首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
王冲  郭怀祖 《生物工程学报》2017,33(6):1018-1027
真核表达系统造就了单克隆抗体药物的广泛异质性,这些异质性通常是由翻译后修饰引起,而糖基化修饰则是关键的翻译后修饰,其对治疗性蛋白的安全性和有效性有着深远的影响,为探索细胞表达系统的改变对单抗糖基化所带来的影响,应用液相色谱-电喷雾离子化四极杆飞行时间质谱技术(LC-ESI-Q-Tof),通过交替高低碰撞能量扫描、源内诱导解离及二级质谱的方法从释放的寡聚糖水平研究聚糖结构,对比分析由两种不同细胞系制备的抗表皮生长因子受体(EGFR)单抗,然后结合外切糖苷酶逐级消化的方法对两种蛋白的糖链结构作进一步确证分析。分析结果表明,在Fc区域的糖基化修饰,两种表达系统表达的该抗体未发生明显的改变,而在Fab区域,由小鼠骨髓瘤细胞SP2/0制备的抗EGFR单抗的聚糖结构中含有大量α半乳糖(α-Gal),且末端唾液酸形式主要是N-羟乙基神经氨酸(NGNA),具有极高的免疫原性风险。而通过中国仓鼠卵巢细胞CHO表达系统制备的抗EGFR单抗Fab区域聚糖结构中不含有α-Gal,且末端唾液酸形式主要是N乙酰神经氨酸(NANA),免疫原性风险极大降低。本研究在一定程度上可以预测由CHO表达系统制备的抗EGFR单抗具备较好的临床耐受性,超敏反应发生风险低,CHO细胞可以作为该抗体改良型生物类似药(Biobetter)的优选表达系统。  相似文献   

2.
为了深入理解在中国仓鼠卵巢(CHO)细胞流加培养过程中氨对抗体融合蛋白表达和N-糖基化的作用,认识氨影响N-糖基化加工的作用位点,考察了在细胞维持期(产物表达期)不同氨浓度条件与CHO细胞维持与代谢、抗体融合蛋白表达和N-糖链结构的关系。结果显示,氨浓度在5-12 mmol/L范围内对维持期的细胞生长曲线、葡萄糖和谷氨酰胺的消耗以及乳酸和氨的生成情况没有明显影响。但当氨浓度大于5 mmol/L时,随着氨浓度的升高,抗体融合蛋白的唾液酸化程度和半乳糖化程度均不断降低,而岩藻糖基化程度和高甘露糖糖型比例则没有变化。当氨浓度升高至大于9 mmol/L后,抗体融合蛋白的表达能力和最终表达量开始降低。因此,应在细胞培养工艺过程开发时控制氨的生成至小于5 mmol/L,以避免氨的累积导致产物的半乳糖化和唾液酸化程度降低以及产物表达量下降。  相似文献   

3.
中国仓鼠卵巢(Chinese hamster ovary, CHO)细胞因其具有可悬浮培养及进行蛋白质糖基化等翻译后修饰等优势,在生物制药重组蛋白生产方面具有不可替代的重要作用。但转基因沉默、表观遗传修饰等影响基因表达调控,造成CHO细胞表达稳定性降低而导致重组蛋白产量下降。本文对CHO细胞中表观遗传修饰包括DNA甲基化、组蛋白修饰和miRNA的作用研究,以及对基因表达调控的影响进行了综述。  相似文献   

4.
目的:探究糖基化对TNFR-Fc融合蛋白结构、稳定性和生物活性的影响。方法:经N-糖酰胺酶F(PNGase F)切除TNFR-Fc融合蛋白所连的糖链,用SEC-HPLC、傅里叶变换红外光谱法和荧光光谱法等方法分析N-糖基化和去糖基化后重组蛋白的结构变化,通过加速稳定性实验和毛细管电泳检测对比其酶切前后稳定性变化,其生物活性的差异经细胞杀伤实验进行比较。结果:去糖基化后TNFR-Fc融合蛋白质分子质量略有降低,其构象、荷电性质及生物活性没有明显差异;然而切除N-糖链,TNFR-Fc二聚体的稳定性降低,蛋白质降解物明显增加。结论:去N-糖基化对TNFR-Fc的构象、荷电性质和生物活性的影响并不显著,但会影响TNFR-Fc融合蛋白的稳定性。  相似文献   

