首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Health depends on the diet and a vegetal diet promotes health by providing fibres, vitamins and diverse metabolites. Remarkably, plants may also provide microbes. Fungi and bacteria that reside inside plant tissues (endophytes) seem better protected to survive digestion; thus, we investigated the reported evidence on the endophytic origin of some members of the gut microbiota in animals such as panda, koala, rabbits and tortoises and several herbivore insects. Data examined here showed that some members of the herbivore gut microbiota are common plant microbes, which derived to become stable microbiota in some cases. Endophytes may contribute to plant fibre or antimetabolite degradation and synthesis of metabolites with the plethora of enzymatic activities that they display; some may have practical applications, for example, Lactobacillus plantarum found in the intestinal tract, plants and in fermented food is used as a probiotic that may defend animals against bacterial and viral infections as other endophytic-enteric bacteria do. Clostridium that is an endophyte and a gut bacterium has remarkable capabilities to degrade cellulose by having cellulosomes that may be considered the most efficient nanomachines. Cellulose degradation is a challenge in animal digestion and for biofuel production. Other endophytic-enteric bacteria may have cellulases, pectinases, xylanases, tannases, proteases, nitrogenases and other enzymatic capabilities that may be attractive for biotechnological developments, indeed many endophytes are used to promote plant growth. Here, a cycle of endophytic-enteric-soil-endophytic microbes is proposed which has relevance for health and comprises the fate of animal faeces as natural microbial inoculants for plants that constitute bacterial sources for animal guts.  相似文献   

2.
Clostridia are anaerobic Firmicutes producing a large array of metabolites by utilizing simple and complex carbohydrates, such as cellulose, as well as CO2/H2 or CO. Their exceptional substrate diversity is enhanced by their ability to produce a broad spectrum of chemicals that can be used as precursors to or directly as biofuels and industrial chemicals. Genetic and genomic tools are under intense development, and recent efforts to metabolically engineer clostridia demonstrate their potential for biofuel and biorefinery applications. Pathway engineering to combine established substrate-utilization programs, such as for cellulose, CO2/H2 or CO, with desirable metabolic programs could lead to modular design of strains suitable for many applications. Engineering complex phenotypes--aerotolerance, abolished sporulation, and tolerance to toxic chemicals--could lead to superior bioprocessing strains.  相似文献   

3.
4.
Fungal endophyte communities are poorly investigated in extreme habitats such as deserts. We used cultivation and Sanger sequencing to investigate the effects of environmental variables on the endophytic fungal communities of eight Iranian desert plants. Host species was the main factor shaping the endophyte composition, while soil type additionally affected endophytes of above- and below-ground organs. Redundancy analysis showed that soil pH and electric conductivity determine fungal endophyte communities in plants in dry and saline soils. In a follow-up experiment, we showed that these endophytes could be used in crop production under salinity/drought stress and as biocontrol agents. Although compared to other ecosystems, the endophytic fungi associated with the studied Iranian desert plants are of low diversity, our results suggest that they probably play an essential role in the survival of their hosts. Further investigation is necessary to evaluate the potential benefits and applicability of such endophytes in agricultural practices in drylands.  相似文献   

5.
《Fungal biology》2022,126(5):385-394
Endophytic fungi are capable of producing a great diversity of bioactive metabolites. However, the presence of silent and lowly expressed genes represents a main challenge for the discovery of novel secondary metabolites with different potential uses. Epigenetic modifiers have shown to perturb the production of fungal metabolites through the induction of silent biosynthetic pathways leading to an enhanced chemical diversity. Moreover, the addition of bioprecursors to the culture medium has been described as a useful strategy to induce specific biosynthetic pathways. The aim of this study was to assess the effects of different chemical modulators on the metabolic profiles of an endophytic fungal strain of Cophinforma mamane (Botryosphaeriaceae), known to produce 3 thiodiketopiperazine (TDKP) alkaloids (botryosulfuranols A-C), previously isolated and characterized by our team. Four epigenetic modifiers, 5-azacytidine (AZA), sodium butyrate (SB), nicotinamide (NIC), homoserine lactone (HSL) as well as 2 amino acids, l-phenylalanine and l-tryptophan, as bioprecursors of TDKPs, were used. The metabolic profiles were analysed by UHPLC-HRMS/MS under an untargeted metabolomics approach. Our results show that the addition of the two amino acids in C. mamane culture and the treatment with AZA significantly reduced the production of the TDKPs botryosulfuranols A, B and C. Interestingly, the treatment with HSL significantly induced the production of different classes of diketopiperazines (DKPs). The treatment with AZA resulted as the most effective epigenetic modifier for the alteration of the secondary metabolite profile of C. mamane by promoting the expression of cryptic genes.  相似文献   

