首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The post-embryonic architecture of higher plants is derived from the activity of two meristems that are formed in the embryo: the shoot meristem and the root meristem. The epidermis of the shoot is derived from the outermost layer of cells covering the shoot meristem through repeated anticlinal divisions. By contrast, the epidermis of the root is derived from an internal ring of cells, located at the centre of the root meristem, by a precise series of both periclinal and anticlinal divisions. Each epidermis has an independent origin. In Arabidopsis the mature shoot epidermis is composed of a small number of cell types: hair cells (trichomes), stomatal guard cells and other epidermal cells. In shoots, hairs take the form of branched trichomes that are surrounded at their base by a ring of accessory cells in a sheet of epidermal cells. The root epidermis is composed of two cell types: trichoblasts that form root hair cells and atrichoblasts that form non-hair cells. Mutations affecting both the patterning and the morphogenesis of cells in both shoot and root epidermis have recently been described. Most of these mutations affect development in a single epidermis, but at least one, ttg, is involved in development in both epidermal systems.  相似文献   

2.
Scales of lizards contain beta-keratin of poorly known composition. In the present study, a rat polyclonal serum against a lizard beta-keratin of 14-15 kDa has been produced and the relative protein has been immunolocalized in the epidermis. The observations for the first time show that the isolated protein band derives from the extraction of a protein component of the beta-keratin filaments of lizard epidermis. In immunoblots and immunocytochemistry, the antiserum recognizes most lizard beta-keratins, but produces a variable cross-reactivity with snake beta-keratins, and weak or no reactivity with beta-keratins isolated from tuatara, turtles, alligator and birds. In bidimensional immunoblots of lizard epidermis, three main spots at 15-16 kDa with isoelectric point at 7.0, 7.6 and 8.0, and an unresolved large spot at 29-30 kDa and with pI at 7.5-8.0, are obtained, may be derived from the aggregation of smaller beta-keratin proteins. The ultrastructural immunolocalization with the antibody against lizard beta-keratin shows that only small and large beta-keratin filaments of beta-cells of lizard epidermis are labeled. Keratin bundles in oberhautchen cells are less immunolabeled. Beta-keratin is rapidly polymerized into beta-packets that merge into larger beta-keratin filaments. No labeling is present over other cell organelles or cell layers of lizard epidermis, and is absent in non-epidermal cells. The antiserum recognizes epitope(s) characteristics for lizard beta-keratins, partially recognized in snakes and absent in non-lepidosaurian species. This result indicates that beta-keratins among different reptilian groups posses different immunoreactive regions.  相似文献   

3.
The development of leaves on apically stable, periclinal chimeras was studied in a number of dicot genera. The mutant cell layers of the shoot apex and the tissues derived from them were as active developmentally as the normal layers. Ontogeny was the same in these chimeras as in nonchimeras, and growth of their leaves can be outlined as follows. Formation of the buttress, the axis, and the lamina of simple dicot leaves were independent events. In each the first growth included derivatives of the apical layers, usually three in number, found in the apex of the shoot and the lateral buds. Most cell divisions in the outer layers (L-I and L-II) were anticlinal relative to the new structures. Therefore, in the proximal regions of the buttress, axis (petiole and midrib), and lamina, the derivative cells of L-I and L-II were usually present in single layers. The rest of the internal tissue was from L-III. As formation of the axis and the lamina proceeded, derivatives of L-II replaced L-III internally in the distal and marginal regions leaving cells of L-III behind. Both the determinate growth of leaves and the pattern of cell divisions at and near the leading edges of growth meant that no cells in the leaf were comparable to the initial cells of the shoot apex. As the lamina extended, there were extensive intercalary cell divisions, both anticlinal and periclinal, so that in any given region of a leaf the layers of internal cells were from either L-II or L-III. At any point along the axis, L-III participated or did not participate in laminar extension. At any given stage in laminar growth either of two sister cells in any internal layer divided either a few times or extensively. The extreme variability in direction and frequency of cell division during leaf development was under an overriding genetic control, which resulted in the normal or typical size, shape and thickness of leaves.  相似文献   

