首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The neurotrophin family includes NGF, brain-derived neurotrophic factor (BDNF), neurotrophin-3 (NT-3), and neurotrophin-4 (NT-4). Previous studies have demonstrated that expression of NGF and its low-affinity receptor is induced in nonneuronal cells of the distal segment of the transected sciatic nerve suggesting a role for NGF during axonal regeneration (Johnson, E. M., M. Taniuchi, and P. S. DeStefano. 1988. Trends Neurosci. 11:299-304). To assess the role of the other neurotrophins and the members of the family of Trk signaling neurotrophin receptors, we have here quantified the levels of mRNAs for BDNF, NT-3, and NT-4 as well as mRNAs for trkA, trkB, and trkC at different times after transection of the sciatic nerve in adult rats. A marked increase of BDNF and NT-4 mRNAs in the distal segment of the sciatic nerve was seen 2 wk after the lesion. The increase in BDNF mRNA was mediated by a selective activation of the BDNF exon IV promoter and adrenalectomy attenuated this increase by 50%. NT-3 mRNA, on the other hand, decreased shortly after the transection but returned to control levels 2 wk later. In Schwann cells ensheathing the sciatic nerve, only trkB mRNA encoding truncated TrkB receptors was detected with reduced levels in the distal part of the lesioned nerve. Similar results were seen using a probe that detects all forms of trkC mRNA. In the denervated gastrocnemius muscle, the level of BDNF mRNA increased, NT-3 mRNA did not change, while NT-4 mRNA decreased. In the spinal cord, only small changes were seen in the levels of neutrophin and trk mRNAs. These results show that expression of mRNAs for neurotrophins and their Trk receptors is differentially regulated after a peripheral nerve injury. Based on these results a model is presented for how the different neurotrophins could cooperate to promote regeneration of injured peripheral nerves.  相似文献   

2.
Neurotrophins play an essential role in nerve systems. Recent reports indicated that neurotrophins [nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF), neurotrophin-3 (NT-3), and neurotrophin-4/5 (NT-4/5)] have numerous effects on non-neural cells, especially on immune cells. However, whether lung cells express neurotrophins and/or their receptors (TrkA for NGF, TrkB for BDNF and NT-4/5, and TrkC for NT-3) has never been systematically investigated. We investigated constitutive expression of neurotrophin family and their Trk receptor family in alveolar macrophages and other peripheral lung cells of mice. New findings were: (1) RT-PCR for neurotrophins and their receptors detected NT-3 and NT-4/5 in alveolar macrophages, BDNF, NT-4/5, trkA, the truncated form of trkB, and trkC in lung homogenate, but no trks in alveolar macrophages, (2) immunohistochemistry for neurotrophin receptors detected TrkA in capillary cells, the truncated form of TrkB, and TrkC in interstitial macrophages, (3) immunoelectron microscopy for TrkC revealed expression of TrkC on the surface of interstitial macrophages, and (4) in situ hybridization for neurotrophins detected BDNF in interstitial macrophages and alveolar type I cells, NT-3 in alveolar macrophages, and NT-4/5 in alveolar and interstitial macrophages. These findings indicate that a previously unknown signal trafficking occurs through neurotrophins in peripheral lung.  相似文献   

3.
4.
Neurotrophin-regulated signalling pathways   总被引:15,自引:0,他引:15  
Neurotrophins are a family of closely related proteins that were identified initially as survival factors for sensory and sympathetic neurons, and have since been shown to control many aspects of survival, development and function of neurons in both the peripheral and the central nervous systems. Each of the four mammalian neurotrophins has been shown to activate one or more of the three members of the tropomyosin-related kinase (Trk) family of receptor tyrosine kinases (TrkA, TrkB and TrkC). In addition, each neurotrophin activates p75 neurotrophin receptor (p75NTR), a member of the tumour necrosis factor receptor superfamily. Through Trk receptors, neurotrophins activate Ras, phosphatidyl inositol-3 (PI3)-kinase, phospholipase C-gamma1 and signalling pathways controlled through these proteins, such as the MAP kinases. Activation of p75NTR results in activation of the nuclear factor-kappaB (NF-kappaB) and Jun kinase as well as other signalling pathways. Limiting quantities of neurotrophins during development control the number of surviving neurons to ensure a match between neurons and the requirement for a suitable density of target innervation. The neurotrophins also regulate cell fate decisions, axon growth, dendrite growth and pruning and the expression of proteins, such as ion channels, transmitter biosynthetic enzymes and neuropeptide transmitters that are essential for normal neuronal function. Continued presence of the neurotrophins is required in the adult nervous system, where they control synaptic function and plasticity, and sustain neuronal survival, morphology and differentiation. They also have additional, subtler roles outside the nervous system. In recent years, three rare human genetic disorders, which result in deleterious effects on sensory perception, cognition and a variety of behaviours, have been shown to be attributable to mutations in brain-derived neurotrophic factor and two of the Trk receptors.  相似文献   

