首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Background

Little is known of vitamin D concentration in cerebrospinal fluid (CSF) in Alzheimer´s disease (AD) and its relation with CSF acetylcholinesterase (AChE) activity, a marker of cholinergic function.

Methods

A cross-sectional study of 52 consecutive patients under primary evaluation of cognitive impairment and 17 healthy controls. The patients had AD dementia or mild cognitive impairment (MCI) diagnosed with AD dementia upon follow-up (n = 28), other dementias (n = 12), and stable MCI (SMCI, n = 12). We determined serum and CSF concentrations of calcium, parathyroid hormone (PTH), 25-hydroxyvitamin D (25OHD), and CSF activities of AChE and butyrylcholinesterase (BuChE).

Findings

CSF 25OHD level was reduced in AD patients (P < 0.05), and CSF AChE activity was decreased both in patients with AD (P < 0.05) and other dementias (P < 0.01) compared to healthy controls. None of the measured variables differed between BuChE K-variant genotypes whereas the participants that were homozygous in terms of the apolipoprotein E (APOE) ε4 allele had decreased CSF AChE activity compared to subjects lacking the APOE ε4 allele (P = 0.01). In AD patients (n=28), CSF AChE activity correlated positively with CSF levels of total tau (T-tau) (r = 0.44, P < 0.05) and phosphorylated tau protein (P-tau) (r = 0.50, P < 0.01), but CSF activities of AChE or BuChE did not correlate with serum or CSF levels of 25OHD.

Conclusions

In this pilot study, both CSF 25OHD level and CSF AChE activity were reduced in AD patients. However, the lack of correlations between 25OHD levels and CSF activities of AChE or BuChE might suggest different mechanisms of action, which could have implications for treatment trials.  相似文献   

2.

Background

Alzheimer''s disease (AD) involves loss of cholinergic neurons and Tau protein hyper-phosphorylation. Here, we report that overexpression of an N-terminally extended “synaptic” acetylcholinesterase variant, N-AChE-S is causally involved in both these phenomena.

Methodology and Principal Findings

In transfected primary brain cultures, N-AChE-S induced cell death, morphological impairments and caspase 3 activation. Rapid internalization of fluorescently labeled fasciculin-2 to N-AChE-S transfected cells indicated membranal localization. In cultured cell lines, N-AChE-S transfection activated the Tau kinase GSK3, induced Tau hyper-phosphorylation and caused apoptosis. N-AChE-S-induced cell death was suppressible by inhibiting GSK3 or caspases, by enforced overexpression of the anti-apoptotic Bcl2 proteins, or by AChE inhibition or silencing. Moreover, inherent N-AChE-S was upregulated by stressors inducing protein misfolding and calcium imbalances, both characteristic of AD; and in cortical tissues from AD patients, N-AChE-S overexpression coincides with Tau hyper-phosphorylation.

Conclusions

Together, these findings attribute an apoptogenic role to N-AChE-S and outline a potential value to AChE inhibitor therapeutics in early AD.  相似文献   

3.
Abstract

Alzheimer's disease (AD) affects approximately 10% of the world's population with 65 years of age, being the most common form of dementia in adults and is characterized by senile plaquets and cholinergic deficits. Many drugs currently used for the treatment of the AD are based on the improvement of cholinergic neurotransmission achieved by Acetylcho- linesterase (AChE) inhibition, the enzyme responsible for acetylcholine hydrolysis. We have focused in this work on the usage of computer-aided molecular design by virtual screening, molecular dynamics with implicit and explicit water solvation, density functional, molecular interaction field studies, docking procedures, ADMET predictions in order to propose novel potential AChE inhibitor for the treatment of Alzheimer's disease.  相似文献   