5.
虽然昆虫杆状病毒表达系统在蛋白表达领域得到了广泛的应用, 但由于不能表达复杂的末端唾液酸化的N-糖链, 使得该系统在生物制药行业的应用受到了很大的限制。通过比较哺乳动物细胞和昆虫细胞内糖基化途径可知, 其起始步骤一致, 之后再发生分化, 主要表现为3方面, 即昆虫细胞内缺乏哺乳动物细胞所具备的N-乙酰葡萄糖氨转移酶II、 半乳糖基转移酶/N-乙酰氨基半乳糖转移酶、α-2,3-唾液酸转移酶和α-2,6-唾液酸转移酶等延长N-糖链的糖基转移酶; 另外, 昆虫细胞内具有能够特异性地将蛋白质末端的N-乙酰氨基葡萄糖残基从GlcNAcMan3GlcNAc(±α3/6-Fuc)GlcNAc上切除的N-乙酰氨基葡萄糖苷酶及核心α-1,3-岩藻糖基转移酶。本文从上述异同出发, 综述了克服昆虫细胞内不能表达人源化糖蛋白这一缺陷所进行的N-糖基化途径的改造研究--主要集中在昆虫细胞内GlcNAcase的抑制和昆虫细胞内GnT2, GalT/ GalNAcT, ST3及ST6等基因的导入等方面, 结果表明经改造的昆虫细胞可表达人源化糖蛋白, 这将极大地拓宽昆虫杆状病毒表达系统的应用领域。本文还探讨了选择特殊细胞系及特殊培养条件以在昆虫细胞内表达唾液酸化蛋白的可行性。  相似文献   

6.
哺乳动物细胞内的某些蛋白质或脂类可以被糖基化修饰,而糖链末端往往存在唾液酸化的现象,催化添加唾液酸的酶为糖基转移酶(sialyltransferase,ST),而去除唾液酸的为唾液酸酶(sialidase,SA或称为neuraminidase,NEU).本实验检测了人膀胱正常上皮细胞HCV29、非浸润性膀胱癌细胞KK47和浸润性膀胱癌细胞YTS-1中唾液酸的表达,发现恶性肿瘤细胞中唾液酸的含量高于正常细胞;进一步分析唾液酸酶和唾液酸转移酶的表达,发现唾液酸酶Neu1在正常细胞中表达最高,在良性肿瘤细胞中次之,在恶性肿瘤细胞中表达最低,推测在膀胱癌中Neu1对唾液酸的异常表达起着主要作用.同时,膀胱癌细胞中Toll样受体1,2,3,4(toll-like receptors,TLRs)表达趋势也与Neu1一致.利用TGF-β处理HCV29,使之发生上皮间质转化(epithelial-mesenchymal transition,EMT),细胞中Neu1和TLR3表达明显减少;将Neu1基因沉默后,TLR3表达也明显减少.此外,在YTS-1细胞中过表达Neu1,TLR3表达增高且激活了下游NF-κB通路.这一结果说明膀胱癌中Neu1与TLR3的表达有着密切的关系,这为膀胱癌的分子机理研究提供了工作基础.  相似文献   