5.
The various members of the Trk tyrosine kinase family and p75 neurotrophin receptor (p75(NTR)) have been identified as signaling receptors for the structurally related members of the neurotrophins (NT) family. We have previously reported that NT treatment of murine and human brain-metastatic melanoma cells affects their invasive capacities and increases the production of extracellular-matrix degradative enzymes. These cells express aberrant levels of functional p75(NTR) and TrkC, the putative high-affinity receptor for the neurotrophin NT-3. Here we demonstrate that, by using sensitive immune-complex kinase assays in human brain-metastatic (70W) melanoma cells, TrkC receptors associate with a kinase activity exhibiting a dose-dependent susceptibility to inhibition by the purine-analogs 6-thioguanine and 2-aminopurine. The activity of this purine-analog-sensitive kinase (PASK) was induced by NT-3 in a time-dependent fashion, phosphorylating exogenous myelin basic protein (MBP) but not denatured enolase. It is similar to the one reported to relate with p75(NTR) and TrkA receptors and stimulated by the prototypic NT, nerve growth factor. Thus, PASKs may represent unique signaling components common to NT receptors that could engage joint downstream signaling effectors in brain-metastatic melanoma.  相似文献   

6.
Arévalo JC  Yano H  Teng KK  Chao MV 《The EMBO journal》2004,23(12):2358-2368
A major question in cell biology is how molecular specificity is achieved by different growth factor receptors that activate apparently identical signaling events. For the neurotrophin family, a distinguishing feature is the ability to maintain a prolonged duration of signal transduction. However, the mechanisms by which neurotrophin receptors assemble such a sustained signaling complex are not understood. Here we report that an unusual ankyrin-rich transmembrane protein (ARMS+kidins220) is closely associated with Trk receptor tyrosine kinases, and not the EGF receptor. This association requires interactions between transmembrane domains of Trk and ARMS. ARMS is rapidly tyrosine phosphorylated after binding of neurotrophins to Trk receptors and provides a docking site for the CrkL-C3G complex, resulting in Rap1-dependent sustained ERK activation. Accordingly, disruption of Trk-ARMS or the ARMS-CrkL interaction with dominant-negative ARMS mutants, or treatment with small interference RNA against ARMS substantially reduce neurotrophin-elicited signaling to ERK, but without any effect upon Ras or Akt activation. These findings suggest that ARMS acts as a major and neuronal-specific platform for prolonged MAP kinase signaling by neurotrophins.  相似文献   

7.
Nerve growth factor (NGF), brain derived neurotrophic factor (BDNF) and neurotrophin-3 (NT-3) are members of the neurotrophin family, which is involved in the differentiation, growth, repair, plasticity and maintenance of many neuronal populations. They act through three tyrosin-kinase (Trk) specific receptors: NGF bind to TrkA, BDNF to TrkB and NT3 to TrkC. Despite increasing evidence regarding the presence of neurotrophin and their receptors in many vertebrate species, in amphibians there are very few data concerning them. Thus, the aim of this study was to extend the investigation to the presence of both neurotrophins and their Trk receptors in the gut of an anuran amphibian, Rana temporaria. In the frog gut NT-3- like immunoreactivity (IR) was observed in both the nervous system and endocrine cells of the stomach and intestine, while NGF-like IR was observed only in the enteric nervous system, and BDNF-like IR in the intestinal endocrine cells. TrkA- and TrkB-like IR was detected in both neurons and endocrine cells of the intestine, while TrkC-like IR was observed only in intestinal neurons. No Trk IR was detected in the stomach. The occurrence of the IR to neurotrophins and their receptors in the gut of the frog further confirms the well-conserved presence of this family of growth factors and Trk receptors during the evolution of vertebrates and suggests their complex involvement in the biology of the gastrointestinal neuro-endocrine system.  相似文献   

