首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
J N Lucas  J W Gray 《Cytometry》1987,8(3):273-279
We have applied slit-scan flow cytometry (SSFCM) to classify human chromosomes according to their centromeric index (CI) and relative DNA content. The resulting bivariate--CI vs. DNA content--distributions shows 14 peaks for normal human chromosomes. Distinct peaks are produced by chromosomes 1, 2, 3, 4 + 5, 6 + 7 + X, 8, 13 + 14 + 15, 16, 17 + 18, 19 + 20, and 21 + 22 + Y. In addition, chromosomes 9 through 12 are resolved into three peaks. The identity of the chromosomes comprising each peak was determined by comparing CI vs. DNA content distributions measured for normal human chromosomes by means of SSFCM with CI and DNA content values measured for human chromosomes with image analysis. The accuracy of CI measurement by SSFCM was verified by measuring CIs for human chromosomes isolated from human/rodent hybrid cell lines containing only a few known human chromosomes. These studies showed CIs measured for human chromosomes 1-19 and 21 to be in close agreement with the CIs calculated by means of image analysis. We further confirmed the chromosome assignments for each peak by showing that the relative volumes of the peaks in the CI vs. DNA content distributions for chromosomes from normal cells are similar to the relative frequencies of chromosomes expected for these peaks based on the peak assignments.  相似文献   

2.
Flow cytometry analysis was applied to swine chromosomes prepared from phytohemagglutinin (PHA) stimulated peripheral blood lymphocytes. Flow karyotypes from both sexes and from t(3;7) translocation carrier females were obtained. A certain number of chromosome pairs could be assigned to various peaks. In fact, 13 peaks were observed for 18 autosomal pairs plus X and Y. Moreover, abnormalities owing to the t(3;7) translocation were readily observable. The number of base pairs for chromosomes associated with the various peaks was estimated by comparison with human flow karyotypes. The following four peaks were thus sorted: the peak assumed to represent the translocated chromosome 7 plus the normals associated with it; the corresponding peak from a normal swine; the peak assumed to contain among others the normal chromosome 7; and finally the peak corresponding to swine chromosome 1. Chromosomes of each peak were collected on Pall Biodyne membrane. Following appropriate denaturation and prehybridization, the four samples were hybridized with a human leucocyte antigen (HLA) class I 32P-labelled cDNA probe, representing most of the coding sequence of the HLA B7 gene. The results confirmed previous data from other techniques that assigned the swine MHC(SLA) to chromosome 7. Subsequently, sorted samples were hybridized with a porcine genomic Interferon alpha probe in order to confirm the mapping of this gene family on porcine chromosome 1.  相似文献   

3.
Human and swine chromosomes were analyzed separately and as a mix to obtain bivariate flow karyotypes. They were normalized to each other in order to use the human chromosomal DNA content as standard. Our results led to the characterization of the "DNA line" in swine identical to the human "DNA line." Estimation of the DNA content in mega-base pairs of the swine chromosomes is proposed. Chromosomal assignment to the various resolved peaks on the bivariate swine flow karyotype is suggested from the relation between DNA content quantified by flow cytometry and chromosomal size. Swine chromosomes 1, 13, 6, 5, 10, 16, 11, 18, and Y were assigned to peaks A, B, C, K, L, N, O, Q, and Y, respectively. Peaks D and E were assumed to contain chromosomes 2 and 14, but without specific assignment. Similarly, P and M peaks were expected to correspond to chromosomes 12 and 17. Of the remaining chromosomes (3, 7, X, 8, 15, 9, and 4), chromosomes 3, 7, and X, which were assigned previously to peaks F, G, and H, respectively, led us to deduce that chromosomes 15 and 8 belonged to peaks I and J, and chromosomes 9, 4, and X to peak H.  相似文献   

