首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Background

The NBN gene codes for the protein nibrin, which is involved in the detection and repair of DNA double strand breaks (DSBs). The NBN gene is essential in mammals.

Methodology/Principal Findings

We have used a conditional null mutant mouse model in a proteomics approach to identify proteins with modified expression levels after 4 Gy ionizing irradiation in the absence of nibrin in vivo. Altogether, amongst ∼8,000 resolved proteins, 209 were differentially expressed in homozygous null mutant mice in comparison to control animals. One group of proteins significantly altered in null mutant mice were those involved in oxidative stress and cellular redox homeostasis (p<0.0001). In substantiation of this finding, analysis of Nbn null mutant fibroblasts indicated an increased production of reactive oxygen species following induction of DSBs.

Conclusions/Significance

In humans, biallelic hypomorphic mutations in NBN lead to Nijmegen breakage syndrome (NBS), an autosomal recessive genetic disease characterised by extreme radiosensitivity coupled with growth retardation, immunoinsufficiency and a very high risk of malignancy. This particularly high cancer risk in NBS may be attributable to the compound effect of a DSB repair defect and oxidative stress.  相似文献   

2.
Nijmegen breakage syndrome (NBS) is characterized by genome instability and cancer predisposition. NBS patients contain a mutation in the NBS1 gene, which encodes the NBS1 component of the DNA double-strand break (DSB) response complex MRE11/RAD50/NBS1. To investigate the NBS phenotype in more detail, we combined the mouse mimic of the most common patient mutation (Nbs1ΔB/ΔB) with a Rad54 null mutation, which diminishes homologous recombination. Double mutant cells were particularly sensitive to treatments that cause single strand breaks (SSBs), presumably because these SSBs can be converted into detrimental DSBs upon passage of a replication fork. The persistent presence of nuclear RAD51 foci and increased levels of chromatid type breaks in metaphase spreads indicated that replication-associated DSBs are repaired inefficiently in the double mutant cells. We conclude that Nbs1 and Rad54 function cooperatively, but in separate pathways to counteract this type of DNA damage and discuss mechanistic implications of these findings.  相似文献   

3.
Several different autosomal recessive genetic disorders characterized by ataxia with oculomotor apraxia (AOA) have been identified with the unifying feature of defective DNA damage recognition and/or repair. We describe here the characterization of a novel form of AOA showing increased sensitivity to agents that cause single-strand breaks (SSBs) in DNA but having no gross defect in the repair of these breaks. Evidence for the presence of residual SSBs in DNA was provided by dramatically increased levels of poly (ADP-ribose)polymerase (PARP-1) auto-poly (ADP-ribosyl)ation, the detection of increased levels of reactive oxygen/nitrogen species (ROS/RNS) and oxidative damage to DNA in the patient cells. There was also evidence for oxidative damage to proteins and lipids. Although these cells were hypersensitive to DNA damaging agents, the mode of death was not by apoptosis. These cells were also resistant to TRAIL-induced death. Consistent with these observations, failure to observe a decrease in mitochondrial membrane potential, reduced cytochrome c release and defective apoptosis-inducing factor translocation to the nucleus was observed. Apoptosis resistance and PARP-1 hyperactivation were overcome by incubating the patient's cells with antioxidants. These results provide evidence for a novel form of AOA characterized by sensitivity to DNA damaging agents, oxidative stress, PARP-1 hyperactivation but resistance to apoptosis.  相似文献   

4.
Regulation of poly(ADP-ribose) (PAR) synthesis and turnover is critical to determining cell fate after genotoxic stress. Hyperactivation of PAR synthesis by poly(ADP-ribose) polymerase-1 (PARP-1) occurs when cells deficient in DNA repair are exposed to genotoxic agents; however, the function of this hyperactivation has not been adequately explained. Here, we examine PAR synthesis in mouse fibroblasts deficient in the base excision repair enzyme DNA polymerase β (pol β). The extent and duration of PARP-1 activation was measured after exposure to either the DNA alkylating agent, methyl methanesulfonate (MMS), or to low energy laser-induced DNA damage. There was strong DNA damage-induced hyperactivation of PARP-1 in pol β nullcells, but not in wild-type cells. In the case of MMS treatment, PAR synthesis did not lead to cell death in the pol β null cells, but instead resulted in increased PARylation of the nonhomologous end-joining (NHEJ) protein Ku70 and increased association of Ku70 with PARP-1. Inhibition of the NHEJ factor DNA-PK, under conditions of MMS-induced PARP-1 hyperactivation, enhanced necrotic cell death. These data suggest that PARP-1 hyperactivation is a protective mechanism triggering the classical-NHEJ DNA repair pathway when the primary alkylated base damage repair pathway is compromised.  相似文献   

