首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The origin, evolution and relationships of viruses are all fascinating topics. Current thinking in these areas is strongly influenced by the tailed double-stranded (ds) DNA bacteriophages. These viruses have mosaic genomes produced by genetic exchange and so new natural isolates are quite dissimilar to each other, and to laboratory strains. Consequently, they are not amenable to study by current tools for phylogenetic analysis. Less attention has been paid to the Tectiviridae family, which embraces icosahedral dsDNA bacterial viruses with an internal lipid membrane. It includes viruses, such as PRD1, that infect Gram-negative bacteria, as well as viruses like Bam35 with Gram-positive hosts. Although PRD1 and Bam35 have closely related virion morphology and genome organization, they have no detectable sequence similarity. There is strong evidence that the Bam35 coat protein has the "double-barrel trimer" arrangement of PRD1 that was first observed in adenovirus and is predicted to occur in other viruses with large facets. It is very likely that a single ancestral virus gave rise to this very large group of viruses. The unprecedented degree of conservation recently observed for two Bam35-like tectiviruses made it important to investigate those infecting Gram-negative bacteria. The DNA sequences for six PRD1-like isolates (PRD1, PR3, PR4, PR5, L17, PR772) have now been determined. Remarkably, these bacteriophages, isolated at distinctly different dates and global locations, have almost identical genomes. The discovery of almost invariant genomes for the two main Tectiviridae groups contrasts sharply with the situation in the tailed dsDNA bacteriophages. Notably, it permits a sequence analysis of the isolates revealing that the tectiviral proteins can be dissected into a slowly evolving group descended from the ancestor, the viral self, and a more rapidly changing group reflecting interactions with the host.  相似文献   

2.
Archaeal organisms are generally known as diverse extremophiles, but they play a crucial role also in moderate environments. So far, only about 50 archaeal viruses have been described in some detail. Despite this, unusual viral morphotypes within this group have been reported. Interestingly, all isolated archaeal viruses have a double-stranded DNA (dsDNA) genome. To further characterize the diversity of archaeal viruses, we screened highly saline water samples for archaea and their viruses. Here, we describe a new haloarchaeal virus, Halorubrum pleomorphic virus 1 (HRPV-1) that was isolated from a solar saltern and infects an indigenous host belonging to the genus Halorubrum . Infection does not cause cell lysis, but slightly retards growth of the host and results in high replication of the virus. The sequenced genome (7048 nucleotides) of HRPV-1 is single-stranded DNA (ssDNA), which makes HRPV-1 the first characterized archaeal virus that does not have a dsDNA genome. In spite of this, similarities to another archaeal virus were observed. Two major structural proteins were recognized in protein analyses, and by lipid analyses it was shown that the virion contains a membrane. Electron microscopy studies indicate that the enveloped virion is pleomorphic (approximately 44 × 55 nm). HRPV-1 virion may represent commonly used virion architecture, and it seems that structure-based virus lineages may be extended to non-icosahedral viruses.  相似文献   

3.
Among dsDNA tailed bacteriophages (Caudovirales), members of the Myoviridae family have the most sophisticated virion design that includes a complex contractile tail structure. The Myoviridae generally have larger genomes than the other phage families. Relatively few "dwarf" myoviruses, those with a genome size of less than 50 kb such as those of the Mu group, have been analyzed in extenso. Here we report on the genome sequencing and morphological characterization of a new group of such phages that infect a diverse range of Proteobacteria, namely Aeromonas salmonicida phage 56, Vibrio cholerae phages 138 and CP-T1, Bdellovibrio phage φ1422, and Pectobacterium carotovorum phage ZF40. This group of dwarf myoviruses shares an identical virion morphology, characterized by usually short contractile tails, and have genome sizes of approximately 45 kb. Although their genome sequences are variable in their lysogeny, replication, and host adaption modules, presumably reflecting differing lifestyles and hosts, their structural and morphogenesis modules have been evolutionarily constrained by their virion morphology. Comparative genomic analysis reveals that these phages, along with related prophage genomes, form a new coherent group within the Myoviridae. The results presented in this communication support the hypothesis that the diversity of phages may be more structured than generally believed and that the innumerable phages in the biosphere all belong to discrete lineages or families.  相似文献   