4.
Aneuploidies involving chromosomes 21, 18, 13, X and Y account for over 95% of all chromosomal abnormalities in live-born infants. Prenatal diagnosis of these disorders is usually accomplished by cytogenetic analysis of amniotic or chorionic cells but this is a lengthy procedure requiring great technical expertise.In this paper, we assess the diagnostic value of using a quantitative fluorescent polymerase chain reaction (PCR) suitable for the simultaneous and rapid diagnosis of trisomies 21 and 18 together with the detection of DNA sequences derived from the X and Y chromosomes. Samples of DNA, extracted from amniotic fluid, fetal blood or tissues, and peripheral blood from normal adults were investigated by quantitative fluorescent PCR amplification of polymorphic small tandem repeats (STRs) specific for two loci on each of chromosomes 21 and 18. Quantitative analysis of the amplification products allowed the diagnosis of trisomies 21 and 18, while sexing was performed simultaneously using PCR amplification of DNA sequences derived from the chromosomes X and Y. These results indicate the advantages of using two sets of STR markers for the detection of chromosome 21 trisomies and confirmed the usefulness of quantitative fluorescent multiplex PCR for the rapid prenatal diagnosis of selected chromosomal abnormalities. Received: 23 January 1996 / Revised: 21 February 1996  相似文献   

5.
This paper describes the application of bivariate flow karyotyping to (1) classification of chromosomes isolated from cultures of cells taken by amniocentesis and (2) detection of numerical and structural aberrations. Chromosomes were isolated from primary cultures 2-5 wk after amniocentesis, stained with Hoechst 33258 and chromomycin A3, and analyzed using dual beam flow cytometry. Information about chromosome DNA content and DNA base composition was derived from the locations of the peaks in the flow karyotypes, each peak being produced by one or more chromosome types with similar DNA content and DNA base composition. Information about the relative frequency of each chromosome type was determined on the basis of the relative volume of the peak for that chromosome type. Cytogenetic information determined on the basis of flow karyotypes was compared with that obtained by visual analysis following G-banding. Variability among the peak means and volumes in flow karyotypes was determined from analyses of 50 normal amniocyte cultures. Numerical aberrations involving chromosomes 21, 18, and Y were detected correctly in all of 28 analyses, including eight in a blind study. Structural aberrations involving chromosomes 1, 2, 3, 6, 9-12, 13, 14, 15, 21, and 22 were detected in all of seven cultures in a blind study. Flow karyotypes proved to be insensitive to small, normally occurring chromosome polymorphisms detected by banding analysis. In addition, a few samples were erroneously scored as having numerical aberrations.  相似文献   

6.
To establish the chromosomal location of the human ACHE gene encoding the acetylcholine hydrolyzing enzyme acetylcholinesterase (ACHE, acetylcholine acetylhydrolase, E.C. 3.1.1.7), a human-specific polymerase chain reaction (PCR) procedure that supports the selective amplification of ACHE DNA fragments from human genomic DNA was employed with 19 human-hamster somatic cell hybrids carrying one or more human chromosomes. Informative ACHE-specific PCR fragments were produced from two cell lines, both of which include human chromosome 7, but not with DNA from 17 cell hybrids carrying various combinations of all human chromosomes other than 7. Fluorescent in situ hybridization of biotinylated ACHE DNA with metaphase chromosomes from human peripheral blood lymphocytes revealed prominent labeling on the 7q22 position. Therefore, further tests were performed to confirm the chromosome 7 location. DNA samples from the two cell lines including chromosome 7 and the ACHE gene were positive with PCR primers informative for the human cystic fibrosis CFTR gene, known to reside at the 7q31.1 position, but negative for the ACHE-related butyrylcholinesterase (BCHE, acylcholine acylhydrolase, E.C. 3.1.1.8) gene, mapped at the 3q26-ter position, confirming that these lines contain chromosome 7 but not chromosome 3. In contrast, three other cell lines including chromosome 3, but not 7, were BCHE-positive and ACHE-negative. In addition, genomic DNA from a sorted chromosome 7 library supported the production of ACHE- but not BCHE-specific PCR products, whereas with DNA from a sorted chromosome 3 library, the BCHE but not the ACHE fragment was amplified.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
Quantification of the Hoechst and chromomycin A3 fluorescence intensities of mitotic human chromosomes isolated from karyotypically normal and abnormal cells was performed with a dual beam flow cytometer. The resultant flow karyotypes contain information about the relative DNA content and base composition of chromosomes and their relative frequencies in the mitotic cell sample. The relative copy number of X and Y chromosomes was determined for 38 normal males and females and 6 cell lines with X or Y chromosome aneuploidy. Flow karyotype diagnoses corresponded with conventional cytogenetic results in all cases. We show that chromosome DNA content can be derived from peak position in Hoechst vs. chromomycin flow karyotypes. These values are linearly related to propidium iodide staining intensity as measured with flow cytometry and to the binding of gallocyanin chrome alum to phosphate groups as measured with slide-based scanning photometry. Cell lines with deleted or dicentric X chromosomes ranging in length from 0.53 to 1.95 times normal were analyzed by using flow cytometry. The measured difference in DNA content between a normal X and each of the structurally abnormal chromosomes was linearly correlated to the difference predicted from cytogenetics and/or probe analyses. Deletions of 3-5 Mb, which were at and below the detection limits of conventional cytogenetics, could be quantified by flow karyotyping in individuals with X-linked diseases such as Duchenne muscular dystrophy, choroideremia, and ocular albinism/ichthyosis. The results show that the use of flow karyotyping to quantify the size of restricted regions of the genome can complement conventional cytogenetics and other physical mapping techniques in the study of genetic disorders.  相似文献   