6.
Terpenes are an important and diverse class of secondary metabolites widely produced by fungi. Volatile compound screening of a fungal endophyte collection revealed a number of isolates in the family Xylariaceae, producing a series of terpene molecules, including 1,8-cineole. This compound is a commercially important component of eucalyptus oil used in pharmaceutical applications and has been explored as a potential biofuel additive. The genes that produce terpene molecules, such as 1,8-cineole, have been little explored in fungi, providing an opportunity to explore the biosynthetic origin of these compounds. Through genome sequencing of cineole-producing isolate E7406B, we were able to identify 11 new terpene synthase genes. Expressing a subset of these genes in Escherichia coli allowed identification of the hyp3 gene, responsible for 1,8-cineole biosynthesis, the first monoterpene synthase discovered in fungi. In a striking example of convergent evolution, mutational analysis of this terpene synthase revealed an active site asparagine critical for water capture and specificity during cineole synthesis, the same mechanism used in an unrelated plant homologue. These studies have provided insight into the evolutionary relationship of fungal terpene synthases to those in plants and bacteria and further established fungi as a relatively untapped source of this important and diverse class of compounds.  相似文献   

7.
Fungal endophytes: unique plant inhabitants with great promises   总被引:2,自引:0,他引:2  
Fungal endophytes residing in the internal tissues of living plants occur in almost every plant on earth from the arctic to the tropics. The endophyte–host relationship is described as a balanced symbiotic continuum ranging from mutualism through commensalism to parasitism. This overview will highlight selected aspects of endophyte diversity, host specificity, endophyte–host interaction and communication as well as regulation of secondary metabolite production with emphasis on advanced genomic methods and their role in improving our current knowledge of endophytic associations. Furthermore, the chemical potential of endophytic fungi for drug discovery will be discussed with focus on the detection of pharmaceutically valuable plant constituents as products of fungal biosynthesis. In addition, selected examples of bioactive metabolites reported in recent years (2008–2010) from fungal endophytes residing in terrestrial plants are presented grouped according to their reported biological activities.  相似文献   

8.
Fungi are well known for their metabolic versatility, whether it is the degradation of complex organic substrates or the biosynthesis of intricate secondary metabolites. The vast majority of studies concerning fungal metabolic pathways for sulfur assimilation have focused on conventional sources of sulfur such as inorganic sulfur ions and sulfur-containing biomolecules. Less is known about the metabolic pathways involved in the assimilation of so-called “alternative” sulfur sources such as sulfides, sulfoxides, sulfones, sulfonates, sulfate esters and sulfamates. This review summarizes our current knowledge regarding the structural diversity of sulfur compounds assimilated by fungi as well as the biochemistry and genetics of metabolic pathways involved in this process. Shared sequence homology between bacterial and fungal sulfur assimilation genes have lead to the identification of several candidate genes in fungi while other enzyme activities and pathways so far appear to be specific to the fungal kingdom. Increased knowledge of how fungi catabolize this group of compounds will ultimately contribute to a more complete understanding of sulfur cycling in nature as well as the environmental fate of sulfur-containing xenobiotics.  相似文献   

9.
纤维素乙醇基因工程研究进展   总被引:2,自引:0,他引:2  
天然微生物代谢木质纤维素生成乙醇的途径和能力各不相同,通过基因工程的手段,将不同菌种的优良基因加以重组和改造,提高乙醇产率及降低成本,是当前纤维素乙醇研究的重要课题。综述了已发现的能够代谢纤维素产乙醇的天然微生物的种类、特性、代谢机理及构建重组菌株的方法和研究进展,并对基因工程开发纤维素乙醇工程菌的前景和存在的问题进行分析。  相似文献   