5.
6.
Nijmegen breakage syndrome arises from hypomorphic mutations in the NBN gene encoding nibrin, a component of the MRE11/RAD50/nibrin (MRN) complex. In mammalian cells, the MRN complex localizes to the nucleus, where it plays multiple roles in the cellular response to DNA double-strand breaks. In the current study, sequences in mouse nibrin required to direct the nuclear localization of the MRN complex were identified by site-specific mutagenesis. Unexpectedly, nibrin was found to contain both nuclear localizing signal (NLS) sequences and a nuclear export signal (NES) sequence whose functions were confirmed by mutagenesis. Both nuclear import and export sequences were active in vivo. Disruption of either the NLS or NES sequences of nibrin significantly altered the cellular distribution of nibrin and Mre11 and impaired survival after exposure to ionizing radiation. Mutation of the NES sequence in nibrin slowed the turnover of phosphorylated nibrin after irradiation, indicating that nuclear export of nibrin may function, in part, to downregulate posttranslationally modified MRN complex components after DNA damage responses are complete.Exposure to ionizing radiation (IR) results in a spectrum of damage to cells that includes the induction of DNA double-strand breaks (DSBs). In mammalian cells, sensing of DNA DSBs is extremely rapid, occurring within seconds of exposure to IR, and very sensitive, responding to as little as a single DSB in a cell. The sensitivity and speed of this response require immediate access to genomic DNA and raise the possibility that nuclear localization of key components of the damage-sensing or signaling cascade could play an important regulatory role in the process.The earliest measurable cellular response to DNA DSBs is phosphorylation of the protein kinase ATM on serine 1981. ATM exists normally in cells as an inactive dimer which, upon the induction of DNA DSBs, undergoes a transphosphorylation reaction and dissociates into active monomers (1). ATM is recruited to the sites of DNA DSBs via an interaction with the C-terminal end of the nibrin protein, amino acids 735 to 754 (9, 23), and subsequently phosphorylates nibrin (7, 10, 17, 21, 24) and other substrates. Phosphorylated nibrin then plays two key roles, one as a transducer of signals necessary to activate the S-phase checkpoint and the other as a scaffold for the recruitment and phosphorylation of other ATM substrates.The MRE11/RAD50/nibrin (MRN) complex, of which nibrin is a component, has well-defined DNA repair functions, including DNA binding and nuclease activity. Consistent with these functions, hypomorphic mutations in nibrin and MRE11 result in radiation sensitivity disorders, Nijmegen breakage syndrome (NBS) and ataxia telangiectasia-like disorder, respectively. MRE11 interacts with a conserved binding site at the C-terminal end of nibrin, adjacent to the binding site for ATM (6, 9, 23). In NBS cells, where full-length nibrin is absent, MRE11 and RAD50 lose their nuclear localization and are distributed randomly throughout the cell, indicating a requirement for nibrin to maintain the correct subcellular localization of the MRN complex (3). Similar effects are observed in ataxia telangiectasia-like disorder cells, which have mutations in MRE11 that impair its binding to nibrin (20). Nibrin mutants lacking the C-terminal 100 amino acids that include the MRE11 binding site localize to the nucleus when expressed in NBS cells but fail to relocalize either MRE11 or RAD50 or to complement the cellular radiosensitivity associated with NBS (6, 15). These results suggest that sequences mediating nuclear localization of nibrin are located 5′ of the C-terminal 100 amino acids.Given the critical role that nuclear localization plays in the function of the MRN complex, and hence the mammalian DNA DSB response, in the current study we used in vitro mutagenesis to map and identify sequences in mouse nibrin that affect the nuclear localization of the MRN complex. We demonstrate that the nuclear localization of nibrin and MRE11 represents an equilibrium state in a dynamic process of active import and export mediated by specific sequences in nibrin. Maintenance of this equilibrium by nibrin-mediated shuttling between the cytoplasm and the nucleus is required for normal cellular responses to DNA DSBs and may play a role in downregulating responses after damage.  相似文献   