7.
旨在调控单抗生物类似药的糖基化分布,使其与原研药一致。通过全因子设计试验考察不同浓度的半乳糖、尿苷、氯化锰和蛋白水解物对单抗糖基化修饰的影响。结果表明,半乳糖、尿苷及氯化锰均能提高单抗半乳糖基化,且对细胞生长和单抗产量无明显影响。此外尿苷和氯化锰还能降低五聚高甘露糖型(Man5),但过量的尿苷会导致Man5增高。而蛋白水解物除了能降低Man5,提高单抗岩藻糖基化外,对细胞生长也有促进作用。选取模型预测的最优条件进行反应器培养验证,最终的单抗糖基化分布符合预期,成功建立CHO细胞单抗糖基化调控的生产策略。  相似文献   

8.
新红细胞生成刺激蛋白(NESP),是重组人红细胞生长素(rh EPO)的一种高糖基化类似物,它含有5个N端糖链和比rhEPO高2倍的唾液酸残基,具有较好的代谢稳定性和3倍于rhEPO的半衰期。在新红细胞生成刺激蛋白(NESP)的基础上,通过NESP的cDNA与人IgG2的铰链区与CH2和CH3的cDNA连接,形成了融合蛋白NESP-Fc,来达到提高NESP半衰期的目的。表达载体的构建、融合蛋白的表达纯化和初步的功能性试验等一系列研究证实,所表达的融合蛋白主要以二聚体形式存在;NESP-Fc能明显促进UT-7细胞的生长和小鼠体内网织红细胞的增殖;在大鼠体内的研究发现其半衰期高达56h;小试规模重组蛋白的表达量在1.4g/L左右。这些研究为该融合蛋白最终实现临床应用和产业化打下了良好的基础。  相似文献   

9.
对昆虫的N-糖基化途径进行修饰改变是扩展昆虫蛋白表达系统应用范围的重要途径。本研究利用基于piggyBac转座子的家蚕Bombyx mori转基因技术表达昆虫所缺乏的哺乳类糖基化途径中的关键基因, 构建了可以同时表达小鼠Mus musculus唾液酸合酶和小鼠CMP-唾液酸合成酶两个基因的piggyBac表达载体, 选用家蚕肌动蛋白A3启动子控制基因的表达, 并导入3×P3启动子控制下的增强绿色荧光蛋白EGFP作为分子标记。在得到的G1代转基因家蚕中对转入的基因进行了分子水平的鉴定和分析, 为在家蚕这种模式昆虫中模拟哺乳类糖基化途径奠定了基础。  相似文献   

10.
旨在深入认识补料分批培养过程中,以半乳糖替代葡萄糖作为碳源,对CHO细胞生长、代谢和产物表达的影响。通过将补料培养基中的葡萄糖用等摩尔的半乳糖进行替换,综合考察了不同比例替换条件下CHO细胞的生长代谢和Fc融合蛋白的产物合成特性。结果显示:摇瓶的数据表明60%比例以上半乳糖的替代对细胞的生长造成了不利影响,培养后期的pH出现了大幅上升。同时随着半乳糖替代比例的增加,虽然代谢副产物乳酸的浓度有明显下降,但氨的生成却显著增多;此外,培养过程中谷氨酸和丙氨酸的浓度也随着替代比例的增加而增加。产物表达方面,在较低替代比例内(0%-40%),Fc融合蛋白的表达量和总唾液酸含量都随着替代比例的增加而升高,而随着替代比例的进一步升高(60%-100%),两者都逐渐降低。最后,在反应器内通过对培养pH的稳定控制,40%半乳糖替代过程的产物表达量和总唾液酸含量分别提高了43%和37%。补料培养基中以半乳糖替代葡萄糖进行补料的方式,有效地提高了最终Fc融合蛋白的表达量和总唾液酸含量,有助于建立高产高质的CHO细胞培养过程。  相似文献   

