首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Echinoderms represent a phylum with exceptional regenerative capabilities that can reconstruct both external appendages and internal organs. Mechanistic understanding of the cellular pathways involved in regeneration in these animals has been hampered by the limited genomic tools and limited ability to manipulate regenerative processes. We present a functional assay to investigate mechanisms of tissue regeneration and biomineralization by measuring the regrowth of amputated tube feet (sensory and motor appendages) and spines in the sea urchin, Lytechinus variegatus. The ability to manipulate regeneration was demonstrated by concentration-dependent inhibition of regrowth of spines and tube feet by treatment with the mitotic inhibitor, vincristine. Treatment with the gamma-secretase inhibitor DAPT resulted in a concentration-dependent inhibition of regrowth, indicating that both tube feet and spine regeneration require functional Notch signaling. Stem cell markers (Piwi and Vasa) were expressed in tube feet and spine tissue, and Vasa-positive cells were localized throughout the epidermis of tube feet by immunohistochemistry, suggesting the existence of multipotent progenitor cells in these highly regenerative appendages. The presence of Vasa protein in other somatic tissues (e.g. esophagus, radial nerve, and a sub-population of coelomocytes) suggests that multipotent cells are present throughout adult sea urchins and may contribute to normal homeostasis in addition to regeneration. Mechanistic insight into the cellular pathways governing the tremendous regenerative capacity of echinoderms may reveal processes that can be modulated for regenerative therapies, shed light on the evolution of regeneration, and enable the ability to predict how these processes will respond to changing environmental conditions.  相似文献   

4.
Three skeletal tissues of the adult echinoid Paracentrotus lividus (the pedicellaria primordium, the test, and the tooth) were immunolabeled with three sera raised against the total mineralization organic matrix and two specific matrix proteins (SM30 and SM50) from the embryo of the echinoid Strongylocentrotus purpuratus. Two conventional chemical fixation protocols and two high-pressure freezing/freeze-substitution protocols were tested. One conventional protocol is recommended for its good preservation of the ultrastructure, and one high-pressure freezing/freeze-substitution protocol is recommended for its good retention of antigenicity. Immunolabeling was obtained in the three adult tissues. It was confined to the active skeleton-forming cells and to the structured organic matrix. The results indicate that the matrix proteins follow the classical routes of secretory protein assembly and export and suggest that SM30 and SM50 are a part of the tridimensional network formed by the organic matrix before the onset of mineralization. They show that the genetic program of part of skeletogenesis is conserved among different calcification models and developmental stages.  相似文献   

5.
The disease causing mass mortalities of Strongylocentrotus droebachiensis off Nova Scotia, Canada, from 1980 to 1983 is described. Diseased urchins were characterized by loss of preipheral muscle function in tube feet, spines, and mouth. Signs occurred primarily in the body wall and associated tissues (water vascular system, nerves, spine bases) and coelomic fluid. These symptoms were diffuse and included a general infiltration of tissues with amoebocytes. The coelomic fluid often contained reduced numbers of red and white spherule cells, and clotting was incomplete. Progressive breakdown and fragmentation of muscle cells in tube feet and spine bases resulted in destruction of coherent muscle layers and their replacement by numerous spindle-shaped fibrillar muscle remnants. Coelomic lining cells in the tube feet sloughed off into the lumen, but remained in clumps and phagocytosed muscle remnants.  相似文献   

6.
7.
8.
9.
10.
11.
12.
The Sea URchin Fibrillar (SURF) domain is a four-cysteine module present in the amino-propeptide of the sea urchin 2alpha fibrillar collagen chain. Despite numerous international genome and expressed sequence tag projects, computer searches have so far failed to identify similar domains in other species. Here, we have characterized a new sea urchin protein of 2656 amino acids made up of a series of epidermal growth factor-like and SURF modules. From its striking similarity to the modular organization of fibropellins, we called this new protein fibrosurfin. This protein is acidic with a calculated pI of 4.12. Eleven of the 17 epidermal growth factor-like domains correspond to the consensus sequence of calcium-binding type. By Western blot and immunofluorescence analyses, this protein is not detectable during embryogenesis. In adult tissues, fibrosurfin is co-localized with the amino-propeptide of the 2alpha fibrillar collagen chain in several collagenous ligaments, i.e., test sutures, spine ligaments, peristomial membrane, and to a lesser extent, tube feet. Finally, immunogold labeling indicates that fibrosurfin is an interfibrillar component of collagenous tissues. Taken together, the data suggest that proteins possessing SURF modules are localized in the vicinity of mineralized tissues and could be responsible for the unique properties of sea urchin mutable collagenous tissues.  相似文献   

13.
Ca2+ sensitivity of smooth muscle (SM) contraction is determined by CPI-17, an inhibitor protein for myosin light chain phosphatase (MLCP). CPI-17 is highly expressed in mature SM cells, but the expression level varies under pathological conditions. Here, we determined the expression of CPI-17 in embryonic SM tissues and arterial neointimal lesions using immunohistochemistry. As seen in adult animals, the predominant expression of CPI-17 was detected at SM tissues on mouse embryonic sections, whereas MLCP was ubiquitously expressed. Compared with SM α-actin, CPI-17 expression doubled in arterial SM from embryonic day E10 to E14. Like SM α-actin and other SM marker proteins, CPI-17 was expressed in embryonic heart, and the expression was down-regulated at E17. In adult rat, CPI-17 expression level was reduced to 30% in the neointima of injured rat aorta, compared with the SM layers, whereas the expression of MLCP was unchanged in both regions. Unlike other SM proteins, CPI-17 was detected at non-SM organs in the mouse embryo, such as embryonic neurons and epithelium. Thus, CPI-17 expression is reversibly controlled in response to the phenotype transition of SM cells that restricts the signal to differentiated SM cells and particular cell types. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

14.
15.
16.
H Deng  C Wang  G Acsadi  J A Wolff 《Gene》1991,109(2):193-201
  相似文献   

17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号