7.
Nijmegen Breakage Syndrome (NBS) is a very rare autosomal recessive chromosomal instability disorder characterized by microcephaly, growth retardation, immunodeficiency and a high incidence of malignancies. Cells from NBS patients are hypersensitive to ionizing radiation (IR) and display radioresistant DNA synthesis (RDS). NBS is caused by mutations in the NBS1 gene on chromosome 8q21 encoding a protein called nibrin. This protein is a component of the hMre11/hRad50 protein complex, suggesting a defect in DNA double-strand break (DSB) repair and/or cell cycle checkpoint function in NBS cells. We established SV40 transformed, immortal NBS fibroblasts, from primary cells derived from a Polish patient, carrying the common founder mutation 657del5. Immortalized NBS cells, like primary cells, are X-ray sensitive (2-fold) and display RDS following IR. They show an increased sensitivity to bleomycin (3.5-fold), etoposide (2.5-fold), camptothecin (3-fold) and mitomycin C (1.5-fold), but normal sensitivity towards UV-C. Despite the clear hypersensitivity towards DSB-inducing agents, the overall rates of DSB-rejoining in NBS cells as measured by pulsed field gel electrophoresis were found to be very similar to those of wild type cells. This indicates that the X-ray sensitivity of NBS cells is not directly caused by an overt defect in DSB repair.  相似文献   

8.
Ataxia-telangiectasia (A-T) mutated (ATM) kinase signals all three cell cycle checkpoints after DNA double-stranded break (DSB) damage. H2AX, NBS1, and p53 are substrates of ATM kinase and are involved in ATM-dependent DNA damage responses. We show here that H2AX is dispensable for the activation of ATM and p53 responses after DNA DSB damage. Therefore, H2AX functions primarily as a downstream mediator of ATM functions in the parallel pathway of p53. NBS1 appears to function both as an activator of ATM and as an adapter to mediate ATM activities after DNA DSB damage. Phosphorylation of ATM and H2AX induced by DNA DSB damage is normal in NBS1 mutant/mutant (NBS1m/m) mice that express an N-terminally truncated NBS1 at lower levels. Therefore, the pleiotropic A-T-related systemic and cellular defects observed in NBS1m/m mice are due to the disruption of the adapter function of NBS1 in mediating ATM activities. While H2AX is required for the irradiation-induced focus formation of NBS1, our findings indicate that NBS1 and H2AX have distinct roles in DNA damage responses. ATM-dependent phosphorylation of p53 and p53 responses are largely normal in NBS1m/m mice after DNA DSB damage, and p53 deficiency greatly facilitates tumorigenesis in NBS1m/m mice. Therefore, NBS1, H2AX, and p53 play synergistic roles in ATM-dependent DNA damage responses and tumor suppression.  相似文献   

9.
Checkpoint response to DNA damage involves the activation of DNA repair and G2 lengthening subpathways. The roles of nibrin (NBS1) and the ATM/ATR kinases in the G2 DNA damage checkpoint, evoked by endogenous and radio-induced DNA damage, were analyzed in control, A-T and NBS lymphoblast cell lines. Short-term responses to G2 treatments were evaluated by recording changes in the yield of chromosomal aberrations in the ensuing mitosis, due to G2 checkpoint adaptation, and also in the duration of G2 itself. The role of ATM/ATR in the G2 checkpoint pathway repairing chromosomal aberrations was unveiled by caffeine inhibition of both kinases in G2. In the control cell lines, nibrin and ATM cooperated to provide optimum G2 repair for endogenous DNA damage. In the A-T cells, ATR kinase substituted successfully for ATM, even though no G2 lengthening occurred. X-ray irradiation (0.4 Gy) in G2 increased chromosomal aberrations and lengthened G2, in both mutant and control cells. However, the repair of radio-induced DNA damage took place only in the controls. It was associated with nibrin-ATM interaction, and ATR did not substitute for ATM. The absence of nibrin prevented the repair of both endogenous and radio-induced DNA damage in the NBS cells and partially affected the induction of G2 lengthening.  相似文献   