4.
Tailed double-stranded DNA viruses (order Caudovirales) represent the dominant morphotype among viruses infecting bacteria. Analysis and comparison of complete genome sequences of tailed bacterial viruses provided insights into their origin and evolution. Structural and genomic studies have unexpectedly revealed that tailed bacterial viruses are evolutionarily related to eukaryotic herpesviruses. Organisms from the third domain of life, Archaea, are also infected by viruses that, in their overall morphology, resemble tailed viruses of bacteria. However, high-resolution structural information is currently unavailable for any of these viruses, and only a few complete genomes have been sequenced so far. Here we identified nine proviruses that are clearly related to tailed bacterial viruses and integrated into chromosomes of species belonging to four different taxonomic orders of the Archaea. This more than doubled the number of genome sequences available for comparative studies. Our analyses indicate that highly mosaic tailed archaeal virus genomes evolve by homologous and illegitimate recombination with genomes of other viruses, by diversification, and by acquisition of cellular genes. Comparative genomics of these viruses and related proviruses revealed a set of conserved genes encoding putative proteins similar to virion assembly and maturation, as well as genome packaging proteins of tailed bacterial viruses and herpesviruses. Furthermore, fold prediction and structural modeling experiments suggest that the major capsid proteins of tailed archaeal viruses adopt the same topology as the corresponding proteins of tailed bacterial viruses and eukaryotic herpesviruses. Data presented in this study strongly support the hypothesis that tailed viruses infecting archaea share a common ancestry with tailed bacterial viruses and herpesviruses.  相似文献   

5.
6.
The assembly and maturation of viruses with icosahedral capsids must be coordinated with icosahedral symmetry. The icosahedral symmetry imposes also the restrictions on the cooperative specific interactions between genomic RNA/DNA and coat proteins that should be reflected in quasi-regular segmentation of viral genomic sequences. Combining discrete direct and double Fourier transforms, we studied the quasi-regular large-scale segmentation in genomic sequences of different ssRNA, ssDNA, and dsDNA viruses. The particular representatives included satellite tobacco mosaic virus (STMV) and the strains of satellite tobacco necrosis virus (STNV), STNV-C, STNV-1, STNV-2, Escherichia phages MS2, ?X174, α3, and HK97, and Simian virus 40. In all their genomes, we found the significant quasi-regular segmentation of genomic sequences related to the virion assembly and the genome packaging within icosahedral capsid. We also found good correspondence between our results and available cryo-electron microscopy data on capsid structures and genome packaging in these viruses. Fourier analysis of genomic sequences provides the additional insight into mechanisms of hierarchical genome packaging and may be used for verification of the concepts of 3-fold or 5-fold intermediates in virion assembly. The results of sequence analysis should be taken into account at the choice of models and data interpretation. They also may be helpful for the development of antiviral drugs.  相似文献   

7.
Baculoviruses are members of a large, well-characterized family of dsDNA viruses that have been identified from insects of the orders Lepidoptera, Hymenoptera, and Diptera. Baculovirus genomes from different virus species generally exhibit a considerable degree of structural diversity. However, some sequenced baculovirus genomes from closely related viruses are structurally very similar and share overall nucleotide sequence identities in excess of 95%. This review focuses on the comparative analysis of partial and complete nucleotide sequences from two groups of closely related baculoviruses with broad host ranges: (a) group I multiple nucleopolyhedroviruses (MNPVs) from a cluster including Autographa californica (Ac)MNPV, Rachiplusia ou (Ro)MNPV, and Plutella xylostella (Plxy)MNPV; and (b) granuloviruses (GVs) from a cluster including Xestia c-nigrum (Xecn)GV and Helicoverpa armigera (Hear)GV. Even though the individual viruses in these clusters share high nucleotide sequence identities, a significant degree of genomic rearrangement (in the form of insertions, deletions, and homologous recombination resulting in allelic replacement) is evident from alignments of their genomes. These observations suggest an important role for recombination in the early evolution and biological characteristics of baculoviruses of these two groups.  相似文献   

8.
PH Goff  Q Gao  P Palese 《Journal of virology》2012,86(19):10852-10856
Paramyxoviruses produce pleiomorphic particles containing variable amounts of genetic material that correlate with virion diameter by electron microscopy. However, the infectious nature of these particles is unknown, and functional genomes are indistinguishable from defective RNA. A quantitative approach to paramyxovirus packaging revealed a majority of infectious Newcastle disease viruses contain one functional genome. Virions encapsidating two or three genomes (approximately 25% of total) were also observed by utilizing three different recombinant viruses expressing unique fluorescent reporters.  相似文献   