4.
Alzheimer’s disease (AD) is a progressive condition, where dementia symptoms gradually worsen. Biochemically the disease is characterized by the presence of neuritic plaques, neurofibrillary tangles, in addition to cholinergic dysfunction in the central nervous system. The role of the cholinergic neurotransmission in AD is the basis of the widely accepted cholinergic hypothesis. Some of the most relevant therapies for the treatment of the disease are based on the acetylcholinesterase (AChE) inhibitor activity; however, these therapies are not effective to stop the disease progression, but only can temporarily slow down the worsening of dementia symptoms, and improve quality of life of patients and their caregivers. In recent years, plant alkaloids extracted from Amaryllidaceae family have received great attention due to the well-known anti cholinergic activity. In this context, the purpose of this study was to apply the docking molecular in sílico analysis aiming to examine the recombinant human AChE enzyme (rhAChE) inhibitory activity displayed by different alkaloids from Amaryllidaceae family. Overall, the present results support the idea that alkaloids reported in this research are capable of interacting with rhAChE-binding sites.  相似文献   

5.
Aluminum (Al), a neurotoxic agent, has been associated with Alzheimer’s disease (AD), which is characterized by cholinergic dysfunction in the central nervous system. In this study, we evaluated the effect of long-term exposure to aluminum on acetylcholinesterase (AChE) activity in the central nervous system in different brain regions, in synaptosomes of the cerebral cortex and in erythrocytes. The animals were loaded by gavage with AlCl3 50 mg/kg/day, 5 days per week, totalizing 60 administrations. Rats were divided into four groups: (1) control (C); (2) 50 mg/kg of citrate solution (Ci); (3) 50 mg/kg of Al plus citrate (Al + Ci), and (4) 50 mg/kg of Al (Al). AChE activity in striatum was increased by 15% for Ci, 19% for Al + Ci and 30% for Al, when compared to control (P < 0.05). The activity in hypothalamus increased 23% for Ci, 26% for Al + Ci and 28% for Al, when compared to control (P < 0.05). AChE activity in cerebellum, hippocampus and cerebral cortex was decreased by 11%, 23% and 21% respectively, for Al, when compared to the respective controls (P < 0.05). AChE activity in synaptosomes was increased by 14% for Al, when compared to control (P < 0.05). Erythrocyte AChE activity was increased by 17% for Al + Ci and 11% for Al, when compared to control (P < 0.05). These results indicate that Al affects at the same way AChE activity in the central nervous system and erythrocyte. AChE activity in erythrocytes may be considered a marker of easy access of the central cholinergic status.  相似文献   

6.
Acetylcholinesterase (AChE) inhibitors are currently in focus for the pharmacotherapy of Alzheimer’s disease (AD). These inhibitors increase the level of acetylcholine in the brain and facilitate cholinergic neurotransmission. AChE inhibitors such as rivastigmine, galantamine, physostigmine and huperzine are obtained from plants, indicating that plants can serve as a potential source for novel AChE inhibitors. We have performed a virtual screening of diverse natural products with distinct chemical structure against AChE. NDGA was one among the top scored compounds and was selected for enzyme kinetic studies. The IC50 of NDGA on AChE was 46.2 μM. However, NDGA showed very poor central nervous system (CNS) activity and blood–brain barrier (BBB) penetration. In silico structural modification on NDGA was carried out in order to obtain derivatives with better CNS activity as well as BBB penetration. The studies revealed that some of the designed compounds can be used as lead molecules for the development of drugs against AD
Figure
Inhibitory activity of NDGA against AChE  相似文献   

7.
Alzheimer's disease (AD) affects approximately 10% of the world's population with 65 years of age, being the most common form of dementia in adults and is characterized by senile plaquets and cholinergic deficits. Many drugs currently used for the treatment of the AD are based on the improvement of cholinergic neurotransmission achieved by Acetylcholinesterase (AChE) inhibition, the enzyme responsible for acetylcholine hydrolysis. We have focused in this work on the usage of computer-aided molecular design by virtual screening, molecular dynamics with implicit and explicit water solvation, density functional, molecular interaction field studies, docking procedures, ADMET predictions in order to propose novel potential AChE inhibitor for the treatment of Alzheimer's disease.  相似文献   

