首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Seedlings of wheat (Triticum aestivum L.) cultivars Jing 411, Jinmai 30 and Yangmai 10 were exposed to 0, 10, 20, 30, 40 or 50 μM of CdCl2 in a solution culture experiment. The effects of cadmium (Cd) stress on wheat growth, leaf photon energy conversion, gas exchange, and Cd accumulation in wheat seedlings were investigated. Gas exchange was monitored at 3, 9, 24 days after treatment (DAT). Growth parameters, chlorophyll content, leaf chlorophyll fluorescence, and Cd concentration in shoot and root were measured at 24 DAT. Seedling growth, gas exchange, chlorophyll content, chlorophyll fluorescence parameters were generally depressed by Cd stress, especially under the high Cd concentrations. Cd concentration and accumulation in both shoots and roots increased with increasing external Cd concentrations. Relationships between corrected parameters of growth, photosynthesis and fluorescence and corrected Cd concentrations in shoots and roots could be explained by the regression model Y = K/(1 + exp(a + bX)). Jing 411 was found to be Cd tolerant considering parameters of chlorophyll content, photosynthesis and chlorophyll fluorescence in which less Cd translocation was from roots into shoots. The high Cd concentrations were in shoots and roots in Yangmai 10 which has been found to be a relative Cd tolerant cultivar in terms of most growth parameters.  相似文献   

2.
In order to identify the variation of cadmium (Cd) tolerance and accumulation in wheat (Triticum aestivum L.), a study was conducted in hydroponic culture with or without Cd using recombinant inbred lines (RILs) consisting of 103 RILs derived from a cross of Chuan 35050 × Shannong 483 at seedling stage. The parameters of shoot height, secondary roots numbers, tiller numbers, shoot dry weights, root dry weights, and maximum efficiency of photosystem II photochemistry under dark-adopted conditions were measured. Cd-tolerant indexes were then calculated as relative the above traits under Cd stress to those under the control. Cd concentration in shoot or root was determined and Cd accumulation and translocation were calculated. Based on the Cd-tolerant indexes, membership function analysis was used to determine the variation of the above parameters. The results showed a continuous distribution among the RILs and then the RILs were divided into five groups according to their tolerance. Lines 76 and 17 were considered as the most Cd-tolerant lines while lines 103 and 51 were as the most Cd-sensitive lines. Meanwhile, lines 38 and 79 were with minimum Cd translocation ratio while lines 88 and 53 were with maximum Cd translocation ratio, respectively. The relationship between Cd tolerance and accumulation was not significant, indicating Cd tolerance and accumulation may be independent traits in the RILs. Thus, lines with high Cd tolerance and less Cd accumulation could be selected for wheat breeding.  相似文献   

3.
Quantitative trait loci (QTL) for Cadmium (Cd) tolerance and accumulation in wheat (Triticum aestivum L.) were identified, using 103 recombinant inbred lines (RILs) derived from a cross of Ch × Sh at germination and seedling stages. The traits of germination, growth and physiology were measured. Cd tolerance indexes (TI) were calculated for plants under Cd stress relative to control conditions. Cd concentrations in both root and shoot were determined and the amount of Cd accumulation and translocation calculated. The phenotypic variation of the above traits showed a continuous distribution pattern among the RILs. Twenty-six QTLs were detected, (16 of which were designated for the traits under the control and Cd stress, 8 for Cd tolerance and 2 for root Cd accumulation). These 26 QTLs individually could explain 7.97–60.16% of the phenotypic variation. Fourteen QTLs were positive (with the additive effects coming from Ch) while the remaining 12 QTLs were negative (with the additive effects contributed by Sh). No QTL were detected in the same region on the chromosomes of wheat. The results indicated that genetic mechanisms controlling the traits of Cd tolerance were independent from each other. Therefore, in this study, the properties of Cd tolerance and accumulation showed to be independent traits in wheat.  相似文献   