9.
Proviral regions have been identified in the genomes of many haloarchaea, but only a few archaeal halophilic temperate viruses have been studied. Here, we report a new virus, SNJ2, originating from archaeal strain Natrinema sp. J7‐1. We demonstrate that this temperate virus coexists with SNJ1 virus and is dependent on SNJ1 for efficient production. Here, we show that SNJ1 is an icosahedral membrane‐containing virus, whereas SNJ2 is a pleomorphic one. Instead of producing progeny virions and forming plaques, SNJ2 integrates into the host tRNAMet gene. The virion contains a discontinuous, circular, double‐stranded DNA genome of 16 992 bp, in which both nicks and single‐stranded regions are present preceded by a ‘GCCCA’ motif. Among 25 putative SNJ2 open reading frames (ORFs), five of them form a cluster of conserved ORFs homologous to archaeal pleolipoviruses isolated from hypersaline environments. Two structural protein encoding genes in the conserved cluster were verified in SNJ2. Furthermore, SNJ2‐like proviruses containing the conserved gene cluster were identified in the chromosomes of archaea belonging to 10 different genera. Comparison of SNJ2 and these proviruses suggests that they employ a similar integration strategy into a tRNA gene.  相似文献   

10.
Abstract

Despite the rapid mutational change that is typical of positive-strand RNA viruses, enzymes mediating the replication and expression of virus genomes contain arrays of conserved sequence motifs. Proteins with such motifs include RNA-dependent RNA polymerase, putative RNA helicase, chymotrypsin-like and papain-like proteases, and methyltransferases. The genes for these proteins form partially conserved modules in large subsets of viruses. A concept of the virus genome as a relatively evolutionarily stable “core” of housekeeping genes accompanied by a much more flexible “shell” consisting mostly of genes coding for virion components and various accessory proteins is discussed. Shuffling of the “shell” genes including genome reorganization and recombination between remote groups of viruses is considered to be one of the major factors of virus evolution.

Multiple alignments for the conserved viral proteins were constructed and used to generate the respective phylogenetic trees. Based primarily on the tentative phylogeny for the RNA-dependent RNA polymerase, which is the only universally conserved protein of positive-strand RNA viruses, three large classes of viruses, each consisting of distinct smaller divisions, were delineated. A strong correlation was observed between this grouping and the tentative phylogenies for the other conserved proteins as well as the arrangement of genes encoding these proteins in the virus genome. A comparable correlation with the polymerase phylogeny was not found for genes encoding virion components or for genome expression strategies. It is surmised that several types of arrangement of the “shell” genes as well as basic mechanisms of expression could have evolved independently in different evolutionary lineages.

The grouping revealed by phylogenetic analysis may provide the basis for revision of virus classification, and phylogenetic taxonomy of positive-strand RNA viruses is outlined. Some of the phylogenetically derived divisions of positive-strand RNA viruses also include double-stranded RNA viruses, indicating that in certain cases the type of genome nucleic acid may not be a reliable taxonomic criterion for viruses.

Hypothetical evolutionary scenarios for positive-strand RNA viruses are proposed. It is hypothesized that all positive-strand RNA viruses and some related double-stranded RNA viruses could have evolved from a common ancestor virus that contained genes for RNA-dependent RNA polymerase, a chymotrypsin-related protease that also functioned as the capsid protein, and possibly an RNA helicase.  相似文献   

11.
12.
The small size of RNA virus genomes (2-to-32 kb) has been attributed to high mutation rates during replication, which is thought to lack proof-reading. This paradigm is being revisited owing to the discovery of a 3′-to-5′ exoribonuclease (ExoN) in nidoviruses, a monophyletic group of positive-stranded RNA viruses with a conserved genome architecture. ExoN, a homolog of canonical DNA proof-reading enzymes, is exclusively encoded by nidoviruses with genomes larger than 20 kb. All other known non-segmented RNA viruses have smaller genomes. Here we use evolutionary analyses to show that the two- to three-fold expansion of the nidovirus genome was accompanied by a large number of replacements in conserved proteins at a scale comparable to that in the Tree of Life. To unravel common evolutionary patterns in such genetically diverse viruses, we established the relation between genomic regions in nidoviruses in a sequence alignment-free manner. We exploited the conservation of the genome architecture to partition each genome into five non-overlapping regions: 5′ untranslated region (UTR), open reading frame (ORF) 1a, ORF1b, 3′ORFs (encompassing the 3′-proximal ORFs), and 3′ UTR. Each region was analyzed for its contribution to genome size change under different models. The non-linear model statistically outperformed the linear one and captured >92% of data variation. Accordingly, nidovirus genomes were concluded to have reached different points on an expansion trajectory dominated by consecutive increases of ORF1b, ORF1a, and 3′ORFs. Our findings indicate a unidirectional hierarchical relation between these genome regions, which are distinguished by their expression mechanism. In contrast, these regions cooperate bi-directionally on a functional level in the virus life cycle, in which they predominantly control genome replication, genome expression, and virus dissemination, respectively. Collectively, our findings suggest that genome architecture and the associated region-specific division of labor leave a footprint on genome expansion and may limit RNA genome size.  相似文献   