8.
The neurotrophins mediate their effects through binding to two classes of receptors, a tyrosine kinase receptor, member of the Trk family, and the low-affinity neurotrophin receptor, p75LNGFR, of as yet undefined signalling capacity. The need for a two-component receptor system in neurotrophin signalling is still not understood. Using site-directed mutagenesis, we have identified positively charged surfaces in BDNF, NT-3 and NT-4 that mediate binding to p75LNGFR. Arg31 and His33 in NT-3, and Arg34 and Arg36 in NT-4, located in an exposed hairpin loop, were found to be essential for binding to p75LNGFR. In BDNF, however, positively charged residues critical for p75LNGFR binding (Lys95, Lys96 and Arg97) were found in a spatially close but distinct loop region. Models of each neurotrophin were built using the coordinates of NGF. Analysis of their respective electrostatic surface potentials revealed similar clusters of positively charged residues in each neurotrophin but with differences in their precise spatial locations. Disruption of this positively charged interface abolished binding to p75LNGFR but not activation of cognate Trk receptors or biological activity in Trk-expressing fibroblasts. Unexpectedly, loss of low-affinity binding in NT-4, but not in BDNF or NT-3, affected receptor activation and biological activity in neuronal cells co-expressing p75LNGFR and TrkB, suggesting a role for p75LNGFR in regulating biological responsiveness to NT-4. These findings reveal a possible mechanism of ligand discrimination by p75LNGFR and suggest this receptor may selectively modulate the biological actions of specific neurotrophin family members.  相似文献   

9.
During embryonic development, expression of neurotrophin receptor tyrosine kinases (Trks) by sensory ganglia is continuously and dynamically regulated. Neurotrophin signaling promotes selective survival and axonal differentiation of sensory neurons. In embryonic day (E) 15 rat trigeminal ganglion (TG), NGF receptor TrkA is expressed by small diameter neurons, NT-3 receptor TrkC and BDNF receptor TrkB are expressed by large diameter neurons. Organotypic explant and dissociated cell cultures of the TG (and dorsal root ganglia) are commonly used to assay neurotrophin effects on developing sensory neurons. In this study, we compared Trk expression in E15 rat TG explant and dissociated cell cultures with or without neurotrophin treatment. Only a subset of TG cells express each of the three Trk receptors in wholemount explant cultures as in vivo conditions. In contrast, all TG neurons co-express all three Trk receptors upon dissociation, regardless of neurotrophin treatment. Neurons cultured in low concentrations of one neurotrophin first, and switched to higher concentrations of another after 1 day, survive and display morphological characteristics of neurons cultured in a mixture of both neurotrophins for 3 days. Our results indicate that wholemount explant cultures of sensory ganglia represent in vivo conditions in terms of Trk expression patterns; whereas dissociation dramatically alters Trk expression by primary sensory neurons.  相似文献   

10.
Neurotrophins, such as nerve growth factor and brain-derived neurotrophic factor, activate Trk receptor tyrosine kinases through receptor dimerization at the cell surface followed by autophosphorylation and recruitment of intracellular signaling molecules. The intracellular pathways used by neurotrophins share many common protein substrates that are used by other receptor tyrosine kinases (RTK), such as Shc, Grb2, FRS2, and phospholipase C-gamma. Here we describe a novel RTK mechanism that involves a 220-kilodalton membrane tetraspanning protein, ARMS/Kidins220, which is rapidly tyrosine phosphorylated in primary neurons after neurotrophin treatment. ARMS/Kidins220 undergoes multiple tyrosine phosphorylation events and also serine phosphorylation by protein kinase D. We have identified a single tyrosine (Tyr(1096)) phosphorylation event in ARMS/Kidins220 that plays a critical role in neurotrophin signaling. A reassembled complex of ARMS/Kidins220 and CrkL, an upstream component of the C3G-Rap1-MAP kinase cascade, is SH3-dependent. However, Tyr(1096) phosphorylation enables ARMS/Kidins220 to recruit CrkL through its SH2 domain, thereby freeing the CrkL SH3 domain to engage C3G for MAP kinase activation in a neurotrophin dependent manner. Accordingly, mutation of Tyr(1096) abolished CrkL interaction and sustained MAPK kinase activity, a response that is not normally observed in other RTKs. Therefore, Trk receptor signaling involves an inducible switch mechanism through an unconventional substrate that distinguishes neurotrophin action from other growth factor receptors.  相似文献   

