首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Statins and nitrogenous bisphosphonates (NBP) inhibit 3-hydroxy-3-methylglutaryl-coenzyme-A reductase (HMGCR) and farnesyl diphosphate synthase (FDPS), respectively, leading to depletion of farnesyl diphosphate (FPP) and disruption of protein prenylation. Squalene synthase (SQS) utilizes FPP in the first committed step from the mevalonate pathway toward cholesterol biosynthesis. Herein, we have identified novel bisphosphonates as potent and specific inhibitors of SQS, including the tetrasodium salt of 9-biphenyl-4,8-dimethyl-nona-3,7-dienyl-1,1-bisphosphonic acid (compound 5). Compound 5 reduced cholesterol biosynthesis and lead to a substantial intracellular accumulation of FPP without reducing cell viability in HepG2 cells. At high concentrations, lovastatin and zoledronate impaired protein prenylation and decreased cell viability, which limits their potential use for cholesterol depletion. When combined with lovastatin, compound 5 prevented lovastatin-induced FPP depletion and impairment of protein farnesylation. Compound 5 in combination with the NBP zoledronate completely prevented zoledronate-induced impairment of both protein farnesylation and geranylgeranylation. Cotreatment of cells with compound 5 and either lovastatin or zoledronate was able to significantly prevent the reduction of cell viability caused by lovastatin or zoledronate alone. The combination of an SQS inhibitor with an HMGCR or FDPS inhibitor provides a rational approach for reducing cholesterol synthesis while preventing nonsterol isoprenoid depletion.  相似文献   

2.
Farnesyl diphosphate synthase (FDPS) catalyzes the conversion of isopentenyl diphosphate and dimethylallyl diphosphate to farnesyl diphosphate, a crucial metabolic intermediate in the synthesis of cholesterol, ubiquinone, and prenylated proteins; consequently, much effort has gone into developing inhibitors that target FDPS. Currently most FDPS assays either use radiolabeled substrates and are discontinuous or monitor pyrophosphate release and not farnesyl diphosphate (FPP) creation. Here we report the development of a continuous coupled enzyme assay for FDPS activity that involves the subsequent incorporation of the FPP product of that reaction into a peptide via the action of protein farnesyltransferase (PFTase). By using a dansylated peptide whose fluorescence quantum yield increases upon farnesylation, the rate of FDPS-catalyzed FPP production can be measured. We show that this assay is more sensitive than existing coupled assays, that it can be used to conveniently monitor FDPS activity in a 96-well plate format, and that it can reproduce IC(50) values for several previously reported FDPS inhibitors. This new method offers a simple, safe, and continuous method to assay FDPS activity that should greatly facilitate the screening of inhibitors of this important target.  相似文献   

3.
4.
5.
Chromera velia is a recently discovered, photosynthetic, marine alveolate closely related to apicomplexan parasites, and more distantly to perkinsids and dinoflagellates. To date, there are no published studies on the sterols of C. velia. Because apicomplexans and perkinsids are not known to synthesize sterols de novo, but rather obtain them from their host organisms, our objective was to examine the composition of the sterols of C. velia to assess whether or not there is any commonality with dinoflagellates as the closest taxonomic group capable of synthesizing sterols de novo. Furthermore, knowledge of the sterols of C. velia may provide insight into the sterol biosynthetic capabilities of apicomplexans prior to loss of sterol biosynthesis. We have found that C. velia possesses two primary sterols, 24-ethylcholesta-5,22E-dien-3β-ol, and 24-ethylcholest-5-en-3β-ol, not common to dinoflagellates, but rather commonly found in other classes of algae and plants. In addition, we have identified computationally three genes, SMT1 (sterol-24C-methyltransferase), FDFT1 (farnesyl diphosphate farnesyl transferase, squalene synthase), and IDI1 (isopentenyl diphosphate Δ-isomerase), predicted to be involved in sterol biosynthesis by their similarity to analogous genes in other sterol-producing eukaryotes, including a number of algae.  相似文献   

6.
青蒿素生物合成分子调控研究进展   总被引:9,自引:0,他引:9  
青蒿素是目前世界上最有效的疟疾治疗药物。通过对青蒿素的生物合成途径,青蒿素生物合成途径的关键酶,青蒿素生物合成的分子调控的介绍,综述了青蒿素生物合成分子调控的最新研究进展。  相似文献   