10.
《Genomics》2022,114(6):110525
Non-ribosomal peptide synthetases (NRPSs) and NRPS-like enzymes are abundant in microbes as they are involved in the production of primary and secondary metabolites. In contrast to the well-studied NRPSs, known to produce non-ribosomal peptides, NRPS-like enzymes exhibit more diverse activities and their evolutionary relationships are unclear. Here, we present the first in-depth phylogenetic analysis of fungal NRPS-like A domains from functionally characterized pathways, and their relationships to characterized A domains found in fungal NRPSs. This study clearly differentiated amino acid reductases, including NRPSs, from CoA/AMP ligases, which could be divided into 10 distinct phylogenetic clades that reflect their conserved domain organization, substrate specificity and enzymatic activity. In particular, evolutionary relationships of adenylate forming reductases could be refined and explained the substrate specificity difference. Consistent with their phylogeny, the deduced amino acid code of A domains differentiated amino acid reductases from other enzymes. However, a diagnostic code was found for α-keto acid reductases and clade 7 CoA/AMP ligases only. Comparative genomics of loci containing these enzymes revealed that they can be independently recruited as tailoring genes in diverse secondary metabolite pathways. Based on these results, we propose a refined and clear phylogeny-based classification of A domain-containing enzymes, which will provide a robust framework for future functional analyses and engineering of these enzymes to produce new bioactive molecules.  相似文献   

11.
12.
The genome sequences provide a first glimpse into the genomic basis of the biological diversity of filamentous fungi and yeast. The genome sequence of the budding yeast, Saccharomyces cerevisiae, with a small genome size, unicellular growth, and rich history of genetic and molecular analyses was a milestone of early genomics in the 1990s. The subsequent completion of fission yeast, Schizosaccharomyces pombe and genetic model, Neurospora crassa initiated a revolution in the genomics of the fungal kingdom. In due course of time, a substantial number of fungal genomes have been sequenced and publicly released, representing the widest sampling of genomes from any eukaryotic kingdom. An ambitious genome-sequencing program provides a wealth of data on metabolic diversity within the fungal kingdom, thereby enhancing research into medical science, agriculture science, ecology, bioremediation, bioenergy, and the biotechnology industry. Fungal genomics have higher potential to positively affect human health, environmental health, and the planet’s stored energy. With a significant increase in sequenced fungal genomes, the known diversity of genes encoding organic acids, antibiotics, enzymes, and their pathways has increased exponentially. Currently, over a hundred fungal genome sequences are publicly available; however, no inclusive review has been published. This review is an initiative to address the significance of the fungal genome-sequencing program and provides the road map for basic and applied research.  相似文献   

13.
Grasslands in North America are increasingly threatened by land conversion and ecological degradation, prompting restoration efforts to increase native plant species diversity and improve wildlife habitat. A major challenge is the removal and management of nonnative invasive species such as tall fescue (Schedonorus arundinaceus), which has a symbiotic association with a fungal endophyte (Epichloë coenophiala) that modifies its ecological interactions. Using transplanted clumps of the cultivar Kentucky‐31, we tested the effects of endophyte infection on tall fescue's survival and performance (tiller production, flowering, and basal area) for 5 years in a central Kentucky reconstructed prairie. We predicted that endophyte infected (E+) clumps would have increased performance compared to endophyte‐free (E?) clumps. Overall, E+ clumps had greater survival, tiller production, flowering tiller production, and basal area, but not reproductive effort (proportion of tillers flowering) as compared to E? clumps. However, survival and trends in tiller number and basal area over the 5‐year period suggested experimental tall fescue populations were in decline in the reconstructed prairie, although the E? population declined more rapidly. Our study provides evidence that endophyte infection improved tall fescue's growth and survival in a postreconstruction plant community, at least in the early years following reconstruction, and may increase the invasive potential of this nonnative species in prairie restorations.  相似文献   

14.
人参内生菌的多样性及其次生代谢产物   总被引:1,自引:0,他引:1  
赵俞  王琦 《菌物研究》2012,10(2):113-118
人参是传统的名贵中药材,在医学上有很高的药用价值,同时也是宝贵的自然资源。内生菌广泛存在于健康植物组织内部,是植物微生态系统的重要组成部分,某些内生菌甚至能够产生同原植物相同或相似的活性物质。本文综述了从人参中分离得到内生菌的物种多样性,着重介绍从其内生真菌中发现并得到的次生代谢产物的丰富性并阐述了其在医药及生产生活中的应用前景。  相似文献   