4.
Spectinomycin, an inhibitor of plastid protein synthesis, can be used to mark specific cell layers in the shoot meristem of Brassica napus. Pale yellow-green (YG) plants resulting from spectinomycin-treatment can be propagated indefinitely in vitro. Microscopic examination showed that YG-plants result from inactivation of plastids in the L2 and L3 layers and are composed of a pale green epidermis covering a white mesophyll layer. Epidermal cells of YG and normal green plants are similar and contain 10-20 small pale green plastids. YG plants are equivalent to periclinal chimeras with the important distinction that there is no genotypic difference between the white and green cell layers. Periclinal divisions of epidermal cells take place at all stages of leaf development to produce invaginations of green mesophyll located in sectors of widely varying sizes. A periclinal division rate of 1 in 3000-4000 anticlinal divisions for the adaxial epidermis, was 2-3-fold higher than that estimated for the abaxial epidermis. Analysis of white and green mesophyll showed that chloroplasts are essential for palisade cell differentiation and this requirement is cell-autonomous. Stable marking of cell lineages with spectinomycin is simple, rapid and reveals the requirement for functional plastids in cellular differentiation.  相似文献   

5.
Summary The anatomy and morphology of bud regeneration were investigated in melon (Cucumis melo L.) cv. Galia, which regenerates in vitro only by direct organogenesis from the cotyledon explant. Explants were cut from the cotyledon proximal to the apex from 3-d-old in vitro seedlings. After 3 d on Murashige and Skoog medium with N6-benzyladenine, cell division can be observed in the epidermal layer on the adaxial side in the center of the explant, near the most proximal (wounded) cut edge. Over the next week, the area of the meristem increases laterally. Additional cell layers are added to the meristematic area by cell division in the epidermis. In places the epidermis remains active in cell division. Alongside those active areas there are zones where the epidermis has become inactive, although the subepidermal layers continue to divide. In transverse section, the explant now has small protuberances on the adaxial surface. After 10 d on cytokinin-containing medium, the first signs of development are visible on the adaxial surface adjacent to the proximal cut edge. The protuberances observed after 10 d are neither primordia nor buds, although some meristematic bulges are observed. The first regenerated shoot buds are observed histologically after 15 d, by which time the surface has many protuberances and some small leaves. The first shoot is found by histology after 22 d. By this time the surface is covered with protrusions and leaves, mostly without accompanying buds. The leaves may be produced from the protrusions initially visible after 10 d.  相似文献   

6.
It is generally believed that cell elongation is regulated by cortical microtubules, which guide the movement of cellulose synthase complexes as they secrete cellulose microfibrils into the periplasmic space. Transversely oriented microtubules are predicted to direct the deposition of a parallel array of microfibrils, thus generating a mechanically anisotropic cell wall that will favor elongation and prevent radial swelling. Thus far, support for this model has been most convincingly demonstrated in filamentous algae. We found that in etiolated Arabidopsis thaliana hypocotyls, microtubules and cellulose synthase trajectories are transversely oriented on the outer surface of the epidermis for only a short period during growth and that anisotropic growth continues after this transverse organization is lost. Our data support previous findings that the outer epidermal wall is polylamellate in structure, with little or no anisotropy. By contrast, we observed perfectly transverse microtubules and microfibrils at the inner face of the epidermis during all stages of cell expansion. Experimental perturbation of cortical microtubule organization preferentially at the inner face led to increased radial swelling. Our study highlights the previously underestimated complexity of cortical microtubule organization in the shoot epidermis and underscores a role for the inner tissues in the regulation of growth anisotropy.  相似文献   

7.
Summary Adventitious shoots were induced on the proximal portion of leaves excised from Fagus orientalis shoot cultures derived from a 2-mo.-old or a 4-yr-old seedling. Up to 90% of the explants formed between 13 and 19 buds after culture on Woody Plant Medium containing 2.9 μM indole-3-acetic acid and 4.5 μM thidiazuron. Adventitious buds developed mostly on petiole stub callus, but also on the midvein. The histological events leading to shoot organogenesis were examined. Some shoots developed directly from subepidermis or epidermis, but most originated indirectly from cell file proliferation produced by periclinally dividing cells subadjacent to the epidermis. Some cells in the outermost layers of these files became meristematic and divided extensively, resulting in the formation of meristemoids after 16 d of culture. Dedifferentiation into meristematic cells, which exhibited a large, prominent nucleus, densely-stained cytoplasm, and a high nucleus-to-cell area ratio, was generally associated with anticlinal divisions in cells previously originated by periclinal division. Subepidermal cell proliferation occurred mainly in the abaxial surface of the explant, which initially formed a diffuse cambium and later evolved to a phellogenic cambium. Some meristemoids were also differentiated by lenticel phellogen. Organized cell divisions in meristemoids gave rise to bud primordia that emerged from the explant surface and differentiated a protoderm. The progressive structural differentiation of the apical meristem, leaf primordia, and procambial strands led, after about 28 d of culture, to shoots with vascular connections with treachery elements previously differentiated in adjacent tissues.  相似文献   