10.
The class III histone deacetylase (HDAC) SIRT1 plays a role in the metabolism, aging, and carcinogenesis of organisms and regulates senescence and apoptosis in cells. Recent reports revealed that SIRT1 also deacetylates several DNA double-strand break (DSB) repair proteins. However, its exact functions in DNA repair remained elusive. Using nuclear foci analysis and fluorescence-based, chromosomal DSB repair reporter, we find that SIRT1 activity promotes homologous recombination (HR) in human cells. Importantly, this effect is unrelated to functions of poly(ADP-ribose) polymerase 1 (PARP1), another NAD(+)-catabolic protein, and does not correlate with cell cycle changes or apoptosis. Interestingly, we demonstrate that inactivation of Rad51 does not eliminate the effect of SIRT1 on HR. By epistasis-like analysis through knockdown and use of mutant cells of distinct SIRT1 target proteins, we show that the non-homologous end joining (NHEJ) factor Ku70 as well as the Nijmegen Breakage Syndrome protein (nibrin) are not needed for this SIRT1-mediated effect, even though a partial contribution of nibrin cannot be excluded. Strikingly however, the Werner helicase (WRN), which in its mutated form causes premature aging and cancer and which was linked to the Rad51-independent single-strand annealing (SSA) DSB repair pathway, is required for SIRT1-mediated HR. These results provide first evidence that links SIRT1's functions to HR with possible implications for genomic stability during aging and tumorigenesis.  相似文献   

11.
Summary Poly(ADP-ribose) polymerase catalyses the formation of ADP-ribose polymers covalently attached to various nuclear proteins, using NAD+ as substrate. The activity of this enzyme is strongly stimulated upon binding to DNA single or double strand breaks. Poly(ADP-ribosyl)ation is an immediate cellular response to DNA damage and is thought to be involved in DNA repair, genetic recombination, apoptosis and other processes during which DNA strand breaks are formed. In recent years we and others have established cell culture systems with altered poly(ADP-ribose) polymerase activity. Here we describe immunocytochemistry protocols based on the use of antibodies against the DNA-binding domain of human poly(ADP-ribose) polymerase and against its reaction product poly(ADP-ribose). These protocols allow for the convenient mass screening of cell transfectants with overexpression of poly(ADP-ribose) polymerase or of a dominant-negative mutant for this enzyme, i.e. the DNA-binding domain. In addition, the immunocytochemical detection of poly(ADP-ribose) allows screening for cells with altered enzyme activity.  相似文献   

12.
Poly(ADP-ribose) polymerase is a chromatin enzyme which adds long chains of ADP-ribose to various acceptor proteins in response to DNA strand breaks. Its primary function is unknown; however, a role in DNA repair and radiation resistance has been postulated based largely on experiments with enzyme inhibitors. Recent reports of mutant cell lines, deficient in poly(ADP-ribose) polymerase activity, have supported previous studies with inhibitors, which suggests the involvement of poly(ADP-ribose) polymerase in maintaining baseline levels of sister chromatid exchanges. Mutant cells with even slightly depressed enzyme levels show large elevation of baseline sister chromatid exchanges. Since intracellular poly(ADP-ribose) polymerase levels can vary greatly between different nonmutant cell lines, we surveyed levels of baseline sister chromatid exchange in normal and tumor human cell lines and compared them with endogenous levels of poly(ADP-ribose) polymerase. Despite 10-fold differences in poly(ADP-ribose) polymerase, the baseline level of sister chromatid exchanges remained relatively constant in the different cell lines (0.13 +/- 0.03 SCE/chromosome), with no indication of a protective effect for cells with high levels of the enzyme.  相似文献   

13.
Poly(ADP-ribose) polymerase 1 (PARP1) is a nuclear enzyme that is rapidly activated by DNA strand breaks and signals the presence of DNA lesions by attaching ADP-ribose units to chromatin-associated proteins. The therapeutic applications of PARP inhibitors in potentiating the killing action of ionizing radiation have been well documented and are attracting increasing interest as a cancer treatment. However, the initial kinetics underlying the recognition of multiple DNA lesions by PARP1 and how inhibition of PARP potentiates the activity of DNA-damaging agents are unknown. Here we report the spatiotemporal dynamics of PARP1 recruitment to DNA damage induced by laser microirradiation in single living cells. We provide direct evidence that PARP1 is able to accumulate at a locally induced DNA double strand break. Most importantly, we observed that the rapid accumulation of MRE11 and NBS1 at sites of DNA damage requires PARP1. By determining the kinetics of protein assembly following DNA damage, our study reveals the cooperation between PARP1 and the double strand break sensors MRE11 and NBS1 in the close vicinity of a DNA lesion. This may explain the sensitivity of cancer cells to PARP inhibitors.  相似文献   