13.
Chlorella viruses have icosahedral capsids with an internal membrane enclosing their large dsDNA genomes and associated proteins. Their genomes are packaged in the particles with a predicted DNA density of ca. 0.2 bp nm(-3). Occasionally infection of an algal cell by an individual particle fails and the viral DNA is dynamically ejected from the capsid. This shows that the release of the DNA generates a force, which can aid in the transfer of the genome into the host in a successful infection. Imaging of ejected viral DNA indicates that it is intimately associated with proteins in a periodic fashion. The bulk of the protein particles detected by atomic force microscopy have a size of ~60 kDa and two proteins (A278L and A282L) of about this size are among 6 basic putative DNA binding proteins found in a proteomic analysis of DNA binding proteins packaged in the virion. A combination of fluorescence images of ejected DNA and a bioinformatics analysis of the DNA reveal periodic patterns in the viral DNA. The periodic distribution of GC rich regions in the genome provides potential binding sites for basic proteins. This DNA/protein aggregation could be responsible for the periodic concentration of fluorescently labeled DNA observed in ejected viral DNA. Collectively the data indicate that the large chlorella viruses have a DNA packaging strategy that differs from bacteriophages; it involves proteins and share similarities to that of chromatin structure in eukaryotes.  相似文献   

14.
Recent studies have indicated that a number of bacterial and eukaryotic viruses that share a common architectural principle are related, leading to the proposal of an early common ancestor. A prediction of this model would be the discovery of similar viruses that infect archaeal hosts. Our main interest lies in icosahedral double-stranded DNA (dsDNA) viruses with an internal membrane, and we now extend our studies to include viruses infecting archaeal hosts. While the number of sequenced archaeal viruses is increasing, very little sequence similarity has been detected between bacterial and eukaryotic viruses. In this investigation we rigorously show that SH1, an icosahedral dsDNA virus infecting Haloarcula hispanica, possesses lipid structural components that are selectively acquired from the host pool. We also determined the sequence of the 31-kb SH1 genome and positively identified genes for 11 structural proteins, with putative identification of three additional proteins. The SH1 genome is unique and, except for a few open reading frames, shows no detectable similarity to other published sequences, but the overall structure of the SH1 virion and its linear genome with inverted terminal repeats is reminiscent of lipid-containing dsDNA bacteriophages like PRD1.  相似文献   

15.
Gene overlap occurs when two or more genes are encoded by the same nucleotides. This phenomenon is found in all taxonomic domains, but is particularly common in viruses, where it may increase the information content of compact genomes or influence the creation of new genes. Here we report a global comparative study of overlapping open reading frames (OvRFs) of 12,609 virus reference genomes in the NCBI database. We retrieved metadata associated with all annotated open reading frames (ORFs) in each genome record to calculate the number, length, and frameshift of OvRFs. Our results show that while the number of OvRFs increases with genome length, they tend to be shorter in longer genomes. The majority of overlaps involve +2 frameshifts, predominantly found in dsDNA viruses. Antisense overlaps in which one of the ORFs was encoded in the same frame on the opposite strand (−0) tend to be longer. Next, we develop a new graph-based representation of the distribution of overlaps among the ORFs of genomes in a given virus family. In the absence of an unambiguous partition of ORFs by homology at this taxonomic level, we used an alignment-free k-mer based approach to cluster protein coding sequences by similarity. We connect these clusters with two types of directed edges to indicate (1) that constituent ORFs are adjacent in one or more genomes, and (2) that these ORFs overlap. These adjacency graphs not only provide a natural visualization scheme, but also a novel statistical framework for analyzing the effects of gene- and genome-level attributes on the frequencies of overlaps.  相似文献   

