首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
1. A latent form of multicatalytic proteinase (MCP) was purified to apparent homogeneity from white croaker muscle by DEAE-Sephacel, Mono-Q, Sephacryl S-300 and second Mono-Q chromatographies. 2. The enzyme preparation was electrophoretically and immunologically similar to MCP purified from the same source by a different method (Folco et al., 1988b, Archs Biochem. Biophys. 267, 599-605) but showed much lower chymotrypsin- and trypsin-like activities. 3. These activities responded to sodium dodecyl sulphate (SDS), urea and heat treatments in different ways: SDS stimulated both activities, urea stimulated the former and inhibited the latter and heating stimulated the former and did not affect the latter. 4. The stimulation of chymotrypsin-like activity by the three treatments was irreversible. 5. Exposure of MCP to SDS or urea in the absence of substrate rapidly inactivated it, whereas heat activation took place irrespective of the presence of substrate. 6. The stimulating effect of SDS on chymotrypsin-like activity was lost in the presence of urea. 7. These results suggest that the enzyme may be activated by different mechanisms.  相似文献   

2.
Size and shape of the multicatalytic proteinase from rat skeletal muscle   总被引:7,自引:0,他引:7  
The multicatalytic proteinase from rat skeletal muscle, a non-lysosomal high molecular weight enzyme active at neutral to alkaline pH, has been examined in the electron microscope as well as by dynamic laser light scattering. Both methods reveal monodisperse particles. Electron micrographs show a cylinder-shaped complex with a diameter of 11 nm and a length of 16 nm in negatively stained, and a diameter of 9.6 nm and a length of 14.3 nm in freeze-dried, heavy metal replicated specimens. The molecule is composed of four rings or disks.  相似文献   

3.
A high-molecular-weight (Mr 740,000) multicatalytic proteinase (MCP) was purified over 3100-fold from soluble extracts of lobster claw and abdominal muscles. The enzyme was extracted from muscle in a latent state; brief (3 min) heating of an ammonium sulfate fraction (45-65% saturation) at 60 degrees C irreversibly activated the proteinase while denaturing about 55% of the protein. MCP was further purified by chromatography on two sequential arginine-Sepharose columns and a Mono Q column with a yield of 60%. About 1.12 mg MCP was obtained for every 100 g tissue. In addition to [14C]methylcasein, the MCP hydrolyzed synthetic peptide substrates of trypsin and chymotrypsin at pH 7.75. Serine protease inhibitors (diisopropyl fluorophosphate, phenylmethanesulfonyl fluoride, aprotinin, benzamidine, soybean trypsin inhibitor, chloromethyl ketones), leupeptin, antipain, hemin, sulfhydryl-blocking reagents (N-ethylmaleimide, mersalyl acid, p-chloromercurisulfonic acid, iodoacetamide) suppressed activity while Ep-475, a specific inhibitor of cysteine proteinases, had no effect, suggesting the MCP is a serine proteinase with one or more cysteine residues indirectly involved in catalysis. The latent MCP was purified using the same procedure as that for the active form, except that thermal activation was omitted. The elution characteristics of latent MCP from the arginine-Sepharose and Mono Q columns were identical to those of active MCP. Since the purified latent form could still be activated by heating, activation did not involve denaturation of an endogenous inhibitor or substrate. Subunit compositions of both forms were identical in two-dimensional polyacrylamide gels; each was composed of eight polypeptides with molecular weights between 25,000 and 32,500 and a ninth polypeptide with a molecular weight of 41,000. Electron microscopy of negatively stained material showed that each form was a cylinder-shaped particle (approximately 10 x 15 nm) consisting of a stack of four rings with a hollow center; no differences in shape, dimensions, or submolecular structure were observed. These results suggest that activation probably involved small conformational changes rather than covalent modifications or rearrangement of subunits within the complex.  相似文献   

4.
A high molecular mass alkaline proteinase was purified by DEAE-Sepharose and Mono Q chromatography. The mol. wt was estimated to be about 600,000. Under denaturing conditions, the enzyme dissociated into a cluster of subunits with mol. wt ranging from 25,000 to 30,000. The isoelectric point of the enzyme was about pH 7.3. The proteinase was able to hydrolyse N-terminal-blocked 4-methyl-7-coumarylamide substrates for either trypsin- or chymotrypsin-like activity. It was also able to hydrolyse haemoglobin and myosin at temperatures of about 60°C. The activities responded to pH and some chemicals in different ways. The trypsin-like activity was clearly inhibited by several serine protease inhibitors. These results suggest that the enzyme is multicatalytic, having at least two different active sites.  相似文献   