14.
The inherited chromosomal instability disorder Nijmegen breakage syndrome (NBS) results from truncating mutations in the NBS1 gene, which encodes the protein nibrin. Nibrin is part of a nuclear multiprotein complex that also contains the DNA repair proteins Mre11 and Rad50. Upon irradiation, this complex redistributes within the nucleus, forming distinct foci that have been implicated as sites of DNA repair. In NBS cells, nibrin is absent and Mre11 and Rad50 are cytoplasmic. In this study, the interacting domains on nibrin and Mre11 were mapped using the yeast two-hybrid system and expression of epitope-tagged constructs in NBS fibroblasts. Deletion of the carboxy-terminal 101 amino acids of nibrin eliminated its ability to interact with Mre11 and to complement the radiation sensitivity of NBS cells. However, this truncated form of nibrin could localize to the nucleus and form radiation-inducible foci. Expression of a carboxy-terminal 354-amino-acid fragment of nibrin was sufficient to direct the nuclear localization of nibrin, as well as that of Mre11 and Rad50. Despite providing some partial complementation of the radiation-sensitive phenotype, the nibrin-Mre11-Rad50 complexes in these cells were unable to form foci. These results indicate that nibrin directs not only the nuclear localization of the nibrin-Mre11-Rad50 complexes but also radiation-induced focus formation. However, direct interaction between nibrin and Mre11 is required for normal cellular survival postirradiation. Distinct domains of nibrin are required for each of these functions, focus formation, nuclear localization, and Mre11 interaction.  相似文献   

15.
Genomes are subject to a number of exogenous or endogenous DNA-damaging agents that cause DNA double-strand breaks (DSBs). These critical DNA lesions can result in cell death or a wide variety of genetic alterations, including deletions, translocations, loss of heterozygosity, chromosome loss, or chromosome fusions, which enhance genome instability and can trigger carcinogenesis. The cells have developed an efficient mechanism to cope with DNA damages by evolving the DNA repair machinery. There are 2 major DSB repair mechanisms: nonhomologous end joining (NHEJ) and homologous recombination (HR). One element of the repair machinery is the MRN complex, consisting of MRE11, RAD50 and NBN (previously described as NBS1), which is involved in DNA replication, DNA repair, and signaling to the cell cycle checkpoints. A number of kinases, like ATM (ataxia-telangiectasia mutated), ATR (ataxia-telangiectasia and Rad-3-related), and DNA PKcs (DNA protein kinase catalytic subunit), phosphorylate various protein targets in order to repair the damage. If the damage cannot be repaired, they direct the cell to apoptosis. The MRN complex as well as repair kinases are also involved in telomere maintenance and genome stability. The dysfunction of particular elements involved in the repair mechanisms leads to genome instability disorders, like ataxia telangiectasia (A-T), A-T-like disorder (ATLD) and Nijmegen breakage syndrome (NBS). The mutated genes responsible for these disorders code for proteins that play key roles in the process of DNA repair. Here we present a detailed review of current knowledge on the MRN complex, kinases engaged in DNA repair, and genome instability disorders.  相似文献   

16.
Patients with an immunodeficiency in the course of Nijmegen breakage syndrome (NBS) that is caused by mutations in the NBN/NBS1 gene are prone to recurrent infections and malignancies, due to a defective DNA double-strand breaks repair mechanism. Four-color flow cytometry was used to analyze changes in B lymphocyte subsets reflecting the most important stages of peripheral B cell maturation. It was demonstrated that the humoral immune defect observed in NBS patients was caused by reduced numbers of B lymphocytes, but also by their aberrant maturation. Reduced relative and absolute counts of na?ve and memory B cells were accompanied by a significant accumulation of the natural effector B lymphocytes. The elevated proportion of IgM-only memory and reduced proportion of IgM-negative cells within the memory B cell pool suggests that there is class-switch recombination defect in this population of cells in NBS patients, resulting in inadequate production of immunoglobulins. Because of the reduced T-cell counts, the T-cell dependent antigen response is severely impaired resulting in a lower frequency of memory B-cells. The T-cell independent B-cell differentiation pathway seems less affected. The reduced IgG and IgA levels in patients with NBS are caused both by ineffective class switch, at least due to poor T cell help, and low number of memory B cells. This study illustrates that the NBN gene product nibrin plays an important role at different levels in the B-cell system. ? 2012 International Society for Advancement of Cytometry.  相似文献   