11.
An important challenge facing therapeutic protein production in mammalian cell culture is the cleavage of terminal sialic acids on recombinant protein glycans by the glycosidase enzymes released by lysed cells into the supernatant. This undesired phenomenon results in a protein product which is rapidly cleared from the plasma by asialoglycoprotein receptors in the liver. In this study, RNA interference was utilized as a genetic approach to silence the activity of sialidase, a glycosidase responsible for cleaving terminal sialic acids on IFN-gamma produced by Chinese Hamster Ovary (CHO) cells. We first identified a 21-nt double stranded siRNA that reduced endogenous sialidase mRNA and protein activity levels. Potency of each siRNA sequences was compared using real time RT-PCR and a sialidase activity assay. We next integrated the siRNA sequence into CHO cells, allowing production and selection of stable cell lines. We isolated stable clones with sialidase activity reduced by over 60% as compared to the control cell line. Micellar electrokinetic chromatography (MEKC), thiobarbituric acid assay (TAA), and high performance anion exchange chromatography (HPAEC) coupled to amperometric detection were performed to analyze glycan site occupancy, sialic acid content, and distribution of asialo-/sialylated-glycan structures, respectively. Two of the stable clones successfully retained the full sialic acid content of the recombinant IFN-gamma, even upon cells' death. This was comparable to the case where a chemically synthesized sialidase inhibitor was used. These results demonstrated that RNA interference of sialidase can prevent the desialylation problem in glycoprotein production, resulting improved protein quality during the entire cell culture process.  相似文献   

12.
Sialic acid, a terminal monosaccharide present in N-glycans, plays an important role in determining both the in vivo half-life and the therapeutic efficacy of recombinant glycoproteins. Low sialylation levels of recombinant human erythropoietin (rhEPO) in recombinant Chinese hamster ovary (rCHO) cell cultures are considered a major obstacle to the production of rhEPO in fed-batch mode. This is mainly due to the accumulation of extracellular sialidases released from the cells. To overcome this hurdle, three sialidase genes (Neu1, 2, and 3) were initially knocked-out using the CRISPR/Cas9-mediated large deletion method in the rhEPO-producing rCHO cell line. Unlike wild type cells, sialidase knockout (KO) clones maintained the sialic acid content and proportion of tetra-sialylated rhEPO throughout fed-batch cultures without exhibiting a detrimental effect with respect to cell growth and rhEPO production. Additional KO of two pro-apoptotic genes, BAK and BAX, in sialidase KO clones (5X KO clones) further improved rhEPO production without any detrimental effect on sialylation. On day 10 in fed-batch cultures, the 5X KO clones had 1.4-times higher rhEPO concentration and 3.0-times higher sialic acid content than wild type cells. Furthermore, the proportion of tetra-sialylated rhEPO on day 10 in fed-batch cultures was 42.2–44.3% for 5X KO clones while it was only 2.2% for wild type cells. Taken together, KO of sialidase and pro-apoptotic genes in rCHO cells is a useful tool for producing heavily sialylated glycoproteins such as rhEPO in fed-batch mode.  相似文献   

13.
Under some cell culture conditions, recombinant glycoprotein therapeutics expressed in Chinese hamster ovary (CHO) cells lose sialic acid during the course of the culture (Sliwkowski et al., 1992; Munzert et al., 1996). A soluble sialidase of CHO cell origin degrades the expressed recombinant protein and has been shown to be released into the culture fluid as the viability of the cells decreases. To reduce the levels of the sialidase and to prevent desialylation of recombinant protein, a CHO cell line has been developed that constitutively expresses sialidase antisense RNA. Several antisense expression vectors were prepared using different regions of the sialidase gene. Co-transfection of the antisense constructs with a vector conferring puromycin resistance gave rise to over 40 puromycin resistant clones that were screened for sialidase activity. A 5' 474 bp coding segment of the sialidase cDNA, in the inverted orientation in an SV 40-based expression vector, gave maximal reduction of the sialidase activity to about 40% wild-type values. To test if this level of sialidase would lead to increased sialic acid content of an expressed recombinant protein, the 474 antisense clone was employed as a host for expression of human DNase as a model glycoprotein. The sialic acid content of the DNase produced in the antisense cultures was compared with material made in the wild-type parental cell line. About 20-37% increase in sialic acid content, or 0.6-1.1 mole of additional sialic acid out of a total of 3.0 mole on the product, was found on the DNase made in the antisense cell lines.  相似文献   