5.
1. Rat skeletal muscle was homogenized in 0.05M-Tris/HCl, pH 8.5, containing 1M-KCl. Myofibrillar proteins were precipitated by addition of (NH4)2SO4 (33% saturation). 2. The alkaline proteolytic activity that was precipitated with the myofibrillar proteins was solubilized with trypsin (conjugated to Sepharose) and further purified by affinity chromatography, ion-exchange chromatography and gel filtration. 3. The purified enzyme migrates as a single band in polyacrylamide-disc electrophoresis, and has optimum hydrolytic activity with azocasein and [14C]haemoglobin as substrates at pH 9.4 and 9.6 respectively. Its apparent molecular weight, as determined by gel filtration on Sephadex G-75, is 30800. 4. The purified alkaline proteinase is strongly inhibited by equimolar amounts of soya-bean trypsin inhibitor and ovomucoid, whereas di-isopropyl phosphorofluoidate and alpha-toluenesulphonyl fluoride have no effect. On the other hand N-ethylmaleimide and p-chloromercuribenzoate have inhibitory effects on the enzyme activity. 5. Bivalent metal ions (Fe2+, Co2+, Zn2+, Mg2+, Mn2+) diminish the proteolytic activity, at 1mM concentrations. Ca2+ ions and the metal-ion-chelating agent EDTA are without effect on enzyme activity. 6. The enzyme is part of the alkaline proteolytic activity that appears to be associated with myofibrillar proteins.  相似文献   

6.
A multicatalytic (high-molecular-weight) proteinase has been purified from eggs of the ascidian Halocynthia roretzi by a procedure including column chromatographies on DEAE-cellulose and hydroxylapatite and gel filtration on Sepharose 6B. The purified enzyme seemed to be homogeneous, as judged by disc-polyacrylamide gel electrophoresis, isoelectrofocusing, sedimentation velocity, and gel filtration. The molecular weight of the enzyme was estimated to be 610,000 by gel filtration. The isoelectric point and the sedimentation coefficient (S20,w) were 6.2 and 22.8S, respectively. The enzyme showed several protein bands with molecular weight ranging from 25,000 to 33,000 on SDS-polyacrylamide gel electrophoresis and a cylindrical or ring-like structure composed of several subunits under the electron microscope, indicating that the enzyme exists as a large molecule consisting of several protein components. The enzyme exhibited chymotrypsin-like and trypsin-like activities whose pH optima were both 7.0. Chymostatin and its analog, calpain inhibitor I, and elastatinal inhibited both activities, whereas leupeptin and antipain only inhibited the latter. The former activity was stimulated by a low concentration of SDS or fatty acid, whereas the latter was not. Thus, the properties of the enzyme purified from ascidian eggs are similar to those of multicatalytic proteinases from mammalian tissues.  相似文献   

7.
A trypsin proteinase inhibitor has been purified to homogeneity from the skeletal muscle of white croaker (Micropogon opercularis). Previously, we had described the occurrence in fish muscle of a serine protease (proteinase I) which showed a great capacity to degrade whole myofibrils in vitro and an endogenous inhibitor that prevented the action of the protease, both on natural and artificial substrates. In this paper, we report the purification and further biochemical characterization of the endogenous trypsin inhibitor. The purification was carried out by DEAE-Sephacel, Con A-Sepharose, Sephacryl S-300 and Mono Q. Throughout the purification procedure, trypsin inhibitory activity was assayed using azocasein as substrate. The molecular mass of the inhibitor was 65 kDa, as estimated by SDS-PAGE and gel filtration. The trypsin inhibitor is a glycoprotein, as deduced by the fact that it binds to Con A-Sepharose and stains with PAS and showed a wide range of pH stability (from 5 to 11). The thermal stability of the inhibitor considerably decreased at temperatures >60 degrees C. Assays of the inhibitor against various proteases indicated that it is highly specific for serine proteases, since it did not inhibit proteases belonging to any other groups. The inhibitor was able to inhibit the endogenous target enzyme (proteinase I) in a dose-dependent manner, with a 50% inhibition at a molar ratio close to 1. The present work contributes to improving our understanding of the physiological role of the proteinase I-inhibitor system in muscle protein breakdown, as well as its influence on post mortem proteolysis.  相似文献   