11.
Myelin inhibitors activate a p75(NTR)-dependent signaling cascade in neurons that not only inhibits axonal growth but also prevents neurotrophins (NT) from stimulating growth. Most intriguingly, in addition to Trk receptors, neurotrophins also bind to p75(NTR). We have designed a "mini-neurotrophin" called B(AG) to activate TrkB in the absence of p75(NTR) binding. We find that B(AG) is as effective as the natural TrkB ligands (brain-derived neurotrophic factor (BDNF) and NT-4) at promoting neurite outgrowth from cerebellar neurons. Furthermore, the neurite outgrowth responses stimulated by BDNF and B(AG) are inhibited by a common set of reagents, including the Trk receptor inhibitor K252a, as well as protein kinase A and phosphoinositide 3-kinase inhibitors. However, in contrast to BDNF, B(AG) promotes growth in the presence of a myelin inhibitor or when antibodies directly activate the p75(NTR) inhibitory pathway. On the basis of this observation, we postulated that the binding of BDNF to the p75(NTR) might compromise the ability of BDNF to stimulate neurite outgrowth in an inhibitory environment. To test this, we used NGF, and an NGF-derived peptide, to compete for the BDNF/p75(NTR) interaction; remarkably, in the presence of either agent, BDNF acquired the ability to promote neurite outgrowth in the presence of a myelin inhibitor. The data suggest that in an inhibitory environment, the BDNF/p75(NTR) interaction compromises regeneration. Agents that activate Trk receptors in the absence of p75(NTR) binding, or agents that inhibit neurotrophin/p75(NTR) binding, might therefore be better therapeutic candidates than neurotrophins.  相似文献   

12.
Ligands for G protein-coupled receptors (GPCR) are capable of activating mitogenic receptor tyrosine kinases, in addition to the mitogen-activated protein (MAP) kinase signaling pathway and classic G protein-dependent signaling pathways involving adenylyl cyclase and phospholipase. For example, receptors for epidermal growth factor (EGF), insulin-like growth-1 and platelet-derived growth factor and can be transactivated through G protein-coupled receptors. Neurotrophins, such as NGF, BDNF and NT-3 also utilize receptor tyrosine kinases, namely TrkA, TrkB and TrkC. Recently, it has been shown that activation of Trk receptor tyrosine kinases can also occur via a G protein-coupled receptor mechanism, without involvement of neurotrophins. Adenosine and adenosine agonists can activate Trk receptor phosphorylation specifically through the seven transmembrane spanning adenosine 2A (A2A) receptor. Several features of Trk receptor transactivation are noteworthy and differ significantly from other transactivation events. Trk receptor transactivation is slower and results in a selective increase in activated Akt. Unlike the biological actions of other tyrosine kinase receptors, increased Trk receptor activity by adenosine resulted in increased cell survival. This article will discuss potential mechanisms by which adenosine can activate trophic responses through Trk tyrosine kinase receptors.  相似文献   

13.
Neurotrophin family are traditionally recognized for their nerve growth promoting function and are recently identified as crucial factors in regulating neuronal activity in the central and peripheral nervous systems. The family members including nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF), and neurotrophin-3 (NT-3) are reported to have distinct roles in the development and maintenance of sensory phenotypes in normal states and in the modulation of sensory activity in disease. This paper highlights receptor tyrosine kinase (Trk) -mediated signal transduction by which neurotrophins regulate neuronal activity in the visceral sensory reflex pathways with emphasis on the distinct roles of NGF and BDNF signaling in physiologic and pathophysiological processes. Viscero-visceral cross-organ sensitization exists widely in human diseases. The role of neurotrophins in mediating neural cross talk and interaction in primary afferent neurons in the dorsal root ganglia (DRG) and neurotrophin signal transduction in the context of cross-organ sensitization are also discussed.  相似文献   