14.
A survey has been made of the activity of a wide variety of standard strains of streptococci against bovine submaxillary mucin. Strain 6646 (group K) and strain D 168A "X" (group M) completely broke down and strain H 60R (group F) incompletely broke down bound sialic acid of bovine submaxillary mucin added to the growth medium. Among these strains, strain 6646 (group K) produced sialidase in the cell and in the culture fluid. An appropriate amount of glucose in the culture medium stimulated growth and the production of enzyme, but an excess of glucose in the culture medium caused abundant growth without production of the enzyme. The streptococcal sialidase was precipitated from the culture fluid by ammonium sulfate at 50% saturation, and further purification was achieved by diethylaminoethyl cellulose chromatography. Ca(++) and Co(++) stimulated the sialidase activity, and Mn(++), Zn(++), and ethylenediaminetetraacetate inhibited it. With acetate buffer, the optimal pH lay between 5 and 6. Sialic acid was detected in the reaction product of the streptococcal sialidase and bovine submaxillary mucin.  相似文献   

15.
16.
The importance of glycoprotein sialic acid levels is well known, as increased levels have been shown to increase in vivo serum half‐life profiles. Here we demonstrate for the first time that dexamethasone (DEX) was capable of improving the sialylation of a CTLA4‐Ig fusion protein produced by Chinese hamster ovary (CHO) cells. DEX was shown to enhance the intracellular addition of sialic acid by sialyltransferases as well as reduce extracellular removal of sialic acid by sialidase cleavage. We illustrated that DEX addition resulted in increased expression of the glycosyltransferases α2,3‐sialyltransferase (α2,3‐ST) and β1,4‐galactosyltransferase (β1,4‐GT) in CHO cells. Based upon our previous results showing DEX addition increased culture cell viability, we confirmed here that cultures treated with DEX also resulted in decreased sialidase activity. Addition of the glucocorticoid receptor (GR) antagonist mifepristone (RU‐486) was capable of blocking the increase in sialylation by DEX which further supports that DEX affected sialylation as well as provides evidence that the sialylation enhancement effects of DEX on recombinant CHO cells occurred through the GR. Finally, the effects of DEX on increasing sialylation were then confirmed in 5‐L controlled bioreactors. Addition of 1 µM DEX to the bioreactors on day 2 resulted in harvests with average increases of 16.2% for total sialic acid content and 15.8% in the protein fraction with N‐linked sialylation. DEX was found to be a simple and effective method for increasing sialylation of this CTLA4‐Ig fusion protein expressed in CHO cells. Biotechnol. Bioeng. 2010;107: 488–496. © 2010 Wiley Periodicals, Inc.  相似文献   

17.
Since sialic acid content is known to be a critical determinant of the biological properties of glycoproteins, it is essential to characterize and monitor sialylation patterns of recombinant glycoproteins intended for therapeutic use. This study reports site- and branch-specific differences in sialylation of human interferon-gamma (IFN-gamma) derived from Chinese hamster ovary (CHO) cell culture. Sialylation profiles were quantitated by reversed-phase HPLC separations of the site-specific pools of tryptic glycopeptides representing IFN-gamma's two potential N-linked glycosylation sites (i.e., Asn(25) and Asn(97)). Although sialylation at each glycosylation site was found to be incomplete, glycans of Asn(25) were more heavily sialylated than those of Asn(97). Furthermore, Man(alpha1-3) arms of the predominant complex biantennary structures were more favorably sialylated than Man(alpha1-6) branches at each glycosylation site. When the sialylation profile was analyzed throughout a suspension batch culture, sialic acid content at each site and branch was found to be relatively constant until a steady decrease in sialylation was observed coincident with loss of cell viability. The introduction of a competitive inhibitor of sialidase into the culture supernatant prevented the loss of sialic acid after the onset of cell death but did not affect sialylation prior to cell death. This finding indicated that incomplete sialylation prior to loss of cell viability could be attributed to incomplete intracellular sialylation while the reduction in sialylation following loss of cell viability was due to extracellular sialidase activity resulting from cell lysis. Thus, both intracellular and extracellular processes defined the sialic acid content of the final product. (c) 1997 John Wiley & Sons, Inc. Biotechnol Bioeng 55: 390-398, 1977.  相似文献   