8.
Two cysteine proteinase inhibitors, CPI-L and CPI-H, were purified from rabbit skeletal muscle by means of successive extraction with a neutral buffer solution, precipitation at pH 3.7, acetone fractionation and gel permeation on Sephadex G-75 and affinity chromatography on carboxymethyl-papain-Sepharose. The molecular mass of CPI-L was 13 kDa on gel permeation chromatography and SDS-PAGE under reducing conditions and was 15 kDa on SDS-PAGE under non-reducing conditions. The molecular mass of CPI-H was 23 kDa on gel permeation chromatography and it was converted to 13 kDa by SH-reducing agent. Although CPI-H showed single protein band with 13 kDa on SDS-PAGE under reducing conditions, it showed four protein bands with 21, 20, 15 and 13 kDa on SDS-PAGE under non-reducing conditions. Therefore, CPI-H was suggested to have a complicated subunit structure for which S-S bonds and some non-covalent bonds would be responsible. CPI-L and CPI-H were stable in the range of pH 3.0-9.5 and up to 80 degrees C. CPI-L and CPI-H were suggested to inhibit cathepsins B, H and L by a non-competitive mechanism. The inhibition constants (Ki) of CPI-L and CPI-H showed that both CPIs have much higher affinity against cathepsins H and L than against cathepsin B.  相似文献   

9.
From rat skeletal muscle tissue we have isolated and purified a proteolytic activity of molecular mass 750 kDa. The enzyme, designated 'proteinase I', which has been found to be located in capillaries of skeletal muscle tissue, catalyzes the hydrolysis of Z-Phe-Arg-MCA and [14C]methylcasein and this process is activated about 2-fold by ATP. As judged by SDS-polyacrylamide gel electrophoresis the subunit pattern of 'proteinase I' is similar to alpha-macroglobulin. Immunoelectrophoretic analyses of 'proteinase I' with antisera to rat alpha 1-macroglobulin, alpha 2-macroglobulin, and rat liver cathepsins reveal that this high-molecular-mass proteinase is a complex of alpha 1-macroglobulin and the cysteine proteinases cathepsin B, H and L. A similar 'proteinase' has been isolated from rat serum. Two ATP-activated high molecular-mass proteinases that have been previously identified in liver and heart muscle by other investigators equally show a positive immunological reaction with the antiserum raised against 'proteinase I'. From these data, together with results presented in an accompanying paper (Kuehn, L., Dahlmann, B., Gauthier, F. and Neubauer, H.-P. (1989) Biochim. Biophys. Acta 991, 263), we conclude that the ATP-stimulated high-molecular-mass proteolytic activity is partly due to the presence of a complex of alpha-macroglobulin and cysteine proteinases.  相似文献   

10.
11.
A thiol proteinase inhibitor was purified from rat liver by essentially the same procedure as reported previously (Kominami, E., Wakamatsu, N., and Katunuma, N. (1981) Biochem. Biophys. Res. Commun. 99, 568-575), but without heat treatment. The purified inhibitor appears homogeneous on polyacrylamide gel electrophoresis with and without sodium dodecyl sulfate and displayed no multiple forms. The inhibitor has Mr = 12,500 and contains 50.5% of polar amino acid residues, 9.3% aromatic amino acids, and no tryptophan. The presence of 2 half-cystines/molecule and the absence of free thiol groups indicate that the inhibitor possesses one disulfide bridges. The inhibitor inhibits cathepsin H by forming an enzyme-inhibitor complex in a molar ratio of 1:1. It inhibits most thiol proteinases such as cathepsin H, L, B, and C, papain, and ficin, but not calcium-activated neutral proteinase or serine proteinases or carboxyl proteinases. The inhibitor was found in various rat tissues. Immunological diffusion analysis with anti-liver thiol proteinase inhibitor serum indicated that the rat liver inhibitor is immunologically identical with the inhibitors from other rat tissues. On subcellular fractionation of rat liver, the thiol proteinase inhibitor was recovered in the cytosol fraction.  相似文献   