4.
Two successive hydroponic experiments were carried out to identify barley varieties tolerant to Cd toxicity via examining Soil–Plant Analyses Development (SPAD) value, plant height, leaves and tillers per plant, root number and volume, and biomass accumulation. The results showed that SPAD values (chlorophyll meter readings), plant height, leaf number, root number and volume, and biomass accumulation of shoot/root were significantly reduced in the plants grown in 20 μM Cd nutrient solution compared with control, and the uptake and translocation of Zn, Mn, and Cu was also strictly hindered. Furthermore, there was a highly significant difference in the reduction in these growth parameters among varieties, and varieties “Weisuobuzhi” and “Jipi 1” showed the least reduction both in the two experiments, suggesting their high tolerance to Cd toxicity, while “Dong 17” and “Suyinmai 2” with the greatest reduction and the toxicity symptoms appeared rapidly and severely, denoting as Cd-sensitive varieties. Significant variety difference in Cd concentration was also found, with Weisuobuzhi containing the highest and Jipi 1 the lowest Cd concentration in shoots.  相似文献   

5.
Soybean cultivars show significant differences in cadmium (Cd) concentrations in seeds, due primarily to genetics, not environmental factors. We previously suggested that low-Cd cultivars accumulate Cd in their roots and thus prevent its translocation to the rest of the plant. Through grafting experiments, we drew the following conclusions about Cd absorption and translocation: (1) The amount of Cd accumulated in shoots is determined by the Cd accumulation capacity of roots: cultivars with a small capacity to accumulate Cd in roots translocate more Cd and accumulate it in shoots; (2) The Cd concentration in shoots is determined by the Cd accumulation capacity of roots and the shoot productive ability of the scion cultivar; (3) The Cd tolerance of shoots differs among cultivars. Enrei, with a high-Cd accumulation capacity of roots, had a low Cd tolerance of shoots compared with Suzuyutaka and Hatayutaka, with a low Cd accumulation capacity of roots; (4) Cultivars differ in their distribution of Cd to seed; (5) These results show that seed Cd concentration is influenced by the differences among cultivars in ease of translocation of Cd to seed and in Cd accumulation capacity of roots.  相似文献   

6.
7.
We review the detrimental effects of waterlogging on physiology, growth and yield of wheat. We highlight traits contributing to waterlogging tolerance and genetic diversity in wheat. Death of seminal roots and restriction of adventitious root length due to O2 deficiency result in low root:shoot ratio. Genotypes differ in seminal root anoxia tolerance, but mechanisms remain to be established; ethanol production rates do not explain anoxia tolerance. Root tip survival is short‐term, and thereafter, seminal root re‐growth upon re‐aeration is limited. Genotypes differ in adventitious root numbers and in aerenchyma formation within these roots, resulting in varying waterlogging tolerances. Root extension is restricted by capacity for internal O2 movement to the apex. Sub‐optimal O2 restricts root N uptake and translocation to the shoots, with N deficiency causing reduced shoot growth and grain yield. Although photosynthesis declines, sugars typically accumulate in shoots of waterlogged plants. Mn or Fe toxicity might occur in shoots of wheat on strongly acidic soils, but probably not more widely. Future breeding for waterlogging tolerance should focus on root internal aeration and better N‐use efficiency; exploiting the genetic diversity in wheat for these and other traits should enable improvement of waterlogging tolerance.  相似文献   

8.
Cadmium (Cd) is a nonessential heavy metal that can be harmful at low concentrations in organisms. Therefore, it is necessary to decrease Cd accumulation in the grains of wheats aimed for human consumption. In response to Cd, higher plants synthesize sulphur-rich peptides, phytochelatins (PCs). PC–heavy metal complexes have been reported to accumulate in the vacuole. Retention of Cd in the root cell vacuoles might influence the symplastic radial Cd transport to the xylem and further transport to the shoot, resulting in genotypic differences in grain Cd accumulation. We have studied PC accumulation in 12-day-old seedlings of two cultivars of spring bread wheat (Triticum aestivum), and two spring durum wheat cultivars (Triticum turgidum var. durum) with different degrees of Cd accumulation in the grains. Shoots and roots were analysed for dry weight, Cd and PC accumulation. There were no significant differences between the species or the varieties in the growth response to Cd, nor in the distributions of PC chain lengths or PC isoforms. At 1 μM external Cd, durum wheat had a higher total Cd uptake than bread wheat, however, the shoot-to-root Cd concentration ratio was higher in bread wheat. When comparing varieties within a species, the high grain Cd accumulators exhibited lower rates of root Cd accumulation, shoot Cd accumulation, and root PC accumulation, but higher shoot-to-root Cd concentration ratios. Intraspecific variation in grain Cd accumulation is apparently not only explained by differential Cd accumulation as such, but rather by a differential plant-internal Cd allocation pattern. However, the higher average grain Cd accumulation in the durum wheats, as compared to the bread wheats, is associated with a higher total Cd accumulation in the plant, rather than with differential plant-internal Cd allocation. The root-internal PC chain length distributions and PC–thiol-to-Cd molar ratios did not significantly differ between species or varieties, suggesting that differential grain Cd accumulation is not due to differential PC-based Cd sequestration in the roots.  相似文献   