14.
Neurotrophins mediate their signals through two different receptors: the family of receptor tyrosine kinases, Trks, and the low affinity pan-neurotrophin receptor p75. Trk receptors show more restricted ligand specificity, whereas all neurotrophins are able to bind to p75. One important function of p75 is the enhancement of nerve growth factor signaling via TrkA by increasing TrkA tyrosine autophosphorylation. Here, we have examined the importance of p75 on TrkB- and TrkC-mediated neurotrophin signaling in an MG87 fibroblast cell line stably transfected with either p75 and TrkB or p75 and TrkC, as well as in PC12 cells stably transfected with TrkB. In contrast to TrkA signaling, p75 had a negative effect on TrkB tyrosine autophosphorylation in response to its cognate neurotrophins, brain-derived neurotrophic factor and neurotrophin 4/5. On the other hand, p75 had no effect on TrkB or TrkC activation in neurotrophin 3 treatment. p75 did not effect extracellular signal-regulated kinase 2 tyrosine phosphorylation in response to brain-derived neurotrophic factor, neurotrophin 3, or neurotrophin 4/5. These results suggest that the observed reduction in TrkB tyrosine autophosphorylation caused by p75 does not influence Ras/mitogen-activated protein kinase signaling pathway in neurotrophin treatments.  相似文献   

15.
The study of structure–function relationships in the neurotrophin family has in recent years increased our understanding of several important aspects of neurotrophin function. Site-directed mutagenesis studies have localized amino acid residues important for binding to the low-affinity (p75LNGFR), as well as to the members of the Trk family of tyrosine kinase receptors. A cluster of positively charged residues has been shown to form a surface for binding to p75LNGFR in all four neurotrophins. Differences in the spatial distribution of these charges among the different neurotrophins may explain some of their distinct binding properties. Elimination of these positive charges drastically reduces binding to P75LNGFR but not to the Trk family members, and it does not impair the biological properties of the neurotrophins in vitro, arguing that binding to and activation of Trk receptors is sufficient to mediate the biological responses of neurotrophins. In contrast. the binding sites to Trk receptors appear to be formed by discontinuous stretches of amino acid residues distributed throughout the primary sequence of the molecule. These include the N-terminus, some of the variable loop regions and a β-strand. Despite their apparent distribution, when viewed in the three-dimensional structure of NGF, these residues appear grouped on one side of the neurotrophin dimer, delineating a continuous surface extending approximately parallel to the twofold symmetry axis of the molecule. Two symmetrical surfaces are formed along the axis of the neurotrophin dimer providing a model for ligand-mediated receptor dimerization. In the neurotrophin family, co-evolution of cognate ligands and Trk receptors has developed specific contacts through different residues in the same variable regions of the neurotrophins. Thus, binding specificity is determined by the cooperation of distinct active and inhibitory binding determinants that restrict ligand-receptors interactions. Binding determinants to the Trk receptors can be manipulated independently in a rational fashion to create neurotrophin analogues with novel ligand-binding properties. In this way, second-generation chimeric neurotrophins with multiple specificities (pan-neurotrophins) have been engineered which may have valuable applications in the treatment of neurodegeneration and nerve damage. 1994 John Wiley & Sons, Inc.  相似文献   

16.
TrkB is a member of the Trk family of tyrosine kinase receptors. In vivo, the extracellular region of TrkB is known to bind, with high affinity, the neurotrophin protein brain-derived neurotrophic factor (BDNF) and neurotrophin-4 (NT-4). We describe the expression and purification of the second Ig-like domain of human TrkB (TrkBIg(2)) and show, using surface plasmon resonance, that this domain is sufficient to bind BDNF and NT-4 with subnanomolar affinity. BDNF and NT-4 may have therapeutic implications for a variety of neurodegenerative diseases. The specificity of binding of the neurotrophins to their receptor TrkB is therefore of interest. We examine the specificity of TrkBIg(2) for all the neurotrophins, and use our molecular model of the BDNF-TrkBIg(2) complex to examine the residues involved in binding. It is hoped that the understanding of specific interactions will allow design of small molecule neurotrophin mimetics.  相似文献   