8.
Flow cytometric chromosome sorting typically relies upon dual-laser, bivariate analysis after staining with two different base pair-specific dyes for resolution of chromosomes with similar DNA content. The availability of FITC-conjugated antibodies offers the possibility of single-laser bivariate analysis when combined with propidium iodide (PI) DNA staining, but requires exploitable antigenic differences between chromosomes of interest. A technique was developed for indirect immunofluorescent anti-kinetochore staining of Indian muntjac chromosomes in suspension. Primary antibody binding within permeabilized whole cells minimized centrifugation-induced loss of chromosomal integrity. Subsequent FITC-conjugated second antibody binding was not affected by concurrent PI-counterstaining. Anti-kinetochore staining facilitated resolution of chromosomes No. 2 and X, which formed a doublet peak upon univariate DNA content analysis, as well as recognition of the Y2 peak which was indistinguishable from debris by univariate analysis. The technique allowed greater than 90% purification of each Indian muntjac chromosome.  相似文献   

9.
A qualitative study is presented of chromosomal rearrangements induced in peripheral blood lymphocytes of Macaca fascicularis, after exposure to gamma-irradiation at 2 Gy and 3 Gy. The use of a new diagrammatic representation allowed us to compare, for each type of rearrangement, the distribution of the observed break-points with the theoretical random distribution. It was concluded that chromosomal mutagenesis does not occur at random: an excess of involvement of small chromosomes is found for dicentrics and reciprocal translocations; an excess of telomeric breaks exists in dicentrics and paracentric inversions. In our sample of 27 pericentric inversions, the larger chromosomes are too frequently involved, 2 different inversions are observed at least twice and 7 (or 8) reproduce chromosomes of other primates.  相似文献   

10.
A spontaneous BALB/c B lymphocyte leukemia could be stimulated in vitro by the polyclonal B cell activator lipopolysaccharide (LPS) and the conditions for activation were studied. Spleen cells or peripheral blood lymphocytes from tumor-bearing animals responded by increased DNA synthesis and the peak of activation occurred earlier than with normal mouse spleen cells. Tumor cells harvested from the spleen, but not from the peripheral blood, could be induced by LPS to secrete IgM. Direct demonstration that the response was due to tumor cell activation and not that of contaminating normal B lymphocytes was provided by karyotype analysis and by immunoprecipitation, which showed the restriction of light chains on secreted IgM molecules to the lambda isotype.  相似文献   