15.
Fermentation enables the production of reduced metabolites, such as the biofuels ethanol and butanol, from fermentable sugars. This work demonstrates a general approach for designing and constructing a production host that uses a heterologous pathway as an obligately fermentative pathway to produce reduced metabolites, specifically, the biofuel isobutanol. Elementary mode analysis was applied to design an Escherichia coli strain optimized for isobutanol production under strictly anaerobic conditions. The central metabolism of E. coli was decomposed into 38,219 functional, unique, and elementary modes (EMs). The model predictions revealed that during anaerobic growth E. coli cannot produce isobutanol as the sole fermentative product. By deleting 7 chromosomal genes, the total 38,219 EMs were constrained to 12 EMs, 6 of which can produce high yields of isobutanol in a range from 0.29 to 0.41 g isobutanol/g glucose under anaerobic conditions. The remaining 6 EMs rely primarily on the pyruvate dehydrogenase enzyme complex (PDHC) and are typically inhibited under anaerobic conditions. The redesigned E. coli strain was constrained to employ the anaerobic isobutanol pathways through deletion of 7 chromosomal genes, addition of 2 heterologous genes, and overexpression of 5 genes. Here we present the design, construction, and characterization of an isobutanol-producing E. coli strain to illustrate the approach. The model predictions are evaluated in relation to experimental data and strategies proposed to improve anaerobic isobutanol production. We also show that the endogenous alcohol/aldehyde dehydrogenase AdhE is the key enzyme responsible for the production of isobutanol and ethanol under anaerobic conditions. The glycolytic flux can be controlled to regulate the ratio of isobutanol to ethanol production.  相似文献   

16.
The energy in cellulosic biomass largely resides in plant cell walls. Cellulosic biomass is more difficult than starch to break down into sugars because of the presence of lignin and the complex structure of cell walls. Transgenic down-regulation of major lignin genes led to reduced lignin content, increased dry matter degradability, and improved accessibility of cellulases for cellulose degradation. This review provides background information on lignin biosynthesis and focuses on genetic manipulation of lignin genes in important monocot species as well as the dicot potential biofuel crop alfalfa. Reduction of lignin in biofuel crops by genetic engineering is likely one of the most effective ways of reducing costs associated with pretreatment and hydrolysis of cellulosic feedstocks, although some potential fitness issues should also be addressed.  相似文献   

17.
Endophytes are microorganisms that asymptomatically invade plant tissues. They can stimulate plant growth and/or provide defense against pathogen attacks through the production of secondary metabolites. Most endophyte species are still unknown, and because they may have several applications, the study of their metabolic capabilities is essential. We characterized 100 endophytes isolated from Espeletia spp., a genus unique to the paramo ecosystem, an extreme environment in the Andean mountain range. We evaluated the cellulolytic potential of these endophytes on the saccharification of the oil palm empty fruit bunch (OPEFB). The total cellulolytic activity was measured for each endophyte on filter paper (FPA). In addition, the specific carboxymethyl cellulase (CMCase), exoglucanase, and β-glucosidase activities were determined. We found four fungi positive for cellulases. Of these fungi, Penicillium glabrum had the highest cellulolytic activity after partial purification, with maximal CMCase, exoglucanase and β-glucosidase enzyme activities of 44.5, 48.3, and 0.45 U/ml, respectively. Our data showed that the bioprospection of fungi and the characterization of their enzymes may facilitate the process of biofuel production.  相似文献   

18.
Studies on fungal metabolites have produced an overwhelming expectation concerning the production of novel bioactive compounds for pharmaceutical applications. The adding of various biosynthetic precursors and the changing of nutritional components in the fermentation medium can change biosynthesis pathways, also leading to the production of novel metabolites. In addition, several growing conditions can be classically manipulated to modify fungal metabolite profiles. Recently, modern genome sequence tools have shown that not all gene clusters are regularly expressed in conventional growing conditions, thus expanding the possibilities of modulating the chemical metabolite profiles produced by filamentous fungi. This review discusses and exemplifies classical and epigenetic tools successfully applied to diversify metabolite production and to produce fungal metabolites from silent metabolic pathways.  相似文献   

19.
20.
Fungi and humans: closer than you think   总被引:2,自引:0,他引:2  
The budding yeast, Saccharomyces cerevisiae, has long been used as a model system to study the functions of human genes. Now that the genome sequences from several other fungal species are nearly complete, we can characterize the genetic diversity in the fungal kingdom at the genomic level. This diversity means that the number of human genes with homologues in the fungal kingdom is double that with homologues in S. cerevisiae only. Therefore, functional studies of human genes in the fungal model systems should look beyond S. cerevisiae.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号