首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
2.
We have examined the association of ribosomal protein rpL34 mRNA with polysomes in Aedes albopictus C7-10 cells in culture using a simple, two-step sucrose gradient. In growing cells, 40-50% of the ribosomes were engaged on polysomes. This proportion could be increased to 80% when metabolism was stimulated by refeeding the cells with fresh medium. Conversely, ribosomes shifted off polysomes when cells were starved with phosphate-buffered saline or cell lysates were treated with puromycin. When similar approaches were used with fat body from blood-fed female Aedes aegypti mosquitoes, we were unable to obtain the polysome fraction that contained vitellogenin mRNA, which is abundantly translated after a blood meal. Addition of post-mitochondrial supernatant from fat body to polysomes from cultured cells shifted the polysome profile towards smaller polysomes and monosomes, in a dose-dependent fashion. Disruption of fat body tissue in a post-ribosomal supernatant from refed cells improved the recovery of polysomes, demonstrating both the engagement of vitellogenin mRNA on polysomes and the mobilization of rpL34 from messenger-ribonuceloprotein particles onto polysomes in blood-fed mosquitoes. These observations suggested that ribonucleases remain active when polysomes are prepared from mosquito fat body, and that cell culture supernatant contains a ribonuclease inhibitor.  相似文献   

3.
In the present work a study was made of the compartmentalization of the poly(A)+ RNA populations during the cultural development of cells of T. pyriformis that were pre-starved or derived from stationary cultures. It was found that the poly(A)+ RNA content increases when the cells change from stationary to lag phase. The increase in RNA poly(A)+ is manifested exclusively in the polysome compartment. The level of poly(A)+ RNA in the cytoplasmic non-polysomal compartment does not change. The increase in poly(A)+ RNA is concomitant with an expansion of the polysomes. Pre-starved cells initiate polysome formation soon after being transferred to a growing medium. During this time the poly(A)+ RNA content of the non-polysomal compartment decreases and that of polysomes increases in close proportion. Not only in the starved but also in stationary cells and in those that are beginning to grow, the proportion of poly(A)+ RNA in mRNP is higher than in the polysomes. These data are interpreted as indicating that cells of T. pyriformis, derived from stationary cultures are dependent on RNA synthesis for polysome formation; on the other hand, pre-starved cells use preformed non-polysomal poly(A)+ RNA for the same purpose, in the beginning of the cultural development.  相似文献   

4.
Total ribosomes (monosomes plus polysomes) isolated from woundedpea epicotyls are more efficient at supporting protein synthesisin a wheat germ S30 system (containing wheat ribosomes) thanare total ribosomes from aged (control) pea tissue. This increasedefficiency is seen when enriched large polysomes, almost devoidof monosomes, are used to program a wheat germ S300 system,from which the wheat germ ribosomes have been removed. Reactionsprimed by enriched polysomes from wounded tissue, but not agedtissue, continue for at least 30 min, suggesting that reinitiationis occurring during the reaction, albeit in the initial absenceof monosomes from wheat or pea. Wheat germ ribosomes, but notmonosomes from either aged or wounded pea tissue, are able totranslate pea poly(A) RNA and globin mRNA. Aurintricarboxylicacid reduces protein synthesis in a rather indiscriminate manner,whereas, pactamycin seems to have an inhibitory effect specificfor initiation, and it is much more effective on wounded thanon control tissue polysomes. We interpret these results to implythat polysomal ribosomes from wounded tissue are more efficientat initiation than are polysomal ribosomes from control tissueor than non-polysomal ribosomes (monosomes) from either tissue. (Received May 7, 1985; Accepted July 4, 1985)  相似文献   

5.
Summary Two temperature-sensitive mutants of Chlamydomonas reinhardii Dangeard which are defective in protein synthesis were examined. Both show breakdown of their polysomes at the restrictive temperature into monosomes which do not contain fragments of mRNA. Many of the ribosomes still contain nascent peptides able to react with puromycin. The polysome breakdown involves only cytoplasmic (80S) ribosomes and is prevented or reversed when ribosome translocation is inhibited with cyloheximide.  相似文献   