9.
In order to investigate the cadmium (Cd) accumulation patterns and possible alleviation of Cd stress by mycorrhization, sunflower plants (Helianthus annuus L.) were grown in the presence or absence of Cd (20 micromol L(-1)) and inoculated or not inoculated with the arbuscular mycorrhizal fungus (AMF) Glomus intraradices. No visual symptoms of Cd phytotoxicity were observed; nevertheless, in non-mycorrhizal plants the presence of Cd decreased plant growth. The addition of Cd had no significant effect on either mycorrhizal colonization or the amount of extra-radical mycelia that was produced by the AMF. Cd accumulated mainly in roots; only 22% of the total Cd absorbed was translocated to the shoots, where it accumulated to an average of 228 mg Cd kg(-1). Although the shoot-to-root ratio of Cd was similar in both the AMF inoculated and non-inoculated plants, the total absorbed Cd was 23% higher in mycorrhizal plants. Cd concentration in AMF extra-radical mycelium was 728 microg g(-1) dry weight. Despite the greater absorption of Cd, mycorrhizal plants showed higher photosynthetic pigment concentrations and shoot P contents. Cd also influenced mineral nutrition, leading to decreased Ca and Cu shoot concentrations; N, Fe and Cu shoot contents; and increased S and K shoot concentrations. Cd induced guaiacol peroxidase activity in roots in both mycorrhizal and non-mycorrhizal plants, but this increase was much more accentuated in non-mycorrhizal roots. In conclusion, sunflower plants associated with G. intraradices were less sensitive to Cd stress than non-mycorrhizal plants. Mycorrhizal sunflowers showed enhanced Cd accumulation and some tolerance to excessive Cd concentrations in plant tissues.  相似文献   

10.
Soil pollution is a world-wide problem, with heavy metals being a major part of the concern. To investigate the effect of temperature on cadmium (Cd) uptake and translocation, as well as Cd tolerance in wild and cultivated species of safflower, a hydroponic experiment was conducted under controlled conditions. The responses of four wild genotypes (Isfahan, Arak, Azari, and Shiraz) and four cultivated genotypes (AC-Sterling, 2811, Saffire, and C111) of safflower to nine levels of CdCl2 (0, 0.5, 1, 5, 10, 20, 50, 100, and 500 μM) in solution were examined under two temperatures (18 and 23 °C). Cadmium sensitivity was determined using the Weibull model on the total dry weight of the plants. Cadmium uptake and translocation were analyzed on 1 μM Cd treated plants. Results revealed that safflower genotypes differed in terms of uptake, translocation, and tolerance to Cd, with AC-Sterling and Arak indicating the most and the least tolerance to Cd, respectively. Relative Cd uptake and Cd concentration in roots and shoots increased with an increase in temperature in all genotypes, with the exception of AC-Sterling. Net accumulation of Cd via root increased with an increase in temperature for the wild Azari and the cultivated 2811, Saffire, and C111, though it decreased for the rest of genotypes. Cadmium translocation to shoots significantly increased with increased temperature in all genotypes. Cadmium translocation from roots to shoots in cultivated genotypes was significantly greater than in wild genotypes. Root Cd concentration in wild genotypes was significantly greater than in cultivated genotypes. It seems that wild and cultivated species of safflower differ in their response to Cd. Furthermore, temperature may affect the plant's tolerance to Cd, probably through accompanying changes in Cd uptake and translocation from root to shoot.  相似文献   

