首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Loss of diaphragm muscle strength in inflammatory lung disease contributes to mortality and is associated with diaphragm fiber atrophy. Ubiquitin (Ub) 26S-proteasome system (UPS)-dependent protein breakdown, which mediates muscle atrophy in a number of physiological and pathological conditions, is elevated in diaphragm muscle of patients with chronic obstructive pulmonary disease. Nuclear factor kappa B (NF-κB), an essential regulator of many inflammatory processes, has been implicated in the regulation of poly-Ub conjugation of muscle proteins targeted for proteolysis by the UPS. Here, we test if NF-κB activation in diaphragm muscle and subsequent protein degradation by the UPS are required for pulmonary inflammation-induced diaphragm atrophy. Acute pulmonary inflammation was induced in mice by intratracheal lipopolysaccharide instillation. Fiber cross-sectional area, ex vivo tyrosine release, protein poly-Ub conjugation, and inflammatory signaling were determined in diaphragm muscle. The contribution of NF-κB or the UPS to diaphragm atrophy was assessed in mice with intact or genetically repressed NF-κB signaling or attenuated poly-Ub conjugation, respectively. Acute pulmonary inflammation resulted in diaphragm atrophy measured by reduced muscle fiber cross-sectional area. This was accompanied by diaphragm NF-κB activation, and proteolysis, measured by tyrosine release from the diaphragm. Poly-Ub conjugation was increased in diaphragm, as was the expression of muscle-specific E3 Ub ligases. Genetic suppression of poly-Ub conjugation prevented inflammation-induced diaphragm muscle atrophy, as did muscle-specific inhibition of NF-κB signaling. In conclusion, the present study is the first to demonstrate that diaphragm muscle atrophy, resulting from acute pulmonary inflammation, requires NF-κB activation and UPS-mediated protein degradation.  相似文献   

2.
3.
Sun SC 《Cell research》2011,21(1):71-85
The non-canonical NF-κB pathway is an important arm of NF-κB signaling that predominantly targets activation of the p52/RelB NF-κB complex. This pathway depends on the inducible processing of p100, a molecule functioning as both the precursor of p52 and a RelB-specific inhibitor. A central signaling component of the non-canonical pathway is NF-κB-inducing kinase (NIK), which integrates signals from a subset of TNF receptor family members and activates a downstream kinase, IκB kinase-α (IKKα), for triggering p100 phosphorylation and processing. A unique mechanism of NIK regulation is through its fate control: the basal level of NIK is kept low by a TRAF-cIAP destruction complex and signal-induced non-canonical NF-κB signaling involves NIK stabilization. Tight control of the fate of NIK is important, since deregulated NIK accumulation is associated with lymphoid malignancies.  相似文献   

4.
The IκB kinase/NF-κB signaling pathway has been implicated in the pathogenesis of several inflammatory diseases. Increased activation of NF-κB is often detected in both immune and non-immune cells in tissues affected by chronic inflammation, where it is believed to exert detrimental functions by inducing the expression of proinflammatory mediators that orchestrate and sustain the inflammatory response and cause tissue damage. Thus, increased NF-κB activation is considered an important pathogenic factor in many acute and chronic inflammatory disorders, raising hopes that NF-κB inhibitors could be effective for the treatment of inflammatory diseases. However, ample evidence has accumulated that NF-κB inhibition can also be harmful for the organism, and in some cases trigger the development of inflammation and disease. These findings suggested that NF-κB signaling has important functions for the maintenance of physiological immune homeostasis and for the prevention of inflammatory diseases in many tissues. This beneficial function of NF-κB has been predominantly observed in epithelial cells, indicating that NF-κB signaling has a particularly important role for the maintenance of immune homeostasis in epithelial tissues. It seems therefore that NF-κB displays two faces in chronic inflammation: on the one hand increased and sustained NF-κB activation induces inflammation and tissue damage, but on the other hand inhibition of NF-κB signaling can also disturb immune homeostasis, triggering inflammation and disease. Here, we discuss the mechanisms that control these apparently opposing functions of NF-κB signaling, focusing particularly on the role of NF-κB in the regulation of immune homeostasis and inflammation in the intestine and the skin.  相似文献   

5.
Ligation of the lymphotoxin-β receptor (LTβR) by LIGHT (lymphotoxin-related inducible ligand that competes for glycoprotein D binding to herpes virus entry mediator on T cells (TNFSF14)) activates the noncanonical (NC) NF-κB (nuclear factor-κB) pathway and up-regulates CXCL12 gene expression by human umbilical vein endothelial cells (HUVEC). In contrast, TNF only activates classical NF-κB signaling and does not up-regulate CXCL12. To determine whether cross-talk between the classical and NC pathways affects CXCL12 expression, we investigated the effects of TNF on LIGHT signaling in HUVEC. We show here that TNF inhibits both basal and LIGHT-induced CXCL12 expression. Negative regulation by TNF requires the classical NF-κB pathway as inhibition of basal and induced CXCL12 was reversed in HUVEC-expressing dominant negative IκB (inhibitor of NF-κB) kinase (IKK)β (IKKβ(K44M)). TNF did not inhibit the NC NF-κB pathway activation as LIGHT-induced p100 processing to p52 was intact; however, TNF either alone or together with LIGHT up-regulated p100 and RelB expression and induced the nuclear localization of p100-RelB complexes. Enhanced p100 and RelB expression was inhibited by IKKβ(K44M), which led us to question whether the IκB function of elevated p100 mediates the inhibition of CXCL12 expression by TNF. We retrovirally transduced HUVEC to express p100 at a level similar to that up-regulated by TNF; however, basal and LIGHT-induced CXCL12 expression was normal in the transduced cells. In contrast, ectopic RelB expression recapitulated the effects of TNF on NC signaling and inhibited basal and LIGHT-induced CXCL12 expression by HUVEC. Our findings therefore demonstrate that TNF-induced classical NF-κB signaling up-regulates RelB expression that inhibits both basal and NC NF-κB-dependent CXCL12 expression.  相似文献   