12.
13.
A collagenolytic serine proteinase (CSP) was purified from red sea bream (Pagrus major) skeletal muscle to homogeneity by ammonium sulfate fractionation and chromatographies including DEAE-Sephacel, Phenyl Sepharose and Hydroxyapatite. The molecular mass of CSP was approximately 85 kDa as estimated by SDS–PAGE and gel filtration. Optimum temperature and pH of CSP were 40 °C and 8.0, respectively. CSP was specifically inhibited by serine proteinase inhibitors, while inhibitors to other type proteinases did not show much inhibitory effects. The Km and kcat values of CSP for Boc-Leu-Lys-Arg-MCA were 3.58 µM and 0.13 s? 1 at 37 °C, respectively. Furthermore, CSP hydrolyzed gelatin and native type I collagen effectively though its degradation on myosin heavy chain (MHC) was not significant, suggesting its involvement in the texture tenderization of fish muscle during the post-mortem stage.  相似文献   

14.
The major aminopeptidase from human quadriceps muscle was purified (as judged by polyacrylamide-gel electrophoresis) by anion-exchange chromatography (two steps) and gel filtration (two steps). The enzyme showed maximum activity at pH 7.3, in the presence of 1 mM-2-mercaptoethanol and 0.5 mM-Ca2+ ions; activation of the enzyme occurred in the presence of several other bivalent cations. Inhibition of activity was obtained in the presence of metal-ion-chelating agents and inhibitors of aminopeptidases and thiol proteinases. The molecular weight of the enzyme was 102 000 (by gel filtration). The enzyme hydrolysed several amino acyl-7-amido-4-methylcoumarin derivatives; highest activity was obtained with alanyl-7-amido-4-methylcoumarin. The enzyme also degraded a series of dipeptides, alanine oligopeptides and some naturally occurring peptides. Of particular interest was the high activity of the enzyme towards the enkephalins.  相似文献   

15.
To elucidate the mechanisms involved in the increase in free amino acids during postmortem storage of meat, a novel aminopeptidase was purified from bovine skeletal muscle by ammonium sulfate fractionation and successive chromatographies such as DEAE-cellulose, Sephacryl S-200, Hydroxyapatite, Phenyl-Sepharose, and Hi-Trap affinity column chromatography. The molecular mass of the enzyme was found to be 58 kDa on SDS-PAGE. This enzyme had optimum pH at around 7.5, and preferably hydrolyzed Ala-beta-naphthylamide (-NA) in amino acid-NAs. The activity was strongly inhibited by phenylmethansulfonyl fluoride (PMSF) and bestatin, suggesting that it is to be classified as a serine protease. Moreover, the activity was enhanced by chloride and nitrate ions, which is the most remarkable property of this enzyme. The enzyme appeared to be involved in the increase in free amino acids during postmortem storage of meat.  相似文献   

16.
A low-Mr tight binding proteinase inhibitor was purified from bovine muscle by alkaline denaturation of cysteine proteinases, gel filtration on Sexphadex G-75 and affinity chromatography on carboxymethyl-papain-Sepharose. Chromatofocusing separated three isoforms which are similar in their Mr of about 14 000, their stability with heating at 80°C and their inhibitory activity towards cathepsin H, cathepsin B and papain. The equilibrium constants (Ki) were determined for these three cysteine proteinases but for cathepsin H, association (kass) and dissociation (kdiss) rate constants were also evaluated. Ki values of 56 nM and 8.4 nM were found for cathepsin B and cathepsin H, respectively. For papain, Ki was in the range of 0.1–1 nM. The kinetic features of enzyme-inhibitor binding suggest a possible role for this low-Mr protein inhibitor in controlling ‘in vivo’ cathepsin H proteolytic activity. With regard to cathepsin B, such a physiological role was less evident.  相似文献   

17.
A low-Mr tight binding proteinase inhibitor was purified from bovine muscle by alkaline denaturation of cysteine proteinases, gel filtration on Sephadex G-75 and affinity chromatography on carboxymethyl-papain-Sepharose. Chromatofocusing separated three isoforms which are similar in their Mr of about 14 000, their stability with heating at 80 degrees C and their inhibitory activity towards cathepsin H, cathepsin B and papain. The equilibrium constants (Ki) were determined for these three cysteine proteinases but for cathepsin H, association (kass) and dissociation (kdiss) rate constants were also evaluated. Ki values of 56 nM and 8.4 nM were found for cathepsin B and cathepsin H, respectively. For papain, Ki was in the range of 0.1-1 nM. The kinetic features of enzyme-inhibitor binding suggest a possible role for this low-Mr protein inhibitor in controlling 'in vivo' cathepsin H proteolytic activity. With regard to cathepsin B, such a physiological role was less evident.  相似文献   

