RuBP consumed by the two activities and the CO2/O2 specificity factor. The assay can be used to measure the amounts of products of the carboxylase and oxygenase reactions and to determine the concentration of the substrate RuBP converted to an endpoint amount of PGA and phosphoglycolate. The assay was found to be suitable for all [CO2]/[O2] ratios examined, ranging from 14 to 215 micromolar CO2 (provided as 1–16 mM NaHCO3) and 614 micromolar O2 provided as 50% O2. The procedure described is extremely rapid and sensitive. Specificity factors for enzymes of highly divergent values are in good agreement with previously published data.Abbreviations HEPPS N-(2-hydroxyethyl)piperazine-N-(3-propanesulfonic acid) - L large subunit of rubisco - PGA 3-phosphoglyceric acid - rubisco ribulose 1,5-bisphosphate carboxylase/oxygenase - RuBP d-ribulose 1,5-bisphosphate - S small subunit of rubisco - XuBP d-xylulose 1,5-bisphosphate  相似文献   

17.
S. B. Ku  G. E. Edwards 《Planta》1980,147(4):277-282
In the C4 plant, Amaranthus graecizans, increasing [O2] from 2% up to 100% inhibited photosynthesis, quantum yield, and the carboxylation efficiency, and increased the CO2 compensation point () from 2 to about 12 l/l. The O2 inhibition of photosynthesis was fully reversible. When changing from 2.5 to 40% O2 and vice versa, about 1 h was required for full equilibration with an O2 inhibition of 18%; whereas in wheat, a C3 species, inhibition of photosynthesis and its reversal occurs within minutes after changing [O2], resulting in 63% inhibition of photosynthesis by 45% O2. These differences in O2 inhibition between a C4 and C3 species can be explained by high diffusive resistance across bundle-sheath cells of C4 plants and the increased CO2/O2 ratio in bundle-sheath cells which is the consequence of the C4 cycle. In A. graecizans, increased with increasing [O2] but tended to reach a maximum at relatively high O2 levels. The lack of a linear increase in as previously observed for C3 species indicates that a considerable amount of photorespired CO2 may be re-fixed with increasing levels of O2. In comparison to previous reports with other C4 species, photosynthesis of A. graecizans shows greater sensitivity to O2, with a noticeable inhibition occurring with shifts from 2 to 21% O2. A. graecizans has characteristics of other C4 species with respect to Kranz anatomy, localization of PEP carboxylase in mesophyll cells and RuBP carboxylase in bundle-sheath cells, and little fractionation among carbon isotopes during CO2 fixation. The basis for the higher sensitivity of photosynthesis of A. graecizans to O2 may be based upon a lower diffusive resistance of gases across bundle-sheath cells than in some other C4 species.Abbreviations CE carboxylation efficiency - RuBP ribulose-1,5-bisphosphate - CO2 compensation point  相似文献   

18.
Seven strains of extremely halophilic bacteria (Halobacterium spp., Halococcus spp., and Haloarcula sp.) fixed CO2 under light and dark conditions. Light enhanced CO2 fixation in Halobacterium halobium but inhibited it in Halobacterium volcanii and Haloarcula strain GN-1. Propionate stimulated 14CO2 incorporation in some strains, but inhibited it in others. Semi-starvation in basal salts plus glycerol induced enhanced CO2 fixation rates. 14CO2 fixation in semi-starved cells was stimulated by NH 4 + or pyruvate and inhibited by succinate and acetate in most strains. No possible reductant was found. In cell-free extracts of H. halobium, NH 4 + but not propionate stimulated 14CO2 fixation. No RuBP carboxylase activity was detected. The main 14C-labeled -keto acid detected after a 2-min incubation with 14CO2 and pyruvate was pyruvate. Little or no -ketobutyrate was detected among the early products of propionate-stimulated CO2 fixation. Glycine was the major amino acid synthesized during a 2-min incubation with NH 4 + , propionate, and 14CO2. Propionate-stimulated CO2 fixation was sensitive to trimethoprim and insensitive to avidin. A novel pathway for non-reductive CO2 fixation involving a glycine synthase reaction with CO2, NH 4 + , and a methyl carbon derived from the -carbon cleavage of propionate is tentatively proposed.Abbreviations used BBS buffered basal salts - HEPES N-2-hydroxyethylpiperazine-N-2-ethanesulfonic acid - MOPS 3-(N-morpholino)propanesulfonic acid - DNPH 2,4-dinitrophenylhydrazine - DNP dinitrophenyl - TLC thin-layer chromatography - FH4 tetrahydrofolate This work was supported by National Science Foundation grant PCM-8116330 and Petroleum Research Fund grant PRF 13704-AC2  相似文献   

19.
Oxygen and CO2 exchange were measured concurrently in leaves of shade-grownAlocasia macrorrhiza (L.) G. Don during lightflecks consisting of short periods of high photon flux density (PFD) superimposed on a low-PFD background illumination. Oxygen exchange was measured with a zirconium-oxide ceramic cell in an atmosphere containing 1 600 bar O2 and 350 bar CO2. Following an increase in PFD from 10 to 500 mol photons·m-2·s-1, O2 evolution immediately increased to a maximum rate that was about twice as high as the highest CO2-exchange rates that were observed. Oxygen evolution then decreased over the next 5–10 s to rates equal to the much more slowly increasing rates of CO2 uptake. When the PFD was decreased at the end of a lightfleck, O2 evolution decreased nearly instantaneously to the low-PFD rate while CO2 fixation continued at an elevated rate for about 20 s. When PFD during the lightfleck was at a level that was limiting for steady-state CO2 exchange, then the O2-evolution rate was constant during the lightfleck. This observed pattern of O2 evolution during lightflecks indicated that the maximum rate of electron transport exceeded the maximum rate of CO2 fixation in these leaves. In noninduced leaves, rates of O2 evolution for the first fraction of a second were about as high as rates in fully induced leaves, indicating that O2 evolution and the electron-transport chain are not directly affected by the leaf's induction state. Severalfold differences between induced and noninduced leaves in O2 evolution during a lightfleck were seen for lightflecks longer than a few seconds where the rate of O2 evolution appeared to be limited by the utilization of reducing power in CO2 fixation.Abbreviation PFD photon flux density (of photosynthetically active radiation)  相似文献   

20.
Non-phototrophic CO 2 fixation by soil microorganisms   总被引:1,自引:0,他引:1  
Although soils are generally known to be a net source of CO2 due to microbial respiration, CO2 fixation may also be an important process. The non-phototrophic fixation of CO2 was investigated in a tracer experiment with 14CO2 in order to obtain information about the extent and the mechanisms of this process. Soils were incubated for up to 91 days in the dark. In three independent incubation experiments, a significant transfer of radioactivity from 14CO2 to soil organic matter was observed. The process was related to microbial activity and could be enhanced by the addition of readily available substrates such as acetate. CO2 fixation exhibited biphasic kinetics and was linearly related to respiration during the first phase of incubation (about 20–40 days). The fixation amounted to 3–5% of the net respiration. After this phase, the CO2 fixation decreased to 1–2% of the respiration. The amount of carbon fixed by an agricultural soil corresponded to 0.05% of the organic carbon present in the soil at the beginning of the experiment, and virtually all of the fixed CO2 was converted to organic compounds. Many autotrophic and heterotrophic biochemical processes result in the fixation of CO2. However, the enhancement of the fixation by addition of readily available substrates and the linear correlation with respiration suggested that the process is mainly driven by aerobic heterotrophic microorganisms. We conclude that heterotrophic CO2 fixation represents a significant factor of microbial activity in soils.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号