6.
A method was developed using sucrose gradients containing acrylamide which greatly simplifies the measurement of the polysomal distribution of messages. After centrifugation, the acrylamide was polymerized, forming a "polysome gel". RNA gel blots of polysome gels were used to determine the polysomal distributions of alpha-tubulin and total polyadenylated mRNA in growing, starved (nongrowing) and starved-deciliated Tetrahymena and the number of messages loaded onto polysomes was calculated. These measurements indicated that the translational efficiencies of alpha-tubulin mRNA and total polyadenylated mRNA are largely unaffected when the rates of tubulin and total protein synthesis vary dramatically. Thus, differential regulation of alpha-tubulin mRNA translation initiation does not contribute to the greater than 100-fold induction of tubulin synthesis observed during cilia regeneration and in growing cells. The major translation-level process regulating tubulin synthesis in Tetrahymena appears to be a change in message loading mediated by a non-specific message recruitment or unmasking factor.  相似文献   

7.
Abstract: The intravenous administration of LSD to young adult rabbits resulted in the disaggregation of both free and membrane-bound classes of brain polysomes. Based on the analysis of LSD dosage and the time course of the LSD-induced brain polysome shift, it was found that free polysomes were more sensitive to the drug than the membrane-bound polysome fraction. LSD-induced hyperthermia may be involved in the disaggregation of free and membrane-bound polysomes, since a correlation was found between the extent of LSD-induced hyperthermia and the degree of brain polysome shift. Prevention of LSD-induced hyperthermia by maintaining the animal at 4°C blocked the disaggregation of both polysome classes. Induction of hyperthermia by elevation of ambient temperature also resulted in a shift in free and membrane-bound polysomes. In all cases the disaggregation of polysomes to monosomes was not caused by RNase activation. During polysome disaggregation, polyadenylated mRNA associated with both free and membrane-bound polysomes was not degraded but was relocalized from polysomes to monosomes.  相似文献   

8.
Ribonuclease of the total rat liver ribosome fraction proved to be considerably more active than the same enzyme of the polysome fraction. This diminished polysomal activity was caused by exclusion of the enzymerich small polysomes and monosomes from discontinuous sucrose gradient preparations. An incidental finding was the demonstration that regenerating liver ribosomes appear to carry some of this enzyme in a dormant state not normally revealed during autodegradation.  相似文献   

9.
Intravenous administration of LSD to young adult rabbits induces a transient disaggregation of brain polysomes and a relocalization of mRNA from polysomes to monosomes. To analyze the spectrum of mRNA molecules which were associated with either the residual polysomes or the translationally inactive monosome complex, these two fractions were isolated on sucrose gradients and translated in a reticulocyte cell-free system. Analysis of [35S]methionine labeled translation products by one and two dimensional gel electrophoresis revealed that a full spectrum of mRNA molecules was relocalized from polysomes to monosomes following drug induced polysome disaggregation. The only exception was the mRNA coding for the LSD-induced 74K protein which was associated with the residual polysome fraction and not with the monosome complex. This brain protein is similar in molecular weight to one of the major heat shock proteins which are induced in tissue culture cells following elevation of ambient temperature and disaggregation of existing polysomes. The mRNA coding for the 74K brain protein was not observed in polysomes isolated following blockage of LSD-induced hyperthermia but it was noted when hyperthermia was induced by elevation of ambient temperature. The mRNA species coding for the 74K protein was polyadenylated.  相似文献   

10.
The kinetics of labeled histone mRNA entry into polysomes was studied in nuclease-treated reticulocyte lysates. Added mRNA rapidly bound 1 or 2 ribosomes. However, the formation of full size polysomes required at least 16 min. The amount of mRNA bound to ribosomes reached a maximum (73%) within 2 min after mRNA addition and then declined slowly for the remainder of the experiment. Two initiation inhibitors, aurintricarboxylic acid and 7-methylguanosine 5'-triphosphate, were found to affect polysome size and the fraction of mRNA in polysomes in an opposite manner. These results suggest that initiation and reinitiation events may be intrinsically different. The relatively long time period required for the formation of large polysomes can be explained by large polysomes having higher initiation and/or reinitiation rates or slower elongation rates. These possibilities are not mutually exclusive. The results suggest that there exist several levels of control which can regulate polysome size and the fraction of mRNA in polysomes.  相似文献   