8.
Alzheimer’s disease (AD) is a prevalent neurodegenerative disorder, which affected 35 million people in the world. The most practiced approach to improve the life expectancy of AD patients is to increase acetylcholine neurotransmitter level at cholinergic synapses by inhibition of cholinesterase enzymes. A series of unreported piperidone grafted spiropyrrolidines 8(a-p) were synthesized and evaluated in vitro for their acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) inhibitory activities. Therein, compounds 8h and 8l displayed more potent AChE enzyme inhibition than standard drug with IC50 values of 1.88 and 1.37 µM, respectively. Molecular docking simulations for 8l possessing the most potent AChE inhibitory activities, disclosed its interesting binding templates to the active site channel of AChE enzymes. These compounds are remarkable AChE inhibitors and have potential as AD drugs.  相似文献   

9.

Background

Many studies have been conducted in an extensive effort to identify alterations in blood cholinesterase levels as a consequence of disease, including the analysis of acetylcholinesterase (AChE) in plasma. Conventional assays using selective cholinesterase inhibitors have not been particularly successful as excess amounts of butyrylcholinesterase (BuChE) pose a major problem.

Principal Findings

Here we have estimated the levels of AChE activity in human plasma by first immunoprecipitating BuChE and measuring AChE activity in the immunodepleted plasma. Human plasma AChE activity levels were ∼20 nmol/min/mL, about 160 times lower than BuChE. The majority of AChE species are the light G1+G2 forms and not G4 tetramers. The levels and pattern of the molecular forms are similar to that observed in individuals with silent BuChE. We have also compared plasma AChE with the enzyme pattern obtained from human liver, red blood cells, cerebrospinal fluid (CSF) and brain, by sedimentation analysis, Western blotting and lectin-binding analysis. Finally, a selective increase of AChE activity was detected in plasma from Alzheimer''s disease (AD) patients compared to age and gender-matched controls. This increase correlates with an increase in the G1+G2 forms, the subset of AChE species which are increased in Alzheimer''s brain. Western blot analysis demonstrated that a 78 kDa immunoreactive AChE protein band was also increased in Alzheimer''s plasma, attributed in part to AChE-T subunits common in brain and CSF.

Conclusion

Plasma AChE might have potential as an indicator of disease progress and prognosis in AD and warrants further investigation.  相似文献   

10.
The pattern of molecular forms of acetylcholinesterase (AChE, EC 3.1.1.7) and butyrylcholinesterase (BChE, EC 3.1.1.8) separated by density gradient centrifugation was investigated in the brain and cerebrospinal fluid in Alzheimer's disease (AD), in human embryonic brain and in rat brain after experimental cholinergic deafferentation of the cerebral cortex. While a selective loss of the AChE G4 form was a rather constant finding in AD, a small but significant increase of G1 for both AChE and BChE was found in the most severely affected cases. Both in normal human brain and in AD a significant relationship could be established between the AChE G4/G1 ratio in different brain regions and the activity of choline acetyltransferase (ChAT). A similar decrease of the AChE G4 form as observed in AD can be induced in rat by experimental cholinergic deafferentation of the cerebral cortex. The increase in G1 of both AChE and BChE in different brain regions in AD is quantitatively related to the local density of neuritic plaques which are histochemically reactive for both enzymes. In human embryonic brain, a high abundance of G1 and a low G4/G1 ratio for both AChE and BChE was found resembling the pattern observed in AD. Furthermore, both in embryonic brain and in AD AChE shows no substrate inhibition which is a constant feature of the enzyme in the adult human brain. It is, therefore, concluded that the degeneration of the cholinergic cortical afferentation in AD as reflected by a decrease of AChE G4 is accompanied by the process of a neuritic sprouting response involved in plaque formation which is probably associated with the expression of a developmental form of the enzyme.  相似文献   