18.
The content of sialic acid bound to the sinusoidal region of plasma membrane during the prereplicative phase after the intravenous injection of a solution containing triiodothyronine, amino acids, glucagon and heparin (T.A.G.H. solution) has been measured. The results obtained show that an important decrease in sialic acid content is produced as it occurs in the hepatic cells of hepatectomized animals. In order to know if sialidase activity is involved in the decrease of sialic acid content during liver regeneration, the activity of sinusoidal plasma membrane sialidases during the prereplicative phase after the partial hepatectomy has been studied. No modifications of sialidase activity were detected during this period of time indicating that this decrease in sialic acid content has to be produced by other mechanisms such as diminution in the synthesis of precursor molecules. On the other hand due to the importance of Ca2+-calmodulin complexes in the activation of the hepatic cell proliferation the possible implication of this complex on the loss of sialic acid, observing the effect of trifluoperazine (inhibitor of Ca2+-calmodulin complexes) during the prereplicative phase of liver regeneration has been studied. The results show a delay in the decrease of the amount of sugar studied from 10 to 12 hours compared to the results obtained with the hepatectomized rats that have not received trifluoperazine.  相似文献   

19.
Influenza A viruses possess both hemagglutinin (HA), which is responsible for binding to the terminal sialic acid of sialyloligosaccharides on the cell surface, and neuraminidase (NA), which contains sialidase activity that removes sialic acid from sialyloligosaccharides. Interplay between HA receptor-binding and NA receptor-destroying sialidase activity appears to be important for replication of the virus. Previous studies by others have shown that influenza A viruses lacking sialidase activity can undergo multiple cycles of replication if sialidase activity is provided exogenously. To investigate the sialidase requirement of influenza viruses further, we generated a series of sialidase-deficient mutants. Although their growth was less efficient than that of the parental NA-dependent virus, these viruses underwent multiple cycles of replication in cell culture, eggs, and mice. To understand the molecular basis of this viral growth adaptation in the absence of sialidase activity, we investigated changes in the HA receptor-binding affinity of the sialidase-deficient mutants. The results show that mutations around the HA receptor-binding pocket reduce the virus's affinity for cellular receptors, compensating for the loss of sialidase. Thus, sialidase activity is not absolutely required in the influenza A virus life cycle but appears to be necessary for efficient virus replication.  相似文献   

20.
The sialidase activities with GM3 ganglioside and sialyllactitol were demonstrated in the conditioned medium of human fibroblasts. pH versus activity profiles of conditioned medium with GM3 as substrate suggested the presence of two sialidases with optimal activities at pH 4.5 and pH 6.5. The GM3 sialidase activity at pH 6.5 was suppressed in the medium of contact-inhibited cells. This sialidase may function in the metabolism of cell surface GM3 since there was a selective loss of labeled sialic acid from GM3 at different times of incubation after pulse-labeling with a radioactive sialic acid precursor ([3H]N-acetyl-mannosamine) and a radioactive ceramide precursor ([14C]serine). In addition, a sialidase inhibitor, 2-deoxy-2, 3-dehydro-N-acetyl-neuraminic acid (NeuAc-2-en) resulted in a reversible growth inhibitory effect and the suppression of the sialidase activity in the medium. We have speculated that GM3 hydrolysis on the cell surface by the sialidase may be coordinated with the cell cycle and may be at its maximum during early in the G1 phase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号