11.
Thlaspi caerulescens J. & C. Presl is a distinctive metallophyte of central and western Europe that almost invariably hyperaccumulates Zn to> 1.0% of shoot dry biomass in its natural habitats, and can hyperaccumulate Ni to> 0.1% when growing on serpentine soils. Populations from the Ganges region of southern France also have a remarkable ability to accumulate Cd in their shoots to concentrations well in excess of 0.01% without apparent toxicity symptoms. Because hyperaccumulation of Cd appears to be highly variable in this species, the relationship between Cd tolerance and metal accumulation was investigated for seven contrasting populations of T. caerulescens grown under controlled conditions in solution culture. The populations varied considerably in average plant biomass (3.1‐fold), shoot : root ratio (2.2‐fold), Cd hyperaccumulation (3.5‐fold), shoot : root Cd‐concentration ratio (3.1‐fold), and shoot Cd : Zn ratio (2.6‐fold), but the degree of hyperaccumulation of Cd and Zn were strongly correlated. Two populations from the Ganges region were distinct in exhibiting high degrees of both Cd tolerance and hyperaccumulation (one requiring 3 µM Cd for optimal growth), whereas across the other five populations there was an inverse relationship between Cd tolerance and hyperaccumulation, as has been noted previously for Zn. Metal hyperaccumulation was negatively correlated with shoot : root ratio, which could account quantitatively for the differences between populations in shoot Zn (but not Cd) concentrations. On exposure to 30 µM Cd, the two Ganges populations showed marked reductions in shoot Zn and Fe concentrations, although Cd accumulation was not inhibited by elevated Zn; in the other five populations, 30 µM Cd had little or no effect on Zn or Fe accumulation but markedly reduced shoot Ca concentration. These results support a proposal that Cd is taken up predominantly via a high‐affinity uptake system for Fe in the Ganges populations, but via a lower‐affinity pathway for Ca in other populations. Total shoot Cd accumulated per plant was much more closely related to population Cd tolerance than Cd hyperaccumulation, indicating that metal tolerance may be the more important selection criterion in developing lines with greatest phytoremediation potential.  相似文献   

12.
This study investigated the effect of exogenous amino acids on apoplastic and symplastic uptake and root to shoot translocation of nickel (Ni) in two wheat cultivars. Seedlings of a bread (Triticum aestivum cv. Back Cross) and a durum wheat cultivar (T. durum cv. Durum) were grown in a modified Johnson nutrient solution and exposed to two levels (50 and 100 μM) of histidine, glycine, and glutamine. Application of amino acids resulted in increasing symplastic to apoplastic Ni ratio in roots of both wheat cultivars, although glutamine and glycine were more effective than histidine under our experimental conditions. The amino acid used in the present study generally increased the relative transport of Ni from the roots to shoots in both wheat cultivars. Higher amounts of Ni were translocated to wheat shoots in the presence of histidine than the other amino acids studied, which indicated that histidine was more effective in translocation of Ni from roots to shoots. Amino acids used in the present study largely increased root symplastic Ni, but shoot Ni accumulation was much lower than the total Ni accumulation in roots, indicating a large proportion of Ni was retained or immobilized in wheat roots (either in the apoplastic or symplastic space), with only a very small fraction of Ni being translocated from the root to the shoot. According to the results, glutamine and glycine were more effective than histidine in enhancing the symplastic to apoplastic Ni ratio in the roots, while more Ni was translocated from the roots to the shoots in the presence of histidine.  相似文献   

13.
Cadmium is readily taken up from soils by plants, depending on soil chemistry, and variably among species and cultivars; altered transpiration and xylem transport and/or translocation in the phloem could cause this variation in Cd accumulation, some degree of which is heritable. Using Triticum turgidum var. durum cvs Kyle and Arcola (high and low grain Cd accumulating, respectively), the objectives of this study were to determine if low-concentration Cd exposure alters transpiration, to relate transpiration to accumulation of Cd in roots and shoots at several life stages, and to evaluate the role of apoplastic bypass in the accumulation of Cd in shoots. The low abundance isotope (106)Cd was used to probe Cd translocation in plants which had been exposed to elemental Cd or were Cd-na?ve; apoplastic bypass was monitored using the fluorescent dye PTS (8-hydroxy-1,3,6-pyrenetrisulphonate). Differential accumulation of Cd by 'Kyle' and 'Arcola' could be partially attributed to the effect of Cd on transpiration, as exposure to low concentrations of Cd increased mass flow and concomitant Cd accumulation in 'Kyle'. Distinct from this, exposure of 'Arcola' to low concentrations of Cd reduced translocation of Cd from roots to shoots relative to root accumulation of Cd. It is possible, but not tested here, that sequestration mechanisms (such as phytochelatin production, as demonstrated by others) are the genetically controlled difference between these two cultivars that results in differential Cd accumulation. These results also suggest that apoplastic bypass was not a major pathway of Cd transport from the root to the shoot in these plants, and that most of the shoot Cd resulted from uptake into the stele of the root via the symplastic pathway.  相似文献   

