首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Influenza A virus PB1-F2 protein contributes to viral pathogenesis in mice   总被引:1,自引:0,他引:1  
The influenza virus PB1-F2 protein is a novel protein previously shown to be involved in induction of cell death. Here we characterize the expression and the function of the protein within the context of influenza viral infection in tissue culture and a mouse model. We show that the C-terminal region of the protein can be expressed from a downstream initiation codon and is capable of interaction with the full-length protein. Using this knowledge, we generated influenza viruses knocked out for the expression of PB1-F2 protein and its downstream truncation products. Knocking out the PB1-F2 protein had no effect on viral replication in tissue culture but diminished virus pathogenicity and mortality in mice. The viruses replicated to similar levels in mouse lungs by day 3 postinfection, suggesting that the knockout did not impair viral replication. However, while the PB1-F2 knockout viruses were cleared after day 5, the wild-type viruses were detectable in mouse lungs until day 7, implying that expression of PB1-F2 resulted in delayed clearance of the viruses by the host immune system. Based on our findings and on the fact that the PB1 genomic segment was always newly introduced into some pandemic influenza viruses of the last century, we speculate that the PB1-F2 protein plays an important role in pathogenesis of influenza virus infection and may be an important contributor to pathogenicity of pandemic influenza viruses.  相似文献   

2.
MicroRNAs (miRNAs) play an important role in the regulation of gene expression and are involved in many cellular processes including inhibition of viral replication in infected cells. In this study, three subtypes of influenza A viruses (pH1N1, H5N1 and H3N2) were analyzed to identify candidate human miRNAs targeting and silencing viral genes expression. Candidate human miRNAs were predicted by miRBase and RNAhybrid based on minimum free energy (MFE) and hybridization patterns between human miRNAs and viral target genes. In silico analysis presented 76 miRNAs targeting influenza A viruses, including 70 miRNAs that targeted specific subtypes (21 for pH1N1, 27 for H5N1 and 22 for H3N2) and 6 miRNAs (miR-216b, miR-3145, miR-3682, miR-4513, miR-4753 and miR-5693) that targeted multiple subtypes of influenza A viruses. Interestingly, miR-3145 is the only candidate miRNA targeting all three subtypes of influenza A viruses. The miR-3145 targets to PB1 encoding polymerase basic protein 1, which is the main component of the viral polymerase complex. The silencing effect of miR-3145 was validated by 3′-UTR reporter assay and inhibition of influenza viral replication in A549 cells. In 3′-UTR reporter assay, results revealed that miR-3145 triggered significant reduction of the luciferase activity. Moreover, expression of viral PB1 genes was also inhibited considerably (P value < 0.05) in viral infected cells expressing mimic miR-3145. In conclusion, this study demonstrated that human miR-3145 triggered silencing of viral PB1 genes and lead to inhibition of multiple subtypes of influenza viral replication. Therefore, hsa-miR-3145 might be useful for alternative treatment of influenza A viruses in the future.  相似文献   

3.
Influenza virus has evolved replication strategies that hijack host cell pathways. To uncover interactions between viral macromolecules and host proteins, we applied a phage display strategy. A library of human cDNA expression products displayed on filamentous phages was submitted to affinity selection for influenza viral ribonucleoproteins (vRNPs). High-mobility-group box (HMGB) proteins were found to bind to the nucleoprotein (NP) component of vRNPs. HMGB1 and HMGB2 bind directly to the purified NP in the absence of viral RNA, and the HMG box A domain is sufficient to bind the NP. We show that HMGB1 associates with the viral NP in the nuclei of infected cells, promotes viral growth, and enhances the activity of the viral polymerase. The presence of a functional HMGB1 DNA-binding site is required to enhance influenza virus replication. Glycyrrhizin, which reduces HMGB1 binding to DNA, inhibits influenza virus polymerase activity. Our data show that the HMGB1 protein can play a significant role in intranuclear replication of influenza viruses, thus extending previous findings on the bornavirus and on a number of DNA viruses.  相似文献   

4.
Blockage of the induction of type I interferons (IFNs) is essential for the success of influenza virus proliferation in host cells. Several molecular mechanisms by which influenza viruses inhibit IFN induction have been characterized. Here we report a potentially new strategy influenza viruses employ to inhibit IFN production during viral infection. Through a two-dimensional gel electrophoresis based proteomic approach, we found that the expression of IκB kinase-gamma (IKKγ) was suppressed by influenza A virus infection in human lung epithelial A549 cells. Silencing of cellular IKKγ by small interfering RNA led to enhanced replication of influenza viruses. Concomitantly, overexpression of IKKγ resulted in increased production of IFNα/β, whereas influenza virus infection completely eliminated the IKKγ-overexpression-induced production of IFNα/β. Our results suggest that IKKγ and influenza virus are mutually inhibitory, and influenza viruses may inhibit IFN production through suppressing the expression of IKKγ during viral infection.  相似文献   