7.
Current therapeutic regimes for metastatic melanoma have failed to provide robust clinical responses. Dasatinib has shown anti-proliferative and anti-invasive effects in vitro; however, not all melanoma cells tested were sensitive to dasatinib. We used 2D-DIGE analysis of phospho-enriched fractions to identify phosphoproteins involved in regulating response to dasatinib in an isogenic pair of melanoma cell lines, one sensitive to dasatinib (WM-115) and the other resistant (WM-266-4). In WM-115 cells treated with dasatinib, 18 unique protein species with altered phosphorylation levels were detected. Dasatinib treatment of WM-266-4 cells resulted in phosphoprotein alterations to four unique protein species. Four phosphorylated forms of Annexin-A2 (ANXA2) were increased in WM-115 cells treated with dasatinib, whilst dasatinib treatment did not alter ANXA2 phosphoprotein levels in WM-266-4 cells. Immunoblotting confirmed that phosphorylation of ANXA2, on tyrosine residues, was increased in WM-115 cells treated with dasatinib. Subsequent knockdown of ANXA2 by siRNA significantly inhibited proliferation of WM-115 cells but did not significantly reduce proliferation of WM-266-4 cells. Therefore, ANXA2 plays a role in regulating proliferation in dasatinib-sensitive WM-115 cells and could potentially play a role in sensitivity to dasatinib in melanoma cells.  相似文献   

8.
Although statins, 3β-hydroxy-3β-methylglutaryl coenzyme A reductase (HMGR) inhibitors, have revolutionized the management of cardiovascular diseases by lowering serum low density lipoproteins, many patients suffer from their side effects. Whether the statin side effects are related to their intrinsic toxicity or to the decrease of HMGR main isoprenoid end products, which are essential compounds for cell viability, is still debated. In addition to HMGR, the key and rate limiting step of cholesterol synthesis, many enzymes are involved in this multi-step pathway whose inhibition could be taken into account for a "nonstatin approach" in the management of hypercholesterolemia. In particular, due to their unique position downstream from HMGR, the inhibition of squalene synthase, farnesyl diphosphate farnesyltransferase (FDFT1), squalene epoxidase (SQLE), and oxidosqualene cyclase:lanosterol synthase (OSC) should decrease plasma levels of cholesterol without affecting ubiquinone, dolichol, and isoprenoid metabolism. Thus, although FDFT1, SQLE and OSC are little studied, they should be considered as perspective targets for the development of novel drugs against hypercholesterolemia. Here, structure-function relationships of FDFT1, SQLE, and OSC are reviewed highlighting the advantages that the downstream inhibition of HMGR could provide when compared to the statin-based therapy.  相似文献   

9.
Human Vγ2Vδ2 T cells monitor isoprenoid metabolism by recognizing (E)-4-hydroxy-3-methyl-but-2-enyl pyrophosphate (HMBPP), an intermediate in the 2-C-methyl-d-erythritol-4-phosphate pathway used by microbes, and isopentenyl pyrophosphate (IPP), an intermediate in the mevalonate pathway used by humans. Aminobisphosphonates and alkylamines indirectly stimulate Vγ2Vδ2 cells by inhibiting farnesyl diphosphate synthase (FDPS) in the mevalonate pathway, thereby increasing IPP/triphosphoric acid 1-adenosin-5'-yl ester 3-(3-methylbut-3-enyl) ester that directly stimulate. In this study, we further characterize stimulation by these compounds and define pathways used by new classes of compounds. Consistent with FDPS inhibition, stimulation of Vγ2Vδ2 cells by aminobisphosphonates and alkylamines was much more sensitive to statin inhibition than stimulation by prenyl pyrophosphates; however, the continuous presence of aminobisphosphonates was toxic for T cells and blocked their proliferation. Aminobisphosphonate stimulation was rapid and prolonged, independent of known Ag-presenting molecules, and resistant to fixation. New classes of stimulatory compounds-mevalonate, the alcohol of HMBPP, and alkenyl phosphonates-likely stimulate differently. Mevalonate, a rate-limiting metabolite, appears to enter cells to increase IPP levels, whereas the alcohol of HMBPP and alkenyl phosphonates are directly recognized. The critical chemical feature of bisphosphonates is the amino moiety, because its loss switched aminobisphosphonates to direct Ags. Transfection of APCs with small interfering RNA downregulating FDPS rendered them stimulatory for Vγ2Vδ2 cells and increased cellular IPP. Small interfering RNAs for isopentenyl diphosphate isomerase functioned similarly. Our results show that a variety of manipulations affecting isoprenoid metabolism lead to stimulation of Vγ2Vδ2 T cells and that pulsing aminobisphosphonates would be more effective for the ex vivo expansion of Vγ2Vδ2 T cells for adoptive cancer immunotherapy.  相似文献   