16.
Evolutionary history of the Coccolithoviridae   总被引:1,自引:0,他引:1  
We recently determined the genome sequence of the Coccolithoviridae strain Emiliania huxleyi virus 86 (EhV-86), a giant double-stranded DNA (dsDNA) algal virus from the family Phycodnaviridae that infects the marine coccolithophorid E. huxleyi. Here, we determine the phylogenetic relationship between EhV-86 and other large dsDNA viruses. Twenty-five core genes common to nuclear-cytoplasmic large dsDNA virus genomes were identified in the EhV-86 genome; sequence from eight of these genes were used to create a phylogenetic tree in which EhV-86 was placed firmly with the two other members of the Phycodnaviridae. We have also identified a 100-kb region of the EhV-86 genome which appears to have transferred into this genome from an unknown source. Furthermore, the presence of six RNA polymerase subunits (unique among the Phycodnaviridae) suggests both a unique evolutionary history and a unique lifestyle for this intriguing virus.  相似文献   

17.
Spindle‐shaped halovirus His2 and spherical halovirus SH1 represent ecologically dominant virus morphotypes in high‐salt environments. Both have linear dsDNA genomes with inverted terminal repeat sequences and terminal proteins, and probably replicate using protein priming. As a first step towards conventional genetic analyses on these viruses, we show that purified viral DNAs can transfect host cells. Intact terminal proteins were essential for this process. Despite the narrow host ranges of these viruses, at least under laboratory conditions, their DNAs were able to transfect a wide range of haloarchaeal species, demonstrating that the cytoplasms of diverse haloarchaea possess all the factors necessary for viral DNA synthesis and virion assembly. Transposon mutagenesis of viral DNAs was then used in conjunction with transfection to produce recombinant viruses, and to then map the insertion sites to identify non‐essential genes. The inserts in 34 His2 mutants were mapped precisely, and most clustered in a few, specific regions, particularly in the inverted terminal repeats and near the ends of ORFs. The results are consistent with the small genome size and densely packed, often overlapping ORFs that are transcribed as long operons. This study is the first demonstration of transfection and transposon mutagenesis in protein‐primed archaeal viruses.  相似文献   

18.
Two serologically distinguishable primate herpesviruses, Herpesvirus aotus type 1 and type 3, were examined with regard to their genomes and structural polypeptides. The duplex DNA genomes of these two viruses were found to be essentially identical in molecular weight (Mr approximately equal to 145 X 10(6)) and guanine plus cytosine composition (55%). Both contained unique and inverted repeat nucleotide sequences of the same size and arrangement, which, as judged by DNA-DNA hybridization and restriction enzyme analyses, were at least 95% homologous. In addition, no differences were observed in electrophoretic profiles of virion polypeptides. Because of their great similarity with respect to these criteria, the two viruses ought to be considered independent isolates (or strains) of a single virus, which should be designated H. aotus type 1. The elevated molecular weight and presence of two sets of inverted repeat sequences closely resemble the structure of the human cytomegalovirus genome. However, no sequence homology (less than 5%) nor similarity in virion polypeptides was detected between H. aotus type 1 and human cytomegalovirus.  相似文献   

19.
20.
Our understanding of the third domain of life, Archaea, has greatly increased since its establishment some 20 years ago. The increasing information on archaea has also brought their viruses into the limelight. Today, about 100 archaeal viruses are known, which is a low number compared to the numbers of characterized bacterial or eukaryotic viruses. Here, we have performed a comparative biological and structural study of seven pleomorphic viruses infecting extremely halophilic archaea. The pleomorphic nature of this novel virion type was established by sedimentation analysis and cryo-electron microscopy. These nonlytic viruses form virions characterized by a lipid vesicle enclosing the genome, without any nucleoproteins. The viral lipids are unselectively acquired from host cell membranes. The virions contain two to three major structural proteins, which either are embedded in the membrane or form spikes distributed randomly on the external membrane surface. Thus, the most important step during virion assembly is most likely the interaction of the membrane proteins with the genome. The interaction can be driven by single-stranded or double-stranded DNA, resulting in the virions having similar architectures but different genome types. Based on our comparative study, these viruses probably form a novel group, which we define as pleolipoviruses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号