18.
Digitonin and 3-[(3-cholamidopropyl)dimethylammonio]-2-hydroxy-1-propane sulfonate (Chapso) were used to solubilize the receptor of dihydropyridine calcium antagonists from the transverse tubule membranes of rabbit skeletal muscle. The receptor retained the ability for selective adsorption from either detergent extract by dihydropyridine-Sepharose. Incubation of the affinity resin with nitrendipine resulted in the elution of the receptor protein composed of two main polypeptides with molecular masses of 160 kDa and 53 kDa, as shown by polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate. Only these two subunits were found in the receptor preparation purified to a specific dihydropyridine-binding activity of 2500-2800 pmol/mg protein (60-70% purity) from digitonin-solubilized membranes by a combination of wheat-germ-agglutinin--Sepharose, anion-exchange and dihydropyridine-Sepharose chromatography steps. The individual subunits were isolated in dodecyl-sulfate-denatured form from the preparation of the receptor, enriched by a two-step large-scale procedure applied to Chapso-solubilized membranes. The 160-kDa subunit slowly changed its apparent molecular mass to 125 kDa upon disulfide bond reduction without formation of novel peptides. This finding implies that 160-kDa subunit is cross-linked by intramolecular S-S bridge(s). Chemical deglycosylation with trifluoromethanesulfonic acid showed that the carbohydrate content of large and small subunits accounted for 7.5% and 6.6% by mass, respectively. The dihydropyridine receptor subunits are glycosylated through N-glycoside bonds only. In their ratio of polar to hydrophobic amino acid residues in the amino acid composition of the receptor subunits, these polypeptides behave rather as peripheral proteins. It is suggested that the main portion of polypeptide chains is located outside the membrane in contact with solvent.  相似文献   

19.
1. A high affinity Ca2+ binding and low mol. wt protein, parvalbumin, was purified from monkey skeletal muscle. 2. As compared with other animals, only one component and a lower content of monkey parvalbumin were found. 3. This may suggest that both the component and the content of parvalbumin decreases with biological evolution. 4. The parvalbumin was found to have a mol. wt of 11,400, a pI of 5.1, a high aspartic acid and lysine content, maximum absorption at around 260 nm, a blocked amino-terminal, an immunological distinction, 2 mol Ca2+ binding/mol, and a conformational change by Ca2+ binding. 5. Parvalbumin was shown to have alpha type properties.  相似文献   

20.
Adenosine deaminase was purified (780-fold) from skeletal muscle of camel (Camelus Dormedarius) to homogeneity level by using DEAE Sephadex chromatography, ammonium sulfate precipitation, gel filtration and ion exchange chromatography. The enzyme appeared to be monomeric with subunit molecular weight of 43kDa and isoelectric point of 4.85. The enzyme showed specificity for adenosine and exhibited Michaelis-Menten Kinetics with kappa(cat) of 1112.41 min(-1) and K(m) of 14.7 microM at pH 7.5. The pH and temperature optima for enzyme activity were 7-7.5 and 25 degrees C, respectively. Free energy (DeltaG*), enthalpy (DeltaH*) and entropy (DeltaS*) of activation for denaturation of adenosine deaminase at 50 degrees C were 88.94, 99.65 kJmol(-1) and 33.16 Jmol(-1), respectively. The purified enzyme had half-lives of 636 and 61 min at 25 and 50 degrees C, respectively. The activation energy for catalysis of camel skeletal muscle adenosine deaminase was 9.13 kJmol(-1). Free energy (DeltaG#), enthalpy (DeltaH#) and entropy (DeltaS#) of activation for hydrolysis of adenosine deaminase at 25 degrees C were 50.35, 6.65 kJmol(-1) and -146.62 Jmol(-1), respectively. Purine riboside inhibited the enzyme competitively with K(i) of 16 microM.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号