11.
12.
Glycoprotein mRNA (G mRNA) of vesicular stomatitis virus is synthesized in the cytosol fraction of infected HeLa cells. Shortly after synthesis, this mRNA associates with 40S ribosomal subunits and subsequently forms 80S monosomes in the cytosol fraction. The bulk of labeled G mRNA is then found in polysomes associated with the membrane, without first appearing in the subunit or monomer pool of the membrane-bound fraction. Inhibition of the initiation of protein synthesis by pactamycin or muconomycin A blocks entry of newly synthesized G m RNA into membrane-bound polysomes. Under these circumstances, labeled G mRNA accumulates into the cytosol. Inhibition of the elongation of protein synthesis by cucloheximide, however, allows entry of 60 percent of newly synthesized G mRNA into membrane-bound polysomes. Furthermore, prelabeled G mRNA associated with membrane-bound polysomes is released from the membrane fraction in vivo by pactamycin or mucomycon A and in vitro by 1mM puromycin - 0.5 M KCI. This release is not due to nonspecific effects of the drugs. These results demonstrate that association of G mRNA with membrane-bound polysomes is dependent upon polysome formation and initiation of protein synthesis. Therefore, direct association of the 3' end of G mRNA with the membrane does not appear to be the initial event in the formation of membrane-bound polysomes.  相似文献   

13.
Six different techniques were compared for the extraction and purification of polysomes from cells of the desiccation-tolerant cyanobacterium Nostoc commune UTEX 584. Cells resisted treatment with lysozyme, and methods which relied upon ‘gentle lysis’ resulted in inefficient cell breakage and poor yields of polysomes. In contrast, the passage of cells through a French Pressure Cell achieved complete disruption of even the most resistant cell aggregates but only monosomes and ribosomal subunits were recovered. The grinding of cells with glass beads in the presence of neutral detergents was the most successful of all the methods tested and resulted in efficient cell lysis with high yields of polysomes. Treatment of the cells with acetone, at 0°C, prior to homogenization, also resulted in good yields of polysomes although the degree of cell breakage was less than when the cells were ground. The choice of the grinding material, and the extent of the grinding, were both critical for polysome extraction. Grinding of cells with alumina and sterile sand gave very efficient cell breakage but no polysomes were recovered. Excessive grinding with glass beads led to a progressive loss of intact polysomes and concomitant increase in 70 S monosomes and subunits in cell extracts.This study provides data on various physical treatments and buffer compositions which may be used effectively in the isolation and purification of polysomal RNA from highly resistant bacterial cells. A method which relies upon the grinding of cells in the presence of neutral detergents will permit further studies of gene expression in cells which resist methods of ‘gentle lysis’.  相似文献   

14.
In the present work the metabolism of poly(A)+ RNA was investigated in cells of Tetrahymena pyriformis derived either from stationary cultures or from starved suspensions that were initiating growth. Under these circumstances the organisms derived from stationary cultures synthesize ribosomal and poly(A)+ RNA and form polysomes. In the presence of actinomycin D (actD) the observed expansion of the polysomal population is arrested. Pre-starved cells, on the other hand, start making polysomes in the virtual absence of ribosomal and poly(A)+ RNA synthesis soon after being transferred to peptone medium. In this case polysome formation is only partially sensitive to actD. These results have been interpreted as indicating that, in the beginning of growth, cells derived from stationary cultures are dependent on RNA synthesis for polysome formation, whereas pre-starved cells use pre-synthesized RNA for the same purpose.  相似文献   

15.
Hyperthermia induced following injection of bacterial pyrogen to rabbits was associated with a disaggregation of brain polysomes to monosomes. Direct elevation of the body temperature to levels similar to that found after pyrogen administration also resulted in a brain polysome shift. The disaggregation of brain polysomes after either pyrogen injection or elevation of ambient temperature was not due to ribonuclease activation and the phenomenon was associated with a relocalization of polyadenylated mRNA from polysomes to monosomes. Since polysome disaggregation was not found in kidney, it appears that the brain may be more sensitive to elevations in body temperature.  相似文献   

16.
The isolation and in vitro assay of maternal mRNPs has led to differing conclusions as to whether maternal mRNAs in sea urchin eggs are in a repressed or 'masked' form. To circumvent the problems involved with in vitro approaches, we have used an in vivo assay to determine if the availability of mRNA and/or components of the translational machinery are limiting protein synthesis in the unfertilized egg. This assay involves the use of a protein synthesis elongation inhibitor to create a situation in the egg in which there is excess translational machinery available to bind mRNA. Eggs were fertilized and the rate of entry into polysomes of individual mRNAs was measured in inhibitor-treated and control embryos using 32P-labeled cDNA probes. The fraction of ribosomes in polysomes and the polysome size were also determined. The results from this in vivo approach provide strong evidence for the coactivation of both mRNAs and components of the translational machinery following fertilization. The average polysome size increases from 7.5 ribosomes per message in 15 min embryos to approximately 10.8 ribosomes in 2 h embryos. This result gives additional support to the idea that translational machinery, as well as mRNA, is activated following fertilization. We also found that individual mRNAs are recruited into polysomes with different kinetics, and that the fraction of an mRNA in polysomes in the unfertilized egg correlates with the rate at which that mRNA is recruited into polysomes following fertilization.  相似文献   

