首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Chlamydia spp. are strictly intracellular pathogens that grow inside a vacuole, called an inclusion. They possess genes encoding proteins homologous to components of type III secretion machineries, which, in other bacterial pathogens, are involved in delivery of bacterial proteins within or through the membrane of eukaryotic host cells. Inc proteins are chlamydial proteins that are associated with the inclusion membrane and are characterized by the presence of a large hydrophobic domain in their amino acid sequence. To investigate whether Inc proteins and other proteins exhibiting a similar hydropathic profile might be secreted by a type III system, we used a heterologous secretion system. Chimeras were constructed by fusing the N-terminal part of these proteins with a reporter, the Cya protein of Bordetella pertussis, and these were expressed in various strains of Shigella flexneri. We demonstrate that these hybrid proteins are secreted by the type III secretion system of S. flexneri, thereby providing evidence that IncA, IncB and IncC are secreted by a type III mechanism in chlamydiae. Moreover, we show that three other proteins from Chlamydia pneumoniae, all of which have in common the presence of a large hydrophobic domain, are also secreted by S. flexneri type III secretion machinery.  相似文献   

2.
Chlamydia trachomatis is an obligate intracellular pathogen that replicates in a vacuole termed the inclusion. Many of the interactions of chlamydiae with the host cell are dependent upon bacterial protein synthesis and presumably exposure of these proteins to the cytosol. Because of the dearth of genetic tools for chlamydiae, previous studies examining secreted proteins required the use of heterologous bacterial systems. Recent advances in genetic manipulation of chlamydia now allow for transformation of the bacteria with plasmids. We describe here a shuttle vector system, pBOMB4, that permits expression of recombinant proteins under constitutive or conditional promoter control. We show that the inclusion membrane protein IncD is secreted in a type III-dependent manner from Yersinia pseudotuberculosis and also secreted from C. trachomatis in infected cells where it localizes appropriately to the inclusion membrane. IncD truncated of the first 30 amino acids containing the secretion signal is no longer secreted and is retained by the bacteria. Cytosolic exposure of secreted proteins can be confirmed by using CyaA, GSK, or microinjection assays. A protein predicted to be retained within the bacteria, NrdB is indeed localized to the chlamydia. In addition, we have shown that the chlamydial effector protein, CPAF, which is secreted into the host cell cytosol by a Sec-dependent pathway, also accesses the cytosol when expressed from this system. These assays should prove useful to assess the secretion of other chlamydial proteins that are potentially exposed to the cytosol of the host cell.  相似文献   

3.
Chlamydiae are obligate intracellular bacteria, developing inside host cells within chlamydial inclusions. From these inclusions, the chlamydiae secrete proteins into the host cell cytoplasm. A pathway through which secreted proteins can be delivered is the type III secretion system (T3SS). The T3SS is common to several gram-negative bacteria and the secreted proteins serve a variety of functions often related to the modulation of host signalling. To identify new potentially secreted proteins, the cytoplasm was extracted from Chlamydia trachomatis L2-infected HeLa cells, and two-dimensional polyacrylamide gel electrophoresis profiles of [35S]-labelled chlamydial proteins from this extract were compared with profiles of chlamydial proteins from the lysate of infected cells. In this way, CT621 was identified. CT621 is a member of a family of proteins containing a domain of unknown function DUF582 that is only found within the genus Chlamydia . Immunofluorescence microscopy and immunoblotting demonstrated that CT621 is secreted late in the chlamydial developmental cycle and that it is the first chlamydial protein found to be localized within both the host cell cytoplasm and the nucleus. To determine whether CT621 is secreted through the T3SS, an inhibitor of this apparatus was added to the infection medium, resulting in retention of the protein inside the chlamydiae. Hence, the so far uncharacterized CT621 is a new type III secretion effector protein.  相似文献   