11.
Group C adenovirus DNA sequences in human lymphoid cells.   总被引:19,自引:8,他引:11       下载免费PDF全文
Human peripheral blood lymphocytes from healthy adults, cord blood lymphocytes, and lymphoblastoid cell lines were screened by hybridization for the presence of group C adenovirus DNA sequences. In 13 of 17 peripheral blood lymphocyte samples from adults, 1 of 10 cord blood samples, and seven of seven lymphoblastoid cell lines tested, results were positive for Group C adenovirus DNA (adenovirus 1 [Ad1], Ad2, Ad5, or Ad6). About 1 to 2% of the lymphocytes carried 50 to 100 viral genome copies per positive cell, as estimated by in situ hybridization. Infectious virus representing all members of group C were recovered, but cultivation in the presence of adenovirus antibody did not cure the cells of free viral genomes. Viral DNA was found in B, T, and N cells but only in 1 of 10 cord blood samples. The results suggest that group C adenovirus infections in childhood result in the persistence of the viral genome in circulating lymphocytes.  相似文献   

12.
Aberrations and variations in the heterochromatic blocks of chromosomes 1, 9, 16 and Y were found under the influence of mitomycin C in cultured lymphocytes of peripheral human blood. Lymphocytes were cultured during 96 hours, mitomycin C in final concentration of 0.3 mkg/ml was present in the culture during the latest 24 hours of culturing. Different changes in the heterochromatic regions of chromosomes were found in approximately 30% of cells: in 6.3% of cells mitotic chiasmata were indicated. In 9.5% of cells isolocus breaks were observed in heterochromatic region of chromosome 1 in segment 1q11. In the latter case this may be a fragile site detected under the influence of mitomycin C on the lymphocytes.  相似文献   

13.
The distribution of Alu-family DNA repeats (AFRs) in chromosomes of phytohaemagglutinin-stimulated peripheral blood lymphocytes of four normal donors and non-stimulated bone marrow cells of four patients with acute leukemia (ALL and ANLL) was studied by in situ hybridization using DNA of recombinant phage lambda containing multiple inserts of AFR as a probe. Over some chromosome bands (14cen, 16p13, 16cen) from normal donors and from leukemic patients clusters of silver grains were detected. Over other three bands (3q26, 8p11-p12 and 14q24) the clusters were found only in chromosomes from the four acute leukemia patients, and were absent from chromosomes of healthy donors. The results suggest non-random long-range distribution of AFRs in human chromosomes, and somatic variations in the distribution of the repeats.  相似文献   

14.
A derivative Y chromosome was found in a 55-year-old man with Lambert-Eaton paraneoplasic pseudomyastheniform disease. Small testicles, azoospermia were noticed and hormonal level values were as in the Klinefelter syndrome. A 45,X/46,XYp+ mosa?cism was described on peripheral blood lymphocytes. Cytogenetic investigations with R-G-C- and Q-banding have been performed. In situ hybridization with the GMGY 10 DNA probe showed two copies of proximal Yp sequences. Southern blot analyses were performed using the Y DNA probes 27a, 47z, 64a7, 50f2 disclosing specific Yp and Yq sequences from the pseudoautosomal boundary to the Yq proximal portion. The der(Y) has been defined as a dicentric isochromosome for the long arm with one active and one apparently suppressed centromere. The breakpoint leading to the der(Y), has been located in the pairing segment of the Y short arm (i.e. Yp11.32). So the der(Y) was interpreted as a psu dic(Y) (qter-->cen-->p11.32 ::p11.32-->qter). There was thus an almost complete duplication of the Y chromosome.  相似文献   