8.
Periclinal chloroplast chimeras are genetic mosaics which possess shoot apices composed of one or more chlorophyll-deficient histogens and can exist as a series of arrangements of normal and mutant layers (A-B-B, A-B-A, etc.). Three periclinal chimeral cultivars of Sansevieria trifasciata L., each of which possesses normal green cell layer(s) but a genetically different chlorophyll-deficient cell layer(s), were utilized to study the effect of genotype on the ability of the cell layers of leaf cuttings and of cultured leaf tissue to regenerate shoots. The epidermis and LI derivatives were apparently incapable of shoot regeneration via leaf cutting, yet in two cultivars produced some shoots in vitro. In two of the cultivars, the chlorophyll-deficient cells never produced shoots. In the third, the capability of chlorophyll-deficient cell layers to produce shoots was less in vitro than in vivo, indicating that when determining morphogenic potential, direct comparisons between in vitro and in vivo systems may not be valid. Results also demonstrate that because genetically different albino cell layers can differ in their morphogenic response, utilizing a series of periclinal chimeras is useful only if the series is composed of the same two genotypes.  相似文献   

9.
Acid phosphatase, non-specific esterase, alkaline phosphatase, monoamine oxidase and true lipase activities, in the epidermis of Natrix piscator in different stages of the sloughing cycle, have been localized using various histochemical techniques.
Different layers in scale epidermis have staining properties similar to corresponding layers in hinge epidermis.
Acid phosphatase and non-specific esterase activity in cell layers undergoing keratinization, and the lacunar tissue undergoing disintegration are associated with hydrolytic and catabolic wasting processes involving cell death. The activity of these enzymes in the clear layer is associated with the breaking down of the cementing substance resulting in the separation of clear layer from underlying tissue and facilitating the shedding of old slough.
Alkaline phosphatase activity in the stratum germinativum and undifferentiated epidermal cells has been associated with cell proliferation and differentiation. The presence of alkaline phosphatase in the lacunar tissue and clear layer has been correlated with the synthesis of mucopolysaccharides in these layers.
Monoamine oxidase and true lipase activity could not be located in the epidermis at any stage of the sloughing cycle.  相似文献   

10.
Plant organ growth is controlled by inter-cell-layer communication, which thus determines the overall size of the organism. The epidermal layer interfaces with the environment and participates in both driving and restricting growth via inter-cell-layer communication. However, it remains unknown whether the epidermis can send signals to internal tissue to limit cell proliferation in determinate growth. Very-long-chain fatty acids (VLCFAs) are synthesized in the epidermis and used in the formation of cuticular wax. Here we found that VLCFA synthesis in the epidermis is essential for proper development of Arabidopsis thaliana. Wild-type plants treated with a VLCFA synthesis inhibitor and pasticcino mutants with defects in VLCFA synthesis exhibited overproliferation of cells in the vasculature or in the rib zone of shoot apices. The decrease of VLCFA content increased the expression of IPT3, a key determinant of cytokinin biosynthesis in the vasculature, and, indeed, elevated cytokinin levels. These phenotypes were suppressed in ipt3;5;7 triple mutants, and also by vasculature-specific expression of cytokinin oxidase, which degrades active forms of cytokinin. Our results imply that VLCFA synthesis in the epidermis is required to suppress cytokinin biosynthesis in the vasculature, thus fine-tuning cell division activity in internal tissue, and therefore that shoot growth is controlled by the interaction between the surface (epidermis) and the axis (vasculature) of the plant body.  相似文献   

11.
12.
Many higher plants have shoot apical meristems that possess discrete cell layers, only one of which normally gives rise to gametes following the transition from vegetative meristem to floral meristem. Consequently, when mutations occur in the meristems of sexually reproducing plants, they may or may not have an evolutionary impact, depending on the apical layer in which they reside. In order to determine whether developmentally sequestered mutations could be released by herbivory (i.e., meristem destruction), a characterized genetic mosaic was subjected to simulated herbivory. Many plants develop two shoot meristems in the leaf axils of some nodes, here referred to as the primary and secondary axillary meristems. Destruction of the terminal and primary axillary meristems led to the outgrowth of secondary axillary meristems. Seed derived from secondary axillary meristems was not always descended from the second apical cell layer of the terminal shoot meristem as is expected for terminal and primary shoot meristems. Vegetative and reproductive analysis indicated that secondary meristems did not maintain the same order of cell layers present in the terminal shoot meristem. In secondary meristems reproductively sequestered cell layers possessing mutant cells can be repositioned into gamete-forming cell layers, thereby adding mutant genes into the gene pool. Herbivores feeding on shoot tips may influence plant evolution by causing the outgrowth of secondary axillary meristems.  相似文献   