5.
6.
7.
8.
9.
10.
Analysis of viral glycoprotein expression on surfaces of monensin- treated cells using a fluorescence-activated cell sorter (FACS) demonstrated that the sodium ionophore completely inhibited the appearance of the vesicular stomatitis virus (VSV) G protein on (Madin- Darby canine kidney) MDCK cell surfaces. In contrast, the expression of the influenza virus hemagglutinin (HA) glycoprotein on the surfaces of MDCK cells was observed to occur at high levels, and the time course of its appearance was not altered by the ionophore. Viral protein synthesis was not inhibited by monensin in either VSV- or influenza virus-infected cells. However, the electrophoretic mobilities of viral glycoproteins were altered, and analysis of pronase-derived glycopeptides by gel filtration indicated that the addition of sialic acid residues to the VSV G protein was impaired in monensin-treated cells. Reduced incorporation of fucose and galactose into influenza virus HA was observed in the presence of the ionophore, but the incompletely processed HA protein was cleaved, transported to the cell surface, and incorporated into budding virus particles. In contrast to the differential effects of monensin on VSV and influenza virus replication previously observed in monolayer cultures of MDCK cells, yields of both viruses were found to be significantly reduced by high concentrations of monensin in suspension cultures, indicating that cellular architecture may play a role in determining the sensitivity of virus replication to the drug. Nigericin, an ionophore that facilitates transport of potassium ions across membranes, blocked the replication of both influenza virus and VSV in MDCK cell monolayers, indicating that the ion specificity of ionophores influences their effect on the replication of enveloped viruses.  相似文献   

11.
Influenza A viruses encoding an altered viral NS1 protein have emerged as promising live attenuated vaccine platforms. A carboxy-terminal truncation in the NS1 protein compromises its interferon antagonism activity, making these viruses attenuated in the host yet still able to induce protection from challenge with wild-type viruses. However, specific viral protein expression by NS1-truncated viruses is known to be decreased in infected cells. In this report, we show that recombinant H5N1 and H1N1 influenza viruses encoding a truncated NS1 protein expressed lower levels of hemagglutinin (HA) protein in infected cells than did wild-type viruses. This reduction in HA protein expression correlated with a reduction in HA mRNA levels in infected cells. NS1 truncation affected the expression of HA protein but not that of the nucleoprotein (NP). This segment specificity was mapped to the terminal sequences of their specific viral RNAs. Since the HA protein is the major immunogenic component in influenza virus vaccines, we sought to restore its expression levels in NS1-truncated viruses in order to improve their vaccine efficacy. For this purpose, we generated an NS1-truncated recombinant influenza A/Puerto Rico/8/34 (rPR8) virus carrying the G3A C8U "superpromoter" mutations in the HA genomic RNA segment. This strategy retained the attenuation properties of the recombinant virus but enhanced the expression level of HA protein in infected cells. Finally, mice immunized with rPR8 viruses encoding a truncated NS1 protein and carrying the G3A C8U mutations in the HA segment demonstrated enhanced protection from wild-type virus challenge over that for mice vaccinated with an rPR8 virus encoding the truncated NS1 protein alone.  相似文献   

12.
Translation of influenza A virus PB1-F2 occurs in a second open reading frame (ORF) of the PB1 gene segment. PB1-F2 has been implicated in regulation of polymerase activity, immunopathology, susceptibility to secondary bacterial infection, and induction of apoptosis. Experimental evidence of PB1-F2 molecular function during infection has been collected primarily from human and avian viral isolates. As the 2009 H1N1 (H1N1pdm09) strain highlighted, some swine-derived influenza viruses have the capacity to infect human hosts and emerge as a pandemic. Understanding the impact that virulence factors from swine isolates have on both human and swine health could aid in early identification of viruses with pandemic potential. Studies examining PB1-F2 from swine isolates have focused primarily on H1N1pdm09, which does not encode PB1-F2 but was engineered to carry a full-length PB1-F2 ORF to assess the impact on viral replication and pathogenicity. However, experimental evidence of PB1-F2 protein expression from swine lineage viruses has not been demonstrated. Here, we reveal that during infection, PB1-F2 expression levels are substantially different in swine and human influenza viruses. We provide evidence that PB1-F2 expression is regulated at the translational level, with very low levels of PB1-F2 expression from swine lineage viruses relative to a human isolate PB1-F2. Translational regulation of PB1-F2 expression was partially mapped to two independent regions within the PB1 mRNA, located downstream of the PB1-F2 start site. Our data suggest that carrying a full-length PB1-F2 ORF may not be predictive of PB1-F2 expression in infected cells for all influenza A viruses.  相似文献   