14.
A hydroponic experiment was carried out to study the role of hydrogen peroxide (H2O2) in enhancing tolerance and reducing translocation of cadmium (Cd) in rice seedlings. Plant growth (length and biomass of shoot and root) was significantly repressed by Cd exposure. However, pretreatment with 100 μM H2O2 for 1d mitigated Cd stress by inducing enzyme activities for antioxidation (e.g., superoxide dismutase (SOD), catalase (CAT), guaiacol peroxidase (GPX), ascorbate peroxidase (APX)) and detoxification (e.g., glutathione S-transferase (GST)) as well as by elevating contents of reduced glutathione (GSH) and ascorbic acid (AsA). As a result, H2O2 and malondialdehyde (MDA) content decreased in plants and the seedling growth was less inhibited. On the other hand, H2O2 pretreatment decreased Cd concentration in shoots, thus lowered the ratio of Cd concentration in shoots and roots (S/R), indicating that H2O2 may affect Cd distribution in rice seedlings. The improved Cd tolerance is partly due to an enhanced antioxidative system that efficiently prevents the accumulation of H2O2 during Cd stress. Increased Cd sequestration in rice roots may contribute to the decline of Cd translocation.  相似文献   

15.
Here, we examined the effectiveness of two approaches for reducing cadmium (Cd) accumulation in durum wheat (Triticum turgidum L. var durum) grain: the application of supplemental zinc (Zn), and the use of cultivars exhibiting reduced grain Cd concentrations. Two durum wheat near-isogenic lines (NIL) that differ in grain Cd accumulation were grown to maturity in solution culture containing a chelating agent to buffer the free activities of Zn and Cd at levels approximating those of field conditions. The low Cd accumulating (L-Cd) isoline had Cd concentrations, in grains and shoot parts, which were 60-70% lower than those of the high Cd accumulating (H-Cd) isoline. Increasing the Zn activities in the nutrient solution from deficient to sufficient levels reduced the concentration of Cd in grains and vegetative shoot parts of both isolines. The results suggest that supplemental Zn reduces Cd tissue concentrations by inhibiting Cd uptake into roots. Cd partitioning patterns between roots and shoots and between spike components suggest that the physiological basis for the low Cd trait is related to the compartmentation or symplasmic translocation of Cd.  相似文献   

16.
Physiological and genetic studies have been undertaken to further the understanding of genetic variation in response to high concentrations of B in the soil and so facilitate the breeding of tolerant varieties for cultivation in high B regions. Genetic variation in response to high concentrations of B has been identified for a number of crop and pasture species of southern Australia, including wheat, barley, oats, field peas and annual pasture medics. The wheat variety Halberd, which was the most widely grown variety in Australia during the 1970s and early 1980s, is the most tolerant of the current Australian wheat varieties. The mechanism of tolerance for all species studied is reduced accumulation of B by tolerant genotypes in both roots and shoots. Results from experiments of uptake kinetics indicate that control of B uptake is a non-metabolic process. The response of wheat to high B supply is under the control of several major additive genes, one of which has been located to chromosome 4A.  相似文献   

17.
Sheng  Huajin  Zeng  Jian  Liu  Yang  Wang  Xiaolu  Wang  Yi  Kang  Houyang  Fan  Xing  Sha  Lina  Zhang  Haiqin  Zhou  Yonghong 《Journal of Plant Growth Regulation》2020,39(2):795-808