15.
Summary A number of cell lines, some containing chromosomes with distinctive heteromorphisms, have been flow karyotyped using a single laser flow sorter in an attempt to select those suitable for sorting all human chromosomes individually. Using the non-base-specific DNA stain ethidium bromide, chromosomes 3,4,5, and 6 form individual peaks in practically all normal subjects, while the right combination of heteromorphisms enables chromosomes 1, 2, 8, 9, 13, 16, 17, 18, 19, 20, 21, 22, and Y to be sorted separately. Two male cell lines, one containing a duplication and one a deletion of the X, produce flow karyotypes suitable for sorting chromosomes 7 and 8. The use of numerical chromosome abnormalities to enrich the sex chromosomes and the autosomes 18 and 21 is also illustrated. The DNA stain Hoechst 33258 binds preferentially to AT base pairs. Flow karyotypes produced with this fluorochrome separate some chromosomes not well separated with ethidium bromide. Chromosomes 5, 6, 8, 13, 14, 15, 17, and 20, and Y can be sorted individually with Hoechst 33258 with the right combination of heteromorphisms. Using these techniques, all human chromosomes apart from 10, 11, and 12 have been found as individual flow karyotype peaks, suitable for sorting with a high degree of purity.  相似文献   

16.
To establish the chromosomal location of the human ACHE gene encoding the acetylcholine hydrolyzing enzyme acetylcholinesterase (ACHE, acetylcholine acetylhydrolase, E.C. 3.1.1.7), a human-specific polymerase chain reaction (PCR) procedure that supports the selective amplification of ACHE DNA fragments from human genomic DNA was employed with 19 human-hamster somatic cell hybrids carrying one or more human chromosomes. Informative ACHE-specific PCR fragments were produced from two cell lines, both of which include human chromosome 7, but not with DNA from 17 cell hybrids carrying various combinations of all human chromosomes other than 7. Fluorescent in situ hybridization of biotinylated ACHE DNA with metaphase chromosomes from human peripheral blood lymphocytes revealed prominent labeling on the 7q22 position. Therefore, further tests were performed to confirm the chromosome 7 location. DNA samples from the two cell lines including chromosome 7 and the ACHE gene were positive with PCR primers informative for the human cystic fibrosis CFTR gene, known to reside at the 7q31.1 position, but negative for the ACHE-related butyrylcholinesterase (BCHE, acylcholine acylhydrolase, E.C. 3.1.1.8) gene, mapped at the 3q26-ter position, confirming that these lines contain chromosome 7 but not chromosome 3. In contrast, three other cell lines including chromosome 3, but not 7, were BCHE-positive and ACHE-negative. In addition, genomic DNA from a sorted chromosome 7 library supported the production of ACHE- but not BCHE-specific PCR products, whereas with DNA from a sorted chromosome 3 library, the BCHE but not the ACHE fragment was amplified. These findings assign the human ACHE gene to a single locus on chromosome 7q22 and should assist in establishing linkage between the in vivo amplification of the ACHE gene in ovarian tumors and leukemias and the phenomenon of tumor-related breakage in the long arm of chromosome 7.  相似文献   

17.
In a newborn female, an abnormal karyotype, 46,XX/47,XX,+mar/47,XX,+9, was found associated with several malformations. The marker chromosome was present in 70% of peripheral blood lymphocytes, and its size appeared to be less than half of the smallest chromosomes. Several differential staining methods provided no indication as to its origin.Chromosomes isolated from EBV-immortalized lymphocytes of the patient were fractionated on a FACS-440. The marker was resolved as a sharp peak in the region close to the chromosomal debris: its DNA content seemed to be close to 40% of chromosomes 21 and 22.About 580000 minichromosomes were sorted. In order to optimize cloning conditions, a pilot cloning experiment was performed on a pool of sorted chromosomes 9, 10, 11 and 12.Abbreviations BrdU Bromo-deoxyuridine - CIP Calf Intestinal Alkaline Phosphatase - DAPI 4-6-diamidino-2-phenylindole - EBV Epstein Barr Virus - EtBr Ethidium bromide - FACS Fluorescence-Activated Cell Sorter - GTG Giemsa-Trypsin-Giemsa - KBP Kilobase Pair - MTX Methotrexate - PHA Phytohemagglutinin - PrI Propidium Iodide - RBG Reverse-BrdU-Giemsa  相似文献   