13.
《Autophagy》2013,9(3):321-328
Autophagy is involved in the replication of viruses, especially those that perform RNA assembly on the surface of cytoplasmic membrane in host cells. However, little is known about the regulatory role of autophagy in influenza A virus replication. Using fluorescence and electron microscopy, we observed that autophagosomes can be induced and identified upon influenza A virus infection. The virus increased the amount of the autophagosome marker protein microtubule-associated protein light chain 3-II (LC3-II) and enhanced autophagic flux. When autophagy was pharmacologically inhibited by either 3-methylademine or wortmannin, the titers of influenza A virus were remarkably decreased. Viral reduction via autophagy inhibition was further confirmed by RNA interference, through which two different proteins required for autophagy were depleted. Noticeably, the compounds utilized had no marked effect on virus entry or cell viability, either of which might limit viral replication. Furthermore, alteration of cellular autophagy via pharmacological reagents or RNA interference impaired viral protein accumulation. Taken together, these findings indicate that autophagy is actively involved in influenza A virus replication.  相似文献   

14.
15.
Cao S  Liu X  Yu M  Li J  Jia X  Bi Y  Sun L  Gao GF  Liu W 《Journal of virology》2012,86(9):4883-4891
The influenza A virus matrix 1 protein (M1) shuttles between the cytoplasm and the nucleus during the viral life cycle and plays an important role in the replication, assembly, and budding of viruses. Here, a leucine-rich nuclear export signal (NES) was identified specifically for the nuclear export of the M1 protein. The predicted NES, designated the Flu-A-M1 NES, is highly conserved among all sequences from the influenza A virus subtype, but no similar NES motifs are found in the M1 sequences of influenza B or C viruses. The biological function of the Flu-A-M1 NES was demonstrated by its ability to translocate an enhanced green fluorescent protein (EGFP)-NES fusion protein from the nucleus to the cytoplasm in transfected cells, compared to the even nuclear and cytoplasmic distribution of EGFP. The translocation of EGFP-NES from the nucleus to the cytoplasm was not inhibited by leptomycin B. NES mutations in M1 caused a nuclear retention of the protein and an increased nuclear accumulation of NEP during transfection. Indeed, as shown by rescued recombinant viruses, the mutation of the NES impaired the nuclear export of M1 and significantly reduced the virus titer compared to titers of wild-type viruses. The NES-defective M1 protein was retained in the nucleus during infection, accompanied by a lowered efficiency of the nuclear export of viral RNPs (vRNPs). In conclusion, M1 nuclear export was specifically dependent on the Flu-A-M1 NES and critical for influenza A virus replication.  相似文献   

16.
17.
18.
Engineering of the influenza A virus NS1 protein became an attractive approach to the development of influenza vaccine vectors since it can tolerate large inserts of foreign proteins. However, influenza virus vectors expressing long foreign sequences from the NS1 open reading frame (ORF) are usually replication deficient in animals due to the abrogation of their NS1 protein function. In this study, we describe a bicistronic expression strategy based on the insertion of an overlapping UAAUG stop-start codon cassette into the NS gene, allowing the reinitiation of translation of a foreign sequence. Although the expression level of green fluorescent protein (GFP) from the newly created reading frame was significantly lower than that obtained previously from an influenza virus vector expressing GFP from the NS1 ORF, the bicistronic vector appeared to be replication competent in mice and showed outstanding genetic stability. All viral isolates derived from mouse lungs at 10 days postinfection were still capable of expressing GFP in infected cells. Utilizing this bicistronic approach, we constructed another recombinant influenza virus, allowing the secretion of biologically active human interleukin-2 (IL-2). Although this virus also replicated to high titers in mouse lungs, it did not display any mortality rate in infected animals, in contrast to control viruses. Moreover, the IL-2-expressing virus showed an enhanced CD8+ response to viral antigens in mice after a single intranasal immunization. These results indicate that influenza viruses could be engineered for the expression of biologically active molecules such as cytokines for immune modulation purposes.  相似文献   

19.
20.
Influenza A NS1 and NS2 proteins are encoded by the RNA segment 8 of the viral genome. NS1 is a multifunctional protein and a virulence factor while NS2 is involved in nuclear export of viral ribonucleoprotein complexes. A yeast two-hybrid screening strategy was used to identify host factors supporting NS1 and NS2 functions. More than 560 interactions between 79 cellular proteins and NS1 and NS2 proteins from 9 different influenza virus strains have been identified. These interacting proteins are potentially involved in each step of the infectious process and their contribution to viral replication was tested by RNA interference. Validation of the relevance of these host cell proteins for the viral replication cycle revealed that 7 of the 79 NS1 and/or NS2-interacting proteins positively or negatively controlled virus replication. One of the main factors targeted by NS1 of all virus strains was double-stranded RNA binding domain protein family. In particular, adenosine deaminase acting on RNA 1 (ADAR1) appeared as a pro-viral host factor whose expression is necessary for optimal viral protein synthesis and replication. Surprisingly, ADAR1 also appeared as a pro-viral host factor for dengue virus replication and directly interacted with the viral NS3 protein. ADAR1 editing activity was enhanced by both viruses through dengue virus NS3 and influenza virus NS1 proteins, suggesting a similar virus-host co-evolution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号