13.
The developmental anatomy of apically stable periclinal chloroplast chimeras was studied in a number of monocotyledonous genera. Their ontogeny is basically similar to that of dicotyledons. In both there are three independent apical layers (L-I, L-II, and L-III) whose derivatives can be traced in stem, leaf and flower. The bulk of the stem tissue is derived from L-III with only the epidermis and one or two hypodermal cell layers from L-I and L-II. All three layers participate in formation of the leaf with great flexibility in the amount of tissue from each. There is more instability in growth of most monocotyledonous leaves than in dicotyledonous leaves. As a result there is relatively more tissue derived from L-I and L-II and less from L-III. The same is true in floral development so that a significant number of gametes are of L-I origin. As in dicotyledons, there is variation in direction, timing, and frequency of cell division. However, an overriding genetic control results in normal size, shape, and structure. The evidence from genetic and cytochimeras in both monocotyledons and dicotyledons has provided direct experimental proof of the functional reality of the apical layers described by Hanstein and Schmidt.  相似文献   

14.
The Arabidopsis thaliana genome contains hundreds of genes essential for seed development. Because null mutations in these genes cause embryo lethality, their specific molecular and developmental functions are largely unknown. Here, we identify a role for EMB1611/MEE22 , an essential gene in Arabidopsis, in shoot apical meristem maintenance. EMB1611 encodes a large, novel protein with N-terminal coiled-coil regions and two putative transmembrane domains. We show that the partial loss-of-function emb1611-2 mutation causes a range of pleiotropic developmental phenotypes, most dramatically a progressive loss of shoot apical meristem function that causes premature meristem termination. emb1611-2 plants display disorganization of the shoot meristem cell layers early in development, and an associated stem cell fate change to an organogenic identity. Genetic and molecular analysis indicates that EMB1611 is required for maintenance of the CLV-WUS stem cell regulatory pathway in the shoot meristem, but also has WUS -independent activity. In addition, emb1611-2 plants have reduced shoot and root growth, and their rosette leaves form trichomes with extra branches, a defect we associate with an increase in endoreduplication. Our data indicate that EMB1611 functions to maintain cells, particularly those in the shoot meristem, roots and developing rosette leaves, in a proliferative or uncommitted state.  相似文献   

15.
The occurrence of extended tight junction (TJ) structures, including zonulae occludentes (ZO), and the spatial arrangement of TJ proteins in stratified mammalian epithelia has long been controversially discussed. Therefore, we have systematically examined the localization of TJ proteins in diverse stratified epithelial tissues (e.g., epidermis, heel pad, snout, gingiva, tongue, esophagus, exocervix, vagina, urothelium, cornea) of various species (human, bovine, rodents) as well as in human cell culture lines derived from stratified epithelia, by electron microscopy as well as by immunocytochemistry at both the light and the electron microscopic level, using antibodies to TJ proteins such as occludin, claudins 1 and 4, protein ZO-1, cingulin and symplekin. We have found an unexpected diversity of TJ-related structures of which only those showing colocalization with the most restricted transmembrane TJ marker protein, occludin, are presented here. While in epidermis and urothelium occludin is restricted to the uppermost living cell layer, TJ-related junctions are abundant in the upper third or even in the majority of the suprabasal cell layers in other stratified epithelia. Interfollicular epidermis contains, in the stratum granulosum, extended, probably continuous ZO-like structures which can also be traced at least through the Henle cell layer of hair follicles. Similar apical ZO-like structures have been seen in the upper living cell layers of all other stratified epithelia and cell cultures examined, but in most of them we have noticed, in addition, junctional regions showing relatively broad, ribbon-like membrane contacts which in cross-section often appear pentalaminar, with an electron-dense middle lamella ("lamellated TJs", coniunctiones laminosae). In suprabasal layers of several stratified epithelia we have further observed TJ protein-containing junctions of variable sizes which are characterized by a 10-30-nm dense lamina interposed between the two membranes ("sandwich junctions"; iuncturae structae). Moreover, we have often observed variously sized regions in which the intermembrane distance is rather regularly bridged by short rod-like elements ("cross-bridged cell walls"; parietes transtillati), often in close vicinity of TJ-related structures or desmosomes. The significance of these structures and their possible biological importance are discussed.  相似文献   