17.
The cellular mechanism of neuronal apoptosis in Alzheimer’s disease (AD) is poorly understood. Many hypotheses have been put fourth to explain the underlying reason for neuro-degeneration in AD. Here, it is demonstrated that all neurotrophins that activated p75, without co-activation of the relevant Trk co-receptor, mediated apoptosis in hippocampal neurons. Thus, proneurotrophins and amyloid β peptides (Aβ) can induce p75-mediated apoptosis in hippocampal neurons since they do not bind or activate Trk receptors. Based on the combined effects of aging, proneurotrophins, neurotrophins, and Aβ, a novel model of pathogenesis in AD is proposed. This mini-review explores the ligand and cell type based signaling pathways of the neurotrophin receptor p75 relating to Alzheimer’s disease.  相似文献   

18.
Muchowski PJ 《Neuron》2002,33(1):9-12
The family of neurotrophic factors known as neurotrophins has yielded a series of surprises, both with regard to the broad extent of their functional roles and the remarkable complexity of their signaling mechanisms. The recent discovery that a neurotrophin precursor protein and its proteolytically processed products may differentially activate pro- and antiapoptotic cellular responses, through preferential activation of Trk or p75 receptors, promises to unveil yet another level of regulatory complexity.  相似文献   

19.
The neurotrophins brain derived neurotrophic factor (BDNF) and neurotrophin-3 (NT-3) are both expressed in developing cerebellum in addition to their tyrosine kinase receptors, TrkB and TrkC. In contrast to BDNF, NT-3 has only a negligible or a transient survival activity on cultured cerebellar granule neurons. The granule neurons however, express both TrkC and Trk B receptors which suggests a basic difference in signaling between BDNF and NT-3 in these neurons. Here we have studied whether this difference can be attributed to the presence of alternative TrkC receptor variants on the granule neurons and which signaling pathway is specifically activated by BDNF but not by NT-3 in these neurons. Using RT-PCR it was shown that the cerebellar granule neurons express the full length TrkC receptor, in addition to variant receptors containing small inserts in the receptor tyrosine kinase domain. There was no dramatic change in the relative amounts of different TrkC receptors during development. However, we found the TrkC receptor constitutively phosphorylated even in the absence of added ligand suggesting an interaction of TrkC with endogenously produced NT-3. In addition, NT-3 was able to phosphorylate the BDNF receptor, TrkB but only at higher concentration (50 ng/ml). There were also distinct differences in the activation of intracellular molecules by BDNF and NT-3. Thus, p21 Ras and PLCγ were activated by BDNF but not by NT-3 whereas both BDNF and NT-3 increased calcium and c-fos mRNA in the granule neurons. These results show that differential activation of specific intracellular pathways such as that of p21 Ras determines the specific effects of BDNF and NT-3 on granule neuron survival. In addition, since calcium is increased by NT-3 in the cerebellar granule neurons, this neurotrophin might have some unknown important effects on these neurons. Special issue dedicated to Dr. Hans Thoenen.  相似文献   

20.
The low-affinity p75 molecule and trk tyrosine kinases serve as receptors for target-derived neurotrophins. While the mechanism by which receptor tyrosine kinases impart intracellular signaling has become well understood, the precise roles of the p75 receptor are not fully defined. The p75 neurotrophin receptor belongs to a family of transmembrane molecules which also serve as receptors for the tumor necrosis factor family of cytokines. Each receptor shares a common extracellular structure highlighted by conserved cysteine-rich repeats. Because NGF, BDNF, NT-3, and NT-4/5 bind to p75 with similar affinity, p75 may either act as a common subunit in a neurotrophin receptor complex with trk family members, or act by independent mechanisms to mediate biological actions of each neurotrophin. 1994 John Wiley & Sons, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号