10.
Farnesyl diphosphate synthase is the most likely molecular target of aminobisphosphonates (e.g., risedronate), a set of compounds that have been shown to have antiprotozoal activity both in vitro and in vivo. This protein, together with other enzymes involved in isoprenoid biosynthesis, is an attractive drug target, yet little is known about the compartmentalization of the biosynthetic pathway. Here we show the intracellular localization of the enzyme in wild-type Leishmania major promastigote cells and in transfectants overexpressing farnesyl diphosphate synthase by using purified antibodies generated towards a homogenous recombinant Leishmania major farnesyl diphosphate synthase protein. Indirect immunofluorescence, together with immunoelectron microscopy, indicated that the enzyme is mainly located in the cytoplasm of both wild-type cells and transfectants. Digitonin titration experiments also confirmed this observation. Hence, while the initial step of isoprenoid biosynthesis catalyzed by 3-hydroxy-3-methylglutaryl-coenzyme A reductase is located in the mitochondrion, synthesis of farnesyl diphosphate by farnesyl diphosphate synthase is a cytosolic process. Leishmania major promastigote transfectants overexpressing farnesyl diphosphate synthase were highly resistant to risedronate, and the degree of resistance correlated with the increase in enzyme activity. Likewise, when resistance was induced by stepwise selection with the drug, the resulting resistant promastigotes exhibited increased levels of farnesyl diphosphate synthase. The overproduction of protein under different conditions of exposure to risedronate further supports the hypothesis that this enzyme is the main target of aminobisphosphonates in Leishmania cells.  相似文献   

11.
12.
Several genes involved in biosynthesis, transport or metabolism of cholesterol have been localized on rat chromosomes by using a radiation hybrid (RH) panel. The genes, coding for squalene epoxidase (Sqle), mevalonate kinase (Mvk), and farnesyl diphosphate farnesyl transferase 1 (Fdft1) which are involved in cholesterol biosynthesis, have been mapped on chromosome 7, 12, and 15, respectively. The genes coding for phospholipid transfer protein (Pltp), sterol carrier protein-2 (Scp2), ATP binding cassette reporter A7 (Abca7), scavenger receptor class B, type 1 (Cd36l1), steroidogenic acute regulatory protein (Star), and lecithin:cholesterol acyl transferase (Lcat), which are involved in the transfer and/or metabolism of cholesterol, have been mapped on chromosome 3, 5, 7, 12, 16, and 19, respectively. Each of the genes Scp2, Sqle and Fdft1 maps close to a QTL for serum total cholesterol in rat, suggesting that these three genes might represent candidate genes for the previously mapped QTLs.  相似文献   

13.
目的:高血糖易引起胆固醇在体内积聚,增加糖尿病合并动脉粥样硬化性心血管疾病的患病风险。本文通过建立稳定的实时定量PCR芯片(Real-time quantitative polymerasechain reaction array,qPCR array)检测方案,研究高糖对小鼠肝癌细胞Hepa1-6胆固醇合成基因表达的影响,探讨胆固醇合成基因在糖尿病大血管并发症发展中的作用机制。方法:以不同浓度葡萄糖(5、15、30mmo/L)和不同时间(0、6、12、18、24 h),刺激肝癌细胞Hepa1-6,利用qPCR array检测其胆固醇合成基因的表达差异。结果:与5mmol/L相比,高糖组(15、30 mmo/L)处理细胞18 h后,胆固醇合成基因CYP51、EBP、NSDHL、SQLE、FDFT1和PMVK的表达上调(P0.05),呈现剂量依赖性。与0 h相比,15 mmol/L高糖处理细胞12 h,CYP51、EBP和SQLE mRNA表达量上调(P0.01)。至24 h,CYP51、EBP降至0 h水平,而SQLE的表达量继续增加;NSDHL在12 h表达无差异,至18 h表达量发生上调(P0.05)。结论:该qPCR array检测方案能特异性检测胆固醇合成基因的表达量。高糖能够促进胆固醇合成基因的表达,使细胞内胆固醇积聚,这可能是糖尿病患者容易发生动脉粥样硬化的原因。这提示我们将胆固醇合成基因作为药物靶点可能延缓糖尿病动脉粥样硬化进展。  相似文献   