The effect of Mn and NaCl on growth, mineral nutrients and antioxidative enzymes in two tetroploid wheat genotypes differing in salt tolerance was investigated in this study. 100 mM NaCl and Mn stress significantly inhibited plant growth, photosynthesis and Ca uptake, while stimulated ROS accumulation, MDA and proline content in wheat plants, Mn stress also increased SOD, APX, GR and DHAR activities. Durum wheat (AS780) was less affected by 100 mM NaCl and Mn stress than emmer wheat (AS847) due to more proline production, higher antioxidative enzymes activities and less-affected mineral nutrients. Application of 10 mM NaCl to Mn-stressed durum wheat alleviated Mn-induced damage by reducing Mn accumulation and translocation, while promoting proline accumulation and SOD, APX and GR activities. Irrespective of NaCl level, the combined stress of Mn and NaCl caused more severe oxidative stress, result in further reduction of photosynthetic rate and plant growth in emmer wheat as compared to Mn stress alone. The additively negative effects of NaCl and Mn stress on growth of emmer wheat results from reduced SOD and APX activities as well as Ca, Cu and Fe accumulation in both shoots and roots. These results suggest that salt-tolerant durum wheat is superior to emmer in adapting to Mn stress and the combined stress of salinity and Mn.

  相似文献   

18.
Metal load is an abiotic stress that becomes stronger by continual industrial production, wastage, and long-range transport of contaminants. It deteriorates the conditions of agricultural soil that leads to lower growth of cereals as well as decreasing nutritional value of harvested grains. Cadmium (Cd) entry by food chain also affects the health of population. The present study is focused on finding out the superior cereal variety under increasing Cd regime. The plants were grown in increasing Cd levels (0–1000 µM) in the medium and were investigated on 15th day of the exposure. Various parameters like antioxidative enzymes and osmoprotectant levels were studied in both roots and shoots. Cd accumulation in plant organs was determined by atomic absorption spectrophotometry (AAS). Analysis of stress tolerance mechanisms through reactive oxygen species (ROS) scavenging and better partitioning of Cd in roots indicated kodo millet to be more stress tolerant than wheat.  相似文献   

19.

Background and Aims

Cultivars of water spinach (Ipomoea aquatica Forsk.) differ widely in their shoot cadmium (Cd) concentration. Previously, we suggested that low-Cd cultivars are better able to retain Cd in their roots and thus prevent root-to-shoot Cd translocation. In this study, we explored the roles of roots and shoots in Cd accumulation in a high-Cd (T308) and low-Cd cultivar (QLQ).

Methods

We used reciprocal grafting to determine the importance of roots and shoots in Cd accumulation, and a dithizone histochemical method to investigate Cd distribution in the roots.

Results

The T308 scion with QLQ rootstock accumulated less Cd than the shoot of non-grafted T308. The QLQ scion with T308 rootstock showed a significantly higher Cd concentration than that in the shoot of non-grafted QLQ. Cadmium induced thicker phellem formation in the main roots of QLQ than in those of T308 and only QLQ showed thickening of the outer cortex cell walls in lateral roots.

Conclusions

Shoot Cd accumulation was primarily determined by root-to-shoot Cd translocation, not root Cd uptake. The thicker phellem and outer cortex cell walls in QLQ than in T308 may be one reason why QLQ roots were able to retain more Cd, and thus reducing Cd translocation to shoots.  相似文献   

20.
High Cd content in durum wheat (Triticum turgidum L. var durum) grain grown in the United States and Canada presents potential health and economic problems for consumers and growers. In an effort to understand the biological processes that result in excess Cd accumulation, root Cd uptake and xylem translocation to shoots in seedlings of bread wheat (Triticum aestivum L.) and durum wheat cultivars were studied. Whole-plant Cd accumulation was somewhat greater in the bread wheat cultivar, but this was probably because of increased apoplastic Cd binding. Concentration-dependent 109Cd2+-influx kinetics in both cultivars were characterized by smooth, nonsaturating curves that could be dissected into linear and saturable components. The saturable component likely represented carrier-mediated Cd influx across root-cell plasma membranes (Michaelis constant, 20–40 nm; maximum initial velocity, 26–29 nmol g−1 fresh weight h−1), whereas linear Cd uptake represented cell wall binding of 109Cd. Cd translocation to shoots was greater in the bread wheat cultivar than in the durum cultivar because a larger proportion of root-absorbed Cd moved to shoots. Our results indicate that excess Cd accumulation in durum wheat grain is not correlated with seedling-root influx rates or root-to-shoot translocation, but may be related to phloem-mediated Cd transport to the grain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号