18.
Determination of the DNA content of human chromosomes by flow cytometry   总被引:10,自引:0,他引:10  
The mean relative DNA content of each human chromosome was calculated from flow karyotypes of ethidium bromide-stained chromosomes obtained from healthy, normal individuals. These values were found to correlate closely with previously published data obtained by photometric scanning of stained, fixed chromosomes. Calculations of the normal variation in DNA content of each human chromosome indicated that chromosomes 1, 9, 16, and Y (chromosomes with large centric heterochromatic regions) were the most variable, followed by the acrocentrics, 13, 14, 15, 21, and 22. Chromosomes 2, 3, 18, and 19 were also found to vary significantly in DNA content. Chromosomes from a number of subjects with extreme heteromorphisms were flow karyotyped to obtain an estimate of the extent of variation in DNA content of each chromosome. The greatest difference between extreme variants was found for chromosome 1 (which differed by 0.82% of the total genomic DNA), followed by 16 and 9. The largest Y-chromosome variant was 85.9% bigger than the smallest. The precise karyotype analysis produced by flow cytometry resolved many differences between chromosome homologs, including some that cannot be readily distinguished cytogenetically. The implications of these findings for detection of chromosome abnormalities by flow karyotype analysis are discussed.  相似文献   

19.
We measured the frequency of sister chromatid exchanges (SCEs) in human and mouse peripheral lymphocytes using doses of bromodeoxyuridine (BrdU) ranging from 30 nM to 100 microM (human) and from 10 nM to 10 microM (mouse). Heparinized peripheral blood was obtained from five healthy nonsmokers and from six C57B1/6 male mice. The blood was stimulated with PHA (human) or lipopolysaccharide (LPS, mouse) and grown for the first of two cell cycles in BrdU. Metaphase chromosomes were denatured and exposed to a monoclonal antibody reactive to single-stranded DNA containing BrdU. A second antibody was used to label the first antibody with fluorescein, and propidium iodide was used as a counterstain. Second-division metaphases were thus differentially stained red to indicate DNA content and yellow-green to indicate the presence of BrdU. The results indicate that the baseline SCE frequency in human and mouse peripheral lymphocytes is 3.6 and 2.4 SCEs per cell per generation, and that in the human these frequencies are invariant at the lowest BrdU levels. This suggests that SCEs are an integral part of DNA replication, even in the absence of agents known to induce SCEs. The distribution of SCEs per chromosome was analyzed and found to be Poisson-distributed in all 24 murine cultures and in 25 of 36 human cultures. The distribution of SCEs per chromosome may be due to either species-specific chromosome packaging or to karyotypic differences between the species.  相似文献   

20.
SCE variability in lymphocytes and fibroblasts   总被引:1,自引:1,他引:0  
Summary To determine whether the sister chromatid exchange (SCE) distributions obtained in lymphocytes and fibroblasts from different individuals are comparable, a controlled study was set up. Peripheral blood and skin biopsies were taken on the same day from five individuals living for years under the same environmental conditions. All samples were treated in the same fashion, and the SCEs were scored in 50 metaphases of peripheral blood lymphocytes and of skin fibroblasts in an early and in a late passage. A repeat blood sample was taken from the same five indivuduals 1 year later. Based on the results obtained in this first part of the study, five randomly chosen healthy blood donors were sampled at different times and studied in the same fashion. Each chromosome was identified, and the SCE scores were tabulated per chromosome over 50 metaphases. The statistical analysis consisted of fitting log linear models to these scores and examining the best fit by determining the exceedance probabilities (observed significance level). For lymphocytes, the results indicated that the SCE distributions depended only on the chromosome examined, and not on BrdU-exposure time, individuals, or time of sampling. Treatment with ethyl methane sulfonate (EMS) increased the number of SCEs proportionally on all chromosomes. Analysis of the SCE scores on lymphocytes and fibroblasts of the five individuals and on their low and high passage fibroblast cultures revealed the necessity of including higher order interactions in order to fit a suitable model to the data. Therefore comparison of the SCE scores of lymphocytes with those of fibroblasts or comparison of scores on fibroblasts from different individuals could not be done. In practice, to compare samples or individuals, it suffices to score the SCE on a limited number of chromosomes (e.G., the A group) of 50 metaphases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号