11.
Gintonin is a novel ginseng-derived lysophosphatidic acid (LPA) receptor ligand. Oral administration of gintonin ameliorates learning and memory dysfunctions in Alzheimer’s disease (AD) animal models. The brain cholinergic system plays a key role in cognitive functions. The brains of AD patients show a reduction in acetylcholine concentration caused by cholinergic system impairments. However, little is known about the role of LPA in the cholinergic system. In this study, we used gintonin to investigate the effect of LPA receptor activation on the cholinergic system in vitro and in vivo using wild-type and AD animal models. Gintonin induced [Ca2+]i transient in cultured mouse hippocampal neural progenitor cells (NPCs). Gintonin-mediated [Ca2+]i transients were linked to stimulation of acetylcholine release through LPA receptor activation. Oral administration of gintonin-enriched fraction (25, 50, or 100 mg/kg, 3 weeks) significantly attenuated scopolamine-induced memory impairment. Oral administration of gintonin (25 or 50 mg/kg, 2 weeks) also significantly attenuated amyloid-β protein (Aβ)-induced cholinergic dysfunctions, such as decreased acetylcholine concentration, decreased choline acetyltransferase (ChAT) activity and immunoreactivity, and increased acetylcholine esterase (AChE) activity. In a transgenic AD mouse model, long-term oral administration of gintonin (25 or 50 mg/kg, 3 months) also attenuated AD-related cholinergic impairments. In this study, we showed that activation of G protein-coupled LPA receptors by gintonin is coupled to the regulation of cholinergic functions. Furthermore, this study showed that gintonin could be a novel agent for the restoration of cholinergic system damages due to Aβ and could be utilized for AD prevention or therapy.  相似文献   

12.
Molecular forms of acetylcholinesterases in Alzheimer's disease   总被引:2,自引:0,他引:2  
In this study, we examined 26 cases of Alzheimer's disease (AD) and 14 age-matched controls. In Brodmann area 21 cerebral cortex of the AD cases, there was no change in soluble G1 and G4 acetylcholinesterase (AChE) (EC 3.1.1.7), a significant 40% decrease in membrane-associated G4 AChE, significant 342 and 406% increases in A12 and A8 AChE, and a significant 71% decrease in choline acetyltransferase (ChAT) (EC 2.3.1.6). Our working hypothesis to account for these changes postulates that soluble globular forms are unchanged because they are primarily associated with intrinsic cortical neurons that are relatively unaffected by AD, that ChAT and membrane-associated G4 AChE decrease because they are primarily associated with incoming axons of cholinergic neurons that are abnormal in AD, and that asymmetric forms of AChE increase because of an acrylamide-type impairment of fast axonal transport in diseased incoming cholinergic axons. In the nucleus basalis of Meynert (nbM) of the 26 AD cases, there was a significant 61% decrease in the number of cholinergic neurons, an insignificant 23% decrease in nbM ChAT, a significant 298% increase in nbM ChAT per cholinergic neuron, and a significant 7% increase in the area of cholinergic perikarya. To account for the increased ChAT in cholinergic neurons and the enlargement of cholinergic perikarya, we propose that slow axonal transport may be impaired in nbM cholinergic neurons in AD.  相似文献   