14.
15.
16.
Pectin administered to Uncaria tomentosa cell suspension cultures, was found to increase the production of triterpene acids (ursolic and oleanolic acid), however, neither growth nor sterol accumulation were affected. Cell cultures showed that pectin treatment caused a rapid threefold increase in the activities of enzymes involved in the biosynthesis of C(5) and C(30 )isoprenoid, such as isopentenyl diphosphate isomerase and squalene synthase. The activity of a farnesyl diphosphatase, which could divert the flux of farnesyl diphosphate to farnesol, was two times lower in elicited than in control cells. Elicited cells also transformed more rapidly a higher percentage of [5-(3)H]mevalonic acid into triterpene acids. Interestingly, addition of terbinafine, an inhibitor of squalene epoxidase, to elicited cell cultures inhibited sterol accumulation while triterpene production was not inhibited. These results suggest that in U. tomentosa cells, both the previously mentioned enzymes and those involved in squalene 2,3-oxide formation play an important regulatory role in the biosynthesis of sterols and triterpenes.  相似文献   

17.
(?)‐5‐Epieremophilene, an epimer of the versatile sesquiterpene (+)‐valencene, is an inaccessible natural product catalyzed by three sesquiterpene synthases (SmSTPSs1‐3) of the Chinese medicinal herb Salvia miltiorrhiza, and its biological activity remains less explored. In this study, three metabolically engineered Escherichia coli strains were constructed for (?)‐5‐epieremophilene production with yields of 42.4–76.0 mg/L in shake‐flask culture. Introducing an additional copy of farnesyl diphosphate synthase (FDPS) gene through fusion expression of SmSTPS1‐FDPS or dividing the FDP synthetic pathway into two modules resulted in significantly improved production, and ultimately 250 mg of (?)‐5‐epieremophilene were achieved. Biological assay indicated that (?)‐5‐epieremophilene showed significant antifeedant activity against Helicoverpa armigera (EC50=1.25 μg/cm2), a common pest of S. miltiorrhiza, implying its potential defensive role in the plant. The results provided an ideal material supply for studying other potential biological activities of (?)‐5‐epieremophilene, and also a strategy for manipulating terpene production in engineered E. coli using synthetic biology.  相似文献   

18.

Background

Primordial germ cells (PGC) are the precursors of the gametes. During pre-natal development, PGC undergo an epigenetic reprogramming when bulk DNA demethylation occurs and is followed by sex-specific de novo methylation. The de novo methylation and the maintenance of the methylation patterns depend on DNA methyltransferases (DNMTs). PGC reprogramming has been widely studied in mice but not in rats. We have previously shown that the rat might be an interesting model to study germ cell development. In face of the difficulties of getting enough PGC for molecular studies, the aim of this study was to propose an alternative method to study rat PGC DNA methylation. Rat embryos were collected at 14, 15 and 19 days post-coitus (dpc) for the analysis of 5mC, 5hmC, DNMT1, DNMT3a and DNMT3b expression or at 16dpc for treatment 5-Aza-CdR, a DNMT inhibitor, in vitro.

Methods

Once collected, the gonads were placed in 24-well plates previously containing 45μm pore membrane and medium with or without 5-Aza-CdR. The culture was kept for five days and medium was changed daily. The gonads were either fixed or submitted to RNA extraction.

Results

5mC and DNMTs labelling suggests that PGC are undergoing epigenetic reprogramming around 14/15dpc. The in vitro treatment of rat embryonic gonads with 1 μM of 5-Aza-CdR lead to a loss of 5mC labelling and to the activation of Pax6 expression in PGC, but not in somatic cells, suggesting that 5-Aza-CdR promoted a PGC-specific global DNA hypomethylation.

Conclusions

This study suggests that the protocol used here can be a potential method to study the wide DNA demethylation that takes place during PGC reprogramming.
  相似文献   

19.
法呢基焦磷酸合酶作为异戊二烯途径中的重要调节酶,是许多萜类物质的合成前体。FPS的cDNA克隆在许多生物体中也已得到了分离并进行了表达特性研究。从FPP的生物合成途径入手,对FPP生物学特性、FPS酶基因调控的相关信息进行了综述,同时对FPS在基因工程方面的应用进行了展望。  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号