16.
LYNDON  R. F. 《Annals of botany》1971,35(2):263-270
The rate of cell division and the rate of increase in cell numberwere compared in the epidermis and in the underlying cells ofthe apical dome, the incipient primordium, and the axis of thepea shoot apex. These rates did not coincide in any part ofthe apex, but in the primordium and the apical dome there wasa closer correspondence in the epidermis than in the underlyingcells. This is interpreted as showing that the changing shapeof the apex, during growth of the primordium and the apicaldome, is associated with a tendency to local changes in therate of growth in the epidermis but to a tendency to changesin the direction of growth in the underlying cells.  相似文献   

17.
The uppermost 1-4 mm of 25-mm coleoptiles of oats and wheat have been studied at the optical microscope level, using newer histological methods and sections 1-4 μ thick. The outer epidermal wall, which shows very fine wrinkling, is continuous with the thinner wall of the inner epidermis through the pore. The cells of both epidermal layers have acidophilic cytoplasm with long transvacuolar strands. Both inner and outer epidermis have stomata, those of the outer epidermis having kidney-shaped guard cells like those of dicotyledons. The guard-cell walls are lignified in their inner layers only and are thinly cuticularized. In the vascular bundles the sieve tubes terminate apically about 250 μ below the end of the xylem; the xylem in turn terminates about 400 μ below the extreme apex. A number of clearly undifferentiated cells, with highly basophilic cytoplasm and many mitochondria, separate the xylem elements from the inner epidermis. Towards the outer epidermis there are a few sieve elements, each of which is associated with a special cell having an elongated nucleus supported on fine cytoplasmic strands. The parenchyma of both the tip and the shaft of the coleoptile are generally interpenetrated by air-spaces, but where they are adjacent to the inner epidermis there is heavy interposition of readily stained intercellular material, especially in Triticum. Plastids are widely distributed throughout the tissue, but their greening in light takes place preferentially towards the phloem side of the vascular bundles. The observations are discussed in reference to earlier literature and with regard to the function of the coleoptile as a protecting and guiding organ for the shoot system of the seedling.  相似文献   

18.
The spontaneous development of a cell line of neonatal mouse C3H/He epidermal cells is described. The culture has been serially passaged at 29 °C over 18 months in the absence of any dermal support. The cell morphology of the 18th passage is reported. During early growth phase, the morphology of the cell layers was similar to that observed in the basal and differentiating strata of the epidermis: numerous tonofilament bundles and desmosome-filament complexes were observed. During late growth phase, maturation and vertical stratification occurred: demonstrated by the tonofilament accumulation, cell organelle degradation, nuclear pyknosis, presence of keratohyalin granules and horny cell layers with thickened membranes. Hemidesmosome-like structures were shown. No basal lamina or membrane coating granules were detectable. The 18th passage cultured cells did not induce tumors in nude mice. This keratinocyte cell line is not permanent, however: a malignant transformation occurred after 25 subcultures which resulted in an undifferentiated cell population.  相似文献   

19.
After tail and limb amputation in lizard, injection of 5BrdU for 6 days produces immunolabelled cells in most tissues of tail and limb stumps. After further 8 and 16 days, and 14 and 22 days of regeneration, numerous 5BrdU-labelled cells are detected in regenerating tail and limb, derived from most stump tissues. In tail blastema cone at 14 days, sparse-labelled cells remain in proximal dermis, muscles, cartilaginous tube and external layers of wound epidermis but are numerous in the blastema. In apical regions at 22 days of regeneration, labelled mesenchymal cells are sparse, while the apical wound epidermis contains numerous labelled cells in suprabasal and external layers, indicating cell accumulation from more proximal epidermis. Cell proliferation dilutes the label, and keratinocytes take 8 days to migrate into corneous layers. In healing limbs, labelled cells remain sparse from 14 to 22 days of regeneration in wound epidermis and repairing tissues and little labelling dilution occurs indicating low cell proliferation for local tissue repair but not distal growth. Labelled cells are present in epidermis, intermuscle and peri-nerve connectives, bone periosteum, cartilaginous callus and sparse fibroblasts, leading to the formation of a scarring outgrowth. Resident stem cells and dedifferentiation occur when stump tissues are damaged.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号