6.
7.
Activation of the nuclear factor (NF)-κB signaling pathway may be associated with the development of cardiac hypertrophy and its transition to heart failure (HF). The transgenic Myo-Tg mouse develops hypertrophy and HF as a result of overexpression of myotrophin in the heart associated with an elevated level of NF-κB activity. Using this mouse model and an NF-κB-targeted gene array, we first determined the components of NF-κB signaling cascade and the NF-κB-linked genes that are expressed during the progression to cardiac hypertrophy and HF. Second, we explored the effects of inhibition of NF-κB signaling events by using a gene knockdown approach: RNA interference through delivery of a short hairpin RNA against NF-κB p65 using a lentiviral vector (L-sh-p65). When the short hairpin RNA was delivered directly into the hearts of 10-week-old Myo-Tg mice, there was a significant regression of cardiac hypertrophy, associated with a significant reduction in NF-κB activation and atrial natriuretic factor expression. Our data suggest, for the first time, that inhibition of NF-κB using direct gene delivery of sh-p65 RNA results in regression of cardiac hypertrophy. These data validate NF-κB as a therapeutic target to prevent hypertrophy/HF.  相似文献   

8.
9.
10.
11.
Hideaki Shimada 《FEBS letters》2010,584(13):2827-2832
Lysophosphatidic acid (LPA), an inflammatory mediator that is elevated in multiple inflammatory diseases, is a potent activator of Rho kinase (ROCK) signaling and of chemokine production in endothelial cells. In this study, LPA activated ROCK, p38, JNK and NF-κB pathways and induced interleukin-8 (IL-8) and monocyte chemotactic protein-1 (MCP-1) mRNA and protein expression in human endothelial cells. We mapped signaling events downstream of ROCK, driving chemokine production. In summary, MCP-1 production was partly regulated by ROCK acting upstream of p38 and JNK and mediated downstream by NF-κB. IL-8 production was largely driven by ROCK through p38 and JNK activation, but with no involvement of NF-κB.  相似文献   

12.
13.
14.
15.
16.
Persistently elevated level of TNF-α has been implicated in several inflammatory disorders, however, its autocrine production through TNF-α receptors signaling is poorly understood. Here we report that simultaneous silencing of TNF-receptors, R1 and R2 by DNAzyme or siRNA suppressed TNF-α expression more efficiently than silencing them individually in lipopolysaccharides (LPS) stimulated THP-1 macrophages. Co-silencing of TNF-receptors also inhibited TNF-α induced NF-κB activation to a higher extent. It was further observed that NF-κB inhibitor but not c-Jun N-terminal kinase inhibitor (SP600125) suppressed TNF-α expression. All these results suggest that TNF-α expression is regulated by synergistic signaling of TNF receptors through downstream NF-κB activation.  相似文献   

17.
18.
19.
Endothelial cell (EC) Toll-like receptor 2 (TLR2) activation up-regulates the expression of inflammatory mediators and of TLR2 itself and modulates important endothelial functions, including coagulation and permeability. We defined TLR2 signaling pathways in EC and tested the hypothesis that TLR2 signaling differs in EC and monocytes. We found that ERK5, heretofore unrecognized as mediating TLR2 activation in any cell type, is a central mediator of TLR2-dependent inflammatory signaling in human umbilical vein endothelial cells, primary human lung microvascular EC, and human monocytes. Additionally, we observed that, although MEK1 negatively regulates TLR2 signaling in EC, MEK1 promotes TLR2 signaling in monocytes. We also noted that activation of TLR2 led to the up-regulation of intracellularly expressed TLR2 and inflammatory mediators via NF-κB, JNK, and p38-MAPK. Finally, we found that p38-MAPK, JNK, ERK5, and NF-κB promote the attachment of human neutrophils to lung microvascular EC that were pretreated with TLR2 agonists. This study newly identifies ERK5 as a key regulator of TLR2 signaling in EC and monocytes and indicates that there are fundamental differences in TLR signaling pathways between EC and monocytes.  相似文献   

20.
Nuclear factor-kappa B (NF-κB) is a critical regulator of multiple biological functions including innate and adaptive immunity and cell survival. Activation of NF-κB is tightly regulated to preclude chronic signaling that may lead to persistent inflammation and cancer. Ubiquitination of key signaling molecules by E3 ubiquitin ligases has emerged as an important regulatory mechanism for NF-κB signaling. Deubiquitinases (DUBs) counteract E3 ligases and therefore play a prominent role in the downregulation of NF-κB signaling and homeostasis. Understanding the mechanisms of NF-κB downregulation by specific DUBs such as A20 and CYLD may provide therapeutic opportunities for the treatment of chronic inflammatory diseases and cancer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号