17.
Human 8-oxoguanine-DNA glycosylase (OGG1) plays a major role in the base excision repair pathway by removing 8-oxoguanine base lesions generated by reactive oxygen species. Here we report a novel interaction between OGG1 and Poly(ADP-ribose) polymerase 1 (PARP-1), a DNA-damage sensor protein involved in DNA repair and many other cellular processes. We found that OGG1 binds directly to PARP-1 through the N-terminal region of OGG1, and this interaction is enhanced by oxidative stress. Furthermore, OGG1 binds to PARP-1 through its BRCA1 C-terminal (BRCT) domain. OGG1 stimulated the poly(ADP-ribosyl)ation activity of PARP-1, whereas decreased poly(ADP-ribose) levels were observed in OGG1(-/-) cells compared with wild-type cells in response to DNA damage. Importantly, activated PARP-1 inhibits OGG1. Although the OGG1 polymorphic variant proteins R229Q and S326C bind to PARP-1, these proteins were defective in activating PARP-1. Furthermore, OGG1(-/-) cells were more sensitive to PARP inhibitors alone or in combination with a DNA-damaging agent. These findings indicate that OGG1 binding to PARP-1 plays a functional role in the repair of oxidative DNA damage.  相似文献   

18.
The Nijmegen breakage syndrome (NBS), a chromosomal instability disorder, is characterized in part by cellular hypersensitivity to ionizing radiation. Repair of DNA double-strand breaks by radiation is dependent on a multifunctional complex containing Rad50, Mre11, and the NBS1 gene product, p95 (NBS protein, nibrin). The role of p95 in these repair processes is unknown. Here it is demonstrated that Mre11 is hyperphosphorylated in a cell cycle-independent manner in response to treatment of cells with genotoxic agents including gamma irradiation. This response is abrogated in two independently established NBS cell lines that have undetectable levels of the p95 protein. NBS cells are also deficient for radiation-induced nuclear foci containing Mre11, while those with Rad51 are unaffected. An analysis of the kinetic relationship between Mre11 phosphorylation and the appearance of its radiation-induced foci indicates that the former precedes the latter. Together, these data suggest that specific phosphorylation of Mre11 is induced by DNA damage, and p95 is essential in this process, perhaps by recruiting specific kinases.  相似文献   

19.
Wang M  Wu W  Wu W  Rosidi B  Zhang L  Wang H  Iliakis G 《Nucleic acids research》2006,34(21):6170-6182
Poly(ADP-ribose)polymerase 1 (PARP-1) recognizes DNA strand interruptions in vivo and triggers its own modification as well as that of other proteins by the sequential addition of ADP-ribose to form polymers. This modification causes a release of PARP-1 from DNA ends and initiates a variety of responses including DNA repair. While PARP-1 has been firmly implicated in base excision and single strand break repair, its role in the repair of DNA double strand breaks (DSBs) remains unclear. Here, we show that PARP-1, probably together with DNA ligase III, operates in an alternative pathway of non-homologous end joining (NHEJ) that functions as backup to the classical pathway of NHEJ that utilizes DNA-PKcs, Ku, DNA ligase IV, XRCC4, XLF/Cernunnos and Artemis. PARP-1 binds to DNA ends in direct competition with Ku. However, in irradiated cells the higher affinity of Ku for DSBs and an excessive number of other forms of competing DNA lesions limit its contribution to DSB repair. When essential components of the classical pathway of NHEJ are absent, PARP-1 is recruited for DSB repair, particularly in the absence of Ku and non-DSB lesions. This form of DSB repair is sensitive to PARP-1 inhibitors. The results define the function of PARP-1 in DSB repair and characterize a candidate pathway responsible for joining errors causing genomic instability and cancer.  相似文献   

20.
The production of reactive oxygen species (ROS) in mammalian cells is tightly regulated because of their potential to damage macromolecules, including DNA. To investigate possible links between high ROS levels, oxidative DNA damage, and genomic instability in mammalian cells, we established a novel model of chronic oxidative stress by coexpressing the NADPH oxidase human (h) NOX1 gene together with its cofactors NOXO1 and NOXA1. Transfectants of mismatch repair (MMR)-proficient HeLa cells or MMR-defective Msh2(-/-) mouse embryo fibroblasts overexpressing the hNOX1 complex displayed increased intracellular ROS levels. In one HeLa clone in which ROS were particularly elevated, reactive nitrogen species were also increased and nitrated proteins were identified with an anti-3-nitrotyrosine antibody. Overexpression of the hNOX1 complex increased the steady-state levels of DNA 8-oxo-7,8-dihydroguanine and caused a threefold increase in the HPRT mutation rate in HeLa cells. In contrast, additional oxidatively generated damage did not affect the constitutive mutator phenotype of the Msh2(-/-) fibroblasts. Because no significant changes in the expression of several DNA repair enzymes for oxidative DNA damage were identified, we suggest that chronic oxidative stress can saturate the cell's DNA repair capacity and cause significant genomic instability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号