4.
The type III secretion (TTS) pathway is used by numerous Gram-negative pathogens to inject virulence factors into eukaryotic cells. In addition to a functional TTS apparatus, secretion of effector proteins depends upon specific chaperones. Using a two-hybrid screen in yeast and a co-purification assay in Shigella flexneri, we demonstrated that Spa15, which is encoded by an operon for components of the TTS apparatus, is associated in the cytoplasm with three proteins that are secreted by the TTS pathway, IpaA, IpgB1 and OspC3. Spa15 was found to be necessary for stability of IpgB1 but not IpaA, and for secretion of IpaA molecules that were stored in the cytoplasm but not those that were synthesized while the secretion apparatus was active. The ability of Spa15 to associate with several non-homologous secreted proteins, the presence of Spa15 homologues in other TTS systems and the location of the corresponding genes within operons for components of the TTS apparatus suggest that Spa15 belongs to a new class of TTS chaperones.  相似文献   

5.
6.
7.
8.
Chlamydia trachomatis is the main cause of sexually transmitted diseases worldwide. As obligate intracellular bacteria Chlamydia replicate in a membrane bound vacuole called inclusion and acquire nutrients for growth and replication from their host cells. However, like all intracellular bacteria, Chlamydia have to prevent eradication by the host's cell autonomous system. The chlamydial deubiquitinase Cdu1 is secreted into the inclusion membrane, facing the host cell cytosol where it deubiquitinates cellular proteins. Here we show that inactivation of Cdu1 causes a growth defect of C. trachomatis in primary cells. Moreover, ubiquitin and several autophagy receptors are recruited to the inclusion membrane of Cdu1‐deficient Chlamydia. Interestingly, the growth defect of cdu1 mutants is not rescued when autophagy is prevented. We find reduced recruitment of Golgi vesicles to the inclusion of Cdu1 mutants indicating that vesicular trafficking is altered in bacteria without active deubiquitinase (DUB). Our work elucidates an important role of Cdu1 in the functional preservation of the chlamydial inclusion surface.  相似文献   

9.
10.
The type III secretion (TTS) system of Gram-negative pathogenic bacteria is composed of proteins that assemble into the TTS machinery, proteins that are secreted by this machinery and specific chaperones that are required for storage and sometimes secretion of these proteins. Many sequential protein interactions are involved in the TTS pathway to deliver effector proteins to host cells. We used the yeast two-hybrid system to investigate the interaction partners of the Shigella flexneri effectors and chaperones. Libraries of preys containing random fusions with fragments of the TTS proteins were screened using effectors and chaperones as baits. Interactions between the effectors IpaB and IpaC and their chaperone IpgC were detected by this method, and interaction domains were identified. Using a His-tagged IpgC protein to co-purify truncated IpaB and IpaC proteins, we showed that the chaperone-binding domain was unique and located in the N-terminus of these proteins. This domain was not required for the secretion of recombinant proteins but was involved in the stability of IpaC and instability of IpaB. Homotypic interactions were identified with the baits IpaA, IpaB and IpaC. Interactions between effectors and components of the TTS machinery were also selected that might give insights into regulation of the TTS process.  相似文献   

11.
Confinement of the obligate intracellular bacterium Chlamydia trachomatis to a membrane-bound vacuole, termed an inclusion, within infected epithelial cells neither prevents secretion of chlamydial antigens into the host cytosol nor protects chlamydiae from innate immune detection. However, the details leading to chlamydial antigen presentation are not clear. By immunoelectron microscopy of infected endometrial epithelial cells and in isolated cell secretory compartments, chlamydial major outer membrane protein (MOMP), lipopolysaccharide (LPS) and the inclusion membrane protein A (IncA) were localized to the endoplasmic reticulum (ER) and co-localized with multiple ER markers, but not with markers of the endosomes, lysosomes, Golgi nor mitochondria. Chlamydial LPS was also co-localized with CD1d in the ER. Since the chlamydial antigens, contained in everted inclusion membrane vesicles, were found within the host cell ER, these data raise additional implications for antigen processing by infected uterine epithelial cells for classical and non-classical T cell antigen presentation.  相似文献   