13.
Alzheimer’s disease is among the most widespread neurodegenerative disorder. Cholinesterases (ChEs) play an indispensable role in the control of cholinergic transmission and thus the acetylcholine level in the brain is enhanced by inhibition of ChEs. Coumarin linked thiourea derivatives were designed, synthesized and evaluated biologically in order to determine their inhibitory activity against acetylcholinesterases (AChE) and butyrylcholinesterases (BChE). The synthesized derivatives of coumarin linked thiourea compounds showed potential inhibitory activity against AChE and BChE. Among all the synthesized compounds, 1-(2-Oxo-2H-chromene-3-carbonyl)-3-(3-chlorophenyl)thiourea (2e) was the most potent inhibitor against AChE with an IC50 value of 0.04 ± 0.01 μM, while 1-(2-Oxo-2H-chromene-3-carbonyl)-3-(2-methoxyphenyl)thiourea (2b) showed the most potent inhibitory activity with an IC50 value of 0.06 ± 0.02 μM against BChE. Molecular docking simulations were performed using the homology models of both cholinesterases in order to explore the probable binding modes of inhibitors. Results showed that the novel synthesized coumarin linked thiourea derivatives are potential candidates to develop for potent and efficacious acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) inhibitors.  相似文献   

14.
Rivastigmine, a dual inhibitor of acetylcholinesterase (AChE) and butyrylcholinesterase (BChE), has been approved by U.S. Food and Drug Administration to treat Alzheimer’s disease (AD) and Parkinson’s disease (PD) dementia. In the current work, a bambuterol derivative lacking one of the carbamoyloxy groups on the benzene ring (BMC-1) and its analogues were synthesized using 1-(3-hydroxyphenyl) ethan-1-one and 1-(4-hydroxyphenyl) ethan-1-one as starting materials. In-vitro cholinesterase assay established that nine compounds were more potent to inhibit both electric eel AChE and equine serum BChE than rivastigmine under the same experimental conditions. Further study confirmed that among the nine carbamates, BMC-3 (IC50(AChE) = 792 nM, IC50(BChE) = 2.2 nM) and BMC-16 (IC50(AChE) = 266 nM, IC50(BChE) = 10.6 nM) were excellent cholinesterase inhibitors with potential of permeating through the blood-brain barrier. These carbamates could be used as potential dual inhibitors of AChE and BChE and to discover novel drugs for the treatment of AD and PD dementia.  相似文献   

15.
16.
The cholinergic hypothesis has long been a “polar star” in drug discovery for Alzheimer’s disease (AD), resulting in many small molecules and biological drug candidates. Most of the drugs marketed for AD are cholinergic. Herein, we report our efforts in the discovery of cholinesterases inhibitors (ChEIs) as multi-target-directed ligands. A series of tacrine-ferulic acid hybrids have been designed and synthesised. All these compounds showed potent acetyl-(AChE) and butyryl cholinesterase(BuChE) inhibition. Among them, the optimal compound 10g, was the most potent inhibitor against AChE (electrophorus electricus (eeAChE) half maximal inhibitory concentration (IC50)?=?37.02?nM), it was also a strong inhibitor against BuChE (equine serum (eqBuChE) IC50?=?101.40?nM). Besides, it inhibited amyloid β-protein self-aggregation by 65.49% at 25?μM. In subsequent in vivo scopolamine-induced AD models, compound 10g obviously ameliorated the cognition impairment and showed preliminary safety in hepatotoxicity evaluation. These data suggest compound 10g as a promising multifunctional agent in the drug discovery process against AD.  相似文献   