17.
When Escherichia coli is shifted from glucose-minimal to succinate-minimal medium, a transient inhibition of protein synthesis and a time-dependent redistribution of ribosomes from polysomes to 70S monosomes occurs. These processes are reversed by a shift-up with glucose. In a lysate made from a mixture of log-phase and down-shifted cells, the 70S monosomes are derived solely from the down-shifted cells and are therefore not produced by polysome breakage during preparation. This conclusion is supported by the absence of nascent proteins from the 70S peak. The monosomes are not dissociated by NaCl or by a crude ribosome dissociation factor, so they behave as "complexed" rather than "free" particles. When down-shifted cells are incubated with rifampin to block ribonucleic acid (RNA) synthesis, the 70S monosomes disappear with a half-life of 15 min. When glucose is also added this half-life decreases to 3 min. The 70S particles are stable in the presence of rifampin when chloramphenicol is added to block protein synthesis. We interpret these data to mean that the existence of the 70S monosomes depends on the continued synthesis of messenger RNA and their conversion to free ribosomes (which dissociate under our conditions) is a result of their participation in protein synthesis. Finally, a significant fraction of the RNA labeled during a brief pulse of (3)H-uracil is found associated with the 70S peak. These results are consistent with the hypothesis that the 70S monosomes are initiation complexes of single ribosomes and messenger RNA, which do not initiate polypeptide synthesis during a shift-down.  相似文献   

18.
The distribution of ribosomal proteins in monosomes, polysomes, the postribosomal cytosol, and the nucleus was determined during steady-state growth in vegetative amoebae. A partitioning of previously reported cell-specific ribosomal proteins between monosomes and polysomes was observed. L18, one of the two unique proteins in amoeba ribosomes, was distributed equally among monosomes and polysomes. However S5, the other unique protein, was abundant in monosomes but barely visible in polysomes. Of the developmentally regulated proteins, D and S6 were detectable only in polysomes and S14 was more abundant in monosomes. The cytosol revealed no ribosomal proteins. On staining of the nuclear proteins with Coomassie blue, about 18, 7 from 40S subunit and 11 from 60S subunit, were identified as ribosomal proteins. By in vivo labeling of the proteins with [35S]methionine, 24 of the 34 small subunit proteins and 33 of the 42 large subunit proteins were localized in the nucleus. For the majority of the ribosomal proteins, the apparent relative stoichiometry was similar in nuclear preribosomal particles and in cytoplasmic ribosomes. However, in preribosomal particles the relative amount of four proteins (S11, S30, L7, and L10) was two- to four-fold higher and of eight proteins (S14, S15, S20, S34, L12, L27, L34, and L42) was two-to four-fold lower than that of cytoplasmic ribosomes.  相似文献   

19.
20.
The influence of amino acid starvation on polysome content was examined in relaxed and stringent strains of Escherichia coli which were isogenic for the RC locus. No difference was observed between the polysome profiles obtained from two different sets of stringent and relaxed strains starved for the same amino acid. In both relaxed and stringent strains, starvation for amino acids other than methionine resulted in only a slight breakdown of polysomes with a concomitant increase of 70S ribosomes. However, starvation for methionine in both RC stringent and relaxed strains of E. coli resulted in a more extensive degradation of polysomes and accumulation of 70S ribosomes. The 70S ribosomes obtained as a result of methionine starvation were more sensitive to degradation to 50 and 30S subunits in 10(-3)m Mg(2+) than 70S monomers obtained either by degradation of polysomes with ribonuclease or by starvation of cells for amino acids other than methionine. The 70S ribosomes from methionine starvation were similar (sensitivity to 10(-3)m Mg(2+)) to 70S ribosomes obtained from cells in which initiation of protein synthesis had been prevented by trimethoprim, an inhibitor of formylation. Since N-formyl-methionyl-transfer ribonucleic acid is required for initiation, the 70S ribosomes obtained in both methionine-starved and trimethoprim-treated cells must result from association of 50 and 30S subunits for reasons other than reinitiation. These results suggest that the level of ribonucleic acid synthesis does not influence the distribution of ribosomes in the polysome profile and vice versa.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号