12.
Glycogen has been localized both inside and outside Chlamydia trachomatis organisms. We now report that C. trachomatis glycogen synthase (GlgA) was detected in both chlamydial organism-associated and -free forms. The organism-free GlgA molecules were localized both in the lumen of chlamydial inclusions and in the cytosol of host cells. The cytosolic GlgA displayed a distribution pattern similar to that of a known C. trachomatis-secreted protease, CPAF. The detection of GlgA was specific since the anti-GlgA antibody labeling was only removed by preabsorption with GlgA but not CPAF fusion proteins. GlgA was detectable at 12h and its localization into host cell cytosol only became apparent at 24h after infection. The cytosolic localization of GlgA was conserved among all C. trachomatis serovars. However, the significance of the GlgA secretion into host cell cytoplasm remains unclear since, while expression of chlamydial GlgA in HeLa cells increased glycogen stores, it did not affect a subsequent infection with C. trachomatis. Similar to several other C. trachomatis-secreted proteins, GlgA is immunogenic in women urogenitally infected with C. trachomatis, suggesting that GlgA is expressed and may be secreted into host cell cytosol during C. trachomatis infection in humans. These findings have provided important information for further understanding C. trachomatis pathogenic mechanisms.  相似文献   

13.
Chlamydiae are obligate intracellular pathogens that proliferate only inside a vacuole, called an inclusion. Chlamydial Inc proteins are known to be a major component of the inclusion membrane, but little is known about the gene number and function. The Inc proteins share very low sequence similarity but a similar hydropathy profile among them. Using the hydropathy profile, we computationally searched the open reading frames (ORFs) having a similar profile and predicted 90 and 36 ORFs (Inc-like ORFs) as candidates for Inc proteins in Chlamydia pneumoniae J138 and Chlamydia trachomatis serovar D, respectively. On the other hand, only a few Inc-like ORFs were found in organisms other than chlamydiae, suggesting that the Inc-like ORFs are specific to chlamydiae. Comparative genome analysis also revealed that the Inc-like ORFs have multiplied and diverged as paralogues and orthologues in the chlamydial genomes, and that some Inc-like ORFs lacked the N-terminal portion or encoded the split form. The data suggest that these gene products constitute a large protein family and may play an important role in chlamydial infection, growth and survival in the host cell.  相似文献   

14.
【背景】沙眼衣原体(Chlamydia trachomatis,Ct)的分泌蛋白在Ct与宿主细胞的相互作用、感染发育周期及致病过程中发挥着至关重要的作用。GlgA蛋白是课题组前期研究发现的一种新的Ct分泌蛋白,其表达和分泌的具体机制及作用还不清楚。【目的】寻找调控CtGlgA蛋白表达和分泌的分子机制,为后续Ct致病机制研究提供实验基础和新思路。【方法】采用Signal P 4.1软件对GlgA蛋白N端进行信号肽预测分析,并用细菌分泌蛋白特异性阻断剂C16和C1化合物分别或同时处理Ct感染的He La细胞,观察阻断Ⅱ型、Ⅲ型分泌途径对GlgA蛋白分泌的影响;经新生霉素处理、噬斑筛选及穿梭质粒转染技术,构建Ct质粒缺失株和缺失互补株,并鉴定质粒编码基因在两种菌株的缺失及表达情况;间接免疫荧光法观察质粒缺失对GlgA表达和分泌的影响。【结果】GlgA蛋白N端无信号肽序列,细菌Ⅱ型、Ⅲ型分泌途径特异性阻断剂C16和C1化合物不能阻断GlgA的胞浆分泌;Ct质粒缺失株CTD1的质粒编码基因pgp7丢失,且质粒编码蛋白Pgp3及基因组编码蛋白GlgA的表达和分泌现象均消失;Ct缺失互补株CTD1-pGFP::SW2重新获得pgp7基因,并恢复Pgp3蛋白和GlgA的表达和分泌。【结论】初步证实Ct糖原合酶GlgA蛋白的表达和分泌不依赖细菌Ⅱ型和Ⅲ型分泌途径,而且与衣原体质粒密切相关。  相似文献   

15.
Shigella possess 220 kb plasmid, and the major virulence determinants, called effectors, and the type III secretion system (TTSS) are exclusively encoded by the plasmid. The genome sequences of S. flexneri strains indicate that several ipaH family genes are located on both the plasmid and the chromosome, but whether their chromosomal IpaH cognates can be secreted from Shigella remains unknown. Here we report that S. flexneri strain, YSH6000 encodes seven ipaH cognate genes on the chromosome and that the IpaH proteins are secreted via the TTSS. The secretion kinetics of IpaH proteins by bacteria, however, showed delay compared with those of IpaB, IpaC and IpaD. Expression of the each mRNA of ipaH in Shigella was increased after bacterial entry into epithelial cells, and the IpaH proteins were secreted by intracellular bacteria. Although individual chromosomal ipaH deletion mutants showed no appreciable changes in the pathogenesis in a mouse pulmonary infection model, the DeltaipaH-null mutant, whose chromosome lacks all ipaH genes, was attenuated to mice lethality. Indeed, the histological examination for mouse lungs infected with the DeltaipaH-null showed a greater inflammatory response than induced by wild-type Shigella, suggesting that the chromosomal IpaH proteins act synergistically as effectors to modulate the host inflammatory responses.  相似文献   