17.
Cholinesterases: New Roles in Brain Function and in Alzheimer's Disease   总被引:15,自引:0,他引:15  
The most important therapeutic effect of cholinesterase inhibitors (ChEI) on approximately 50% of Alzheimer's disease (AD) patients is to stabilize cognitive function at a steady level during a 1-year period of treatment as compared to placebo. Recent studies show that in a certain percentage (approximately 20%) of patients this cognitive stabilizing effect can be prolonged up to 24 months. This long-lasting effect suggests a mechanism of action other than symptomatic and cholinergic. In vitro and in vivo studies have consistently demonstrated a link between cholinergic activation and APP metabolism. Lesions of cholinergic nuclei cause a rapid increase in cortical APP and CSF. The effect of such lesions can be reversed by ChEI treatment. Reduction in cholinergic neurotransmission–experimental or pathological, such as in AD–leads to amyloidogenic metabolism and contributes to the neuropathology and cognitive dysfunction. To explain the long-term effect of ChEI, mechanisms based on -amyloid metabolism are postulated. Recent data show that this mechanism may not necessarily be related to cholinesterase inhibition. A second important aspect of brain cholinesterase function is related to enzymatic differences. The brain of mammals contains two major forms of cholinesterases: acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE). The two forms differ genetically, structurally, and for their kinetics. Butyrylcholine is not a physiological substrate in mammalian brain, which makes the function of BuChE of difficult interpretation. In human brain, BuChE is found in neurons and glial cells, as well as in neuritic plaques and tangles in AD patients. Whereas, AChE activity decreases progressively in the brain of AD patients, BuChE activity shows some increase. To study the function of BuChE, we perfused intracortically the rat brain with a selective BuChE inhibitor and found that extracellular acetylcholine increased 15-fold from 5 nM to 75 nM concentrations with little cholinergic side effect in the animal. Based on these data and on clinical data showing a relation between cerebrospinal fluid (CSF) BuChE inhibition and cognitive function in AD patients, we postulated that two pools of cholinesterases may be present in brain, the first mainly neuronal and AChE dependent and the second mainly glial and BuChE dependent. The two pools show different kinetic properties with regard to regulation of ACh concentration in brain and can be separated with selective inhibitors. Within particular conditions, such as in mice nullizygote for AChE or in AD patients at advanced stages of the disease, BuChE may replace AChE in hydrolizing brain acetylcholine.  相似文献   

18.
Acetylcholinesterase inhibitors (AChEIs) are currently the drugs of choice, although only symptomatic and palliative, for the treatment of Alzheimer’s disease (AD). Donepezil is one of most used AChEIs in AD therapy, acting as a dual binding site, reversible inhibitor of AChE with high selectivity over butyrylcholinesterase (BChE). Through a combined target- and ligand-based approach, a series of coumarin alkylamines matching the structural determinants of donepezil were designed and prepared. 6,7-Dimethoxycoumarin derivatives carrying a protonatable benzylamino group, linked to position 3 by suitable linkers, exhibited fairly good AChE inhibitory activity and a high selectivity over BChE. The inhibitory potency was strongly influenced by the length and shape of the spacer and by the methoxy substituents on the coumarin scaffold. The inhibition mechanism, assessed for the most active compound 13 (IC50 7.6 nM) resulted in a mixed-type, thus confirming its binding at both the catalytic and peripheral binding sites of AChE.  相似文献   

19.
A novel series of triazole tethered coumarin-benzotriazole hybrids based on donepezil skeleton has been designed and synthesized as multifunctional agents for the treatment of Alzheimer’s disease (AD). Among the synthesized compounds 13b showed most potent acetylcholinesterase (AChE) inhibition (IC50 = 0.059 μΜ) with mixed type inhibition scenario. Structure-activity relationship revealed that three-carbon alkyl chain connecting coumarin and triazole is well tolerable for inhibitory potential. Hybrids obtained from 4-hydroxycoumarin and 1-benzotriazole were most potent AChE inhibitors. The inhibitory potential of all compounds against butyrylcholinesterase was also evaluated but all showed negligible activity suggesting that the hybrid molecules are selective AChE inhibitors. 13b (most potent AChE inhibitor) also showed copper-induced Aβ1-42 aggregation inhibition (34.26% at 50 μΜ) and chelating properties for metal ions (Cu2+, Fe2+, and Zn2+) involved in AD pathogenesis along with DNA protective potential against degenerative actions of OH radicals. Molecular modelling studies confirm the potential of 13b in blocking both PAS and CAS of AChE. In addition, interactions of 13b with Aβ1-42 monomer are also streamlined. Therefore, hybrid 13b can act as an effective hit lead molecule for further development of selective AChE inhibitors as multifunctional anti-Alzheimer’s agents.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号