16.
Genome and proteome analysis of Chlamydia   总被引:2,自引:0,他引:2  
  相似文献   

17.
Invasion of epithelial cells by Shigella flexneri involves entry and intercellular dissemination. Entry of bacteria into non-phagocytic cells requires the IpaA-D proteins that are secreted by the Mxi-Spa type III secretion machinery. Type III secretion systems are found in several Gram-negative pathogens and serve to inject bacterial effector proteins directly into the cytoplasm of host cells. In this study, we have analysed the IpgD protein of S. flexneri, the gene of which is located on the virulence plasmid at the 5' end of the mxi-spa locus. We have shown that IpgD (i) is stored in the bacterial cytoplasm in association with a specific chaperone, IpgE; (ii) is secreted by the Mxi-Spa type III secretion system in amounts similar to those of the IpaA-D proteins; (iii) is associated with IpaA in the extracellular medium; and (iv) is involved in the modulation of the host cell response after contact of the bacterium with epithelial cells. This suggests that IpgD is an effector that might be injected into host cells to manipulate cellular processes during infection.  相似文献   

18.
The Gram-negative plant pathogenic bacterium Xanthomonas campestris pv. vesicatoria translocates effector proteins via a specialized type III secretion (TTS) system into the host cell cytosol. The efficient secretion of many effector proteins depends on the global TTS chaperone HpaB. Here, we identified a novel export control protein, HpaC, which significantly contributes to bacterial pathogenicity. Deletion of hpaC leads to a severe reduction in secretion of effector proteins and the putative type III translocon proteins HrpF and XopA. By contrast, secretion of the TTS pilus protein HrpE is not affected. We provide experimental evidence that HpaC differentiates between two classes of effector proteins. Using an in vivo reporter assay, we found that HpaC specifically promotes the translocation of the effector proteins XopJ and XopF1 into the plant cell, whereas AvrBs3 and XopC are efficiently translocated even in the absence of HpaC. Similar findings were obtained for HpaB. Inhibition of protein synthesis suggests that HpaB is involved in the secretion of stored effector proteins. Furthermore, protein-protein interaction studies revealed that HpaB and HpaC form an oligomeric protein complex and that they interact with members of both effector protein classes and the conserved TTS system component HrcV. Taken together, our data indicate that HpaB and HpaC play a central role in recruiting TTS substrates to the secretion apparatus.  相似文献   

19.
20.
Our understanding of how obligate intracellular pathogens co-opt eukaryotic cellular functions has been limited by their intractability to genetic manipulation and by the abundance of pathogen-specific genes with no known functional homologues. In this report we describe a gene expression system to characterize proteins of unknown function from the obligate intracellular bacterial pathogen Chlamydia trachomatis. We have devised a homologous recombination-based cloning strategy to construct an ordered array of Saccharomyces cerevisiae strains expressing all Chlamydia-specific genes. These strains were screened to identify chlamydial proteins that impaired various yeast cellular functions or that displayed tropism towards eukaryotic organelles. In addition, to identify bacterial factors that are secreted into the host cell, recombinant chlamydial proteins were screened for reactivity towards antisera raised against vacuolar membranes purified from infected mammalian cells. We report the identification of 34 C. trachomatis proteins that impact yeast cellular functions or are tropic for a range of eukaryotic organelles including mitochondria, nucleus and cytoplasmic lipid droplets, and a new family of Chlamydia-specific proteins that are exported from the parasitopherous vacuole. The versatility of molecular manipulations and protein expression in yeast allows for the rapid construction of comprehensive protein expression arrays to explore the function of pathogen-specific gene products from microorganisms that are difficult to genetically manipulate, grow in culture or too dangerous for routine analysis in the laboratory.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号