首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Vince JW  Carlsson U  Reithmeier RA 《Biochemistry》2000,39(44):13344-13349
Human carbonic anhydrase II (CAII) possesses a binding site for an acidic motif (D887ADD) within the carboxyl-terminal region (Ct) of the human erythrocyte chloride/bicarbonate anion exchanger, AE1. In this study, the amino acid sequence comprising this AE1 binding site was localized to the first 17 residues of CAII, which form a basic patch on the surface of the protein. Truncation of the amino terminal of CAII by five residues resulted in a 3-fold reduction in the apparent affinity of the interaction with a GST fusion protein of the Ct of AE1 (GST-Ct) measured by a sensitive microtiter plate binding assay. Further amino-terminal truncation of CAII by 17 or 24 residues caused a loss of binding. The homologous isoform CAI does not bind AE1, despite having 60% sequence identity to CAII. One major difference between the two CA isoforms, within the amino-terminal region, is a high content of histidine residues in CAII (His3, -4, -10, -15, -17) not found in CAI. Mutation of pairs of these histidines (and one lysine) in CAII to the analogous residues in CAI (H3P/H4D or K9D/H10K or H15Q/H17S), or combinations of these various double mutants, did not greatly affect binding between GST-Ct and the mutant CAII. However, when all six of the targeted CAII residues were mutated to the corresponding sequence in CAI, binding of GST-Ct was lost. These results indicate that the AE1 binding site is located within the first 17 residues of CAII, and that the interaction is mediated by electrostatic interactions involving histidine and/or lysine residues. Further specificity for the interaction of AE1 and CAII is provided by a conserved leucine residue (L886) in AE1 that, when mutated to alanine, resulted in loss of GST-Ct binding to immobilized CAII. The binding of the basic amino-terminal region of CAII to an acidic Ct in AE1 provides a structural basis for linking bicarbonate transport across the cell membrane to intracellular bicarbonate metabolism.  相似文献   

2.
Summary A cDNA clone in pBR322 that cross-hybridizes with a mouse carbonic anhydrase form II (CAII) probe has been sequenced and identified as mouse carbonic anhydrase form I (CAI). The 1224-base-pair clone encodes the entire 260-amino-acid protein and appears to contain an Alu-like element in the 3 untranslated region. The deduced amino acid sequence exhibits 77% homology to human CAI and contains 17 of the 20 residues that are considered unique to and invariant for all mammalian CAI isozymes. The results of a detailed comparison of the nucleic acid sequences spanning the coding regions of mouse CAI and rabbit CAI have been used to calibrate an evolutionary clock for the carbonic anhydrases (CAs). These data have been applied to a comparison of the mouse CAI and CAII nucleic acid sequences to calculate the divergence time between the two genes. The divergence-time calculation provides the first estimation of the evolutionary relationship between CAs based entirely on nucleotide sequence comparison.  相似文献   

3.
Branco M  Ferrand N 《Biochemical genetics》2003,41(11-12):391-404
Available studies on the biochemical and electrophoretic characterization of European rabbit (Oryctolagus cuniculus) carbonic anhydrases I and II (CAI, CAII) show contradictory results about their relative electrophoretic mobility and substrate specificity. After positive identification of carbonic anhydrase activity by CO2 hydration, the differential esterase activity of CAI and CAII toward beta-napththyl acetate and flourescein diacetate,respectively, were used to identify the banding patterns corresponding to each locus. Electrophoretic and hybrid isoelectric focusing analyses of the CAI and CAII loci in 1 domestic and 19 wild rabbit populations led to the recognition of genetic polymorphism at the CAI locus and of extensive variability at the CAII locus. Four and nine alleles at the CAI and CAII loci, respectively, are described. The geographic distribution of genetic variability is consistent with the existence of two evolutionary groups within O. cuniculus.  相似文献   

4.
J Lloyd  S McMillan  D Hopkinson  Y H Edwards 《Gene》1986,41(2-3):233-239
We report the nucleotide (nt) sequence of a full length cDNA clone, pCA15, which encodes the human muscle-specific carbonic anhydrase, CAIII. pCA15 identifies a 1.7-kb mRNA, which is present at high levels in skeletal muscle, at much lower levels in cardiac and smooth muscle and which appears to be developmentally regulated. The CAIII mRNA is distinguished by a 887-nt long 3'-untranslated region, containing two AAUAAA signal sequences and is longer than either of the mRNAs encoding the erythrocyte CAs, CAI and CAII, which each have relatively shorter 3'-untranslated regions, 360 and 670 nt long, respectively. The derived amino acid (aa) sequence for human CAIII shows 85% homology with ox CAIII, 62% homology with human CAII and 54% with human CAI when simple pairwise aa comparisons are made. We describe an allelic variation at a TaqI restriction site for CAIII which occurs at high frequency in the European population.  相似文献   

5.
A F Nazarova 《Genetika》1983,19(3):507-508
Carbonic anhydrase of human erythrocytes was separated by polyacrylamide electrophoresis into four fractions determined, obviously, by two loci, CAI and CAII. Investigation of Moscow population sample of 458 men (516 healthy and 42 with schizophrenia) showed monomorphism of carbonic anhydrase for these two loci. Carbonic anhydrase I and carbonic anhydrase II were differentiated with fluorogenic substrates. The polymorphic variant of CAII was discovered while studying the sample of Siberian mongoloids (Evenks and Jakuts) with frequency 0,047 and 0,045, respectively.  相似文献   

6.
The impact of zinc, copper, and iron on the duck erythrocyte carbonic anhydrase (CA) activity and the hemoglobin content in vitro culture were studied. The increase of zinc or iron addition at a low level induced the rise of CA activity, and the CA activity was inhibited by zinc or iron at a high addition level. The duck erythrocyte CA was strongly inhibited by cupric ion. The inhibition constant of duck erythrocyte CA to cupric ion is about 3.5 μM. Carbonic anhydrase compared to hemoglobin is more sensitive to zinc and copper in the environment. These findings suggest that some characteristics of duck erythrocyte CA are different from both CAI and CAII of mammals. The increase of Fe addition below 8 μM in the minimal essential medium brought about the rise of CA activity and resulted in the maximum of CA activity exceeding that induced by Zn. It provided a new evidence for the role of ferrous ion in CA.  相似文献   

7.
Transport metabolons have been discussed between carbonic anhydrase II (CAII) and several membrane transporters. We have now studied different CA isoforms, expressed in Xenopus oocytes alone and together with the electrogenic sodium bicarbonate cotransporter 1 (NBCe1), to determine their catalytic activity and their ability to enhance NBCe1 transport activity. pH measurements in intact oocytes indicated similar activity of CAI, CAII and CAIII, while in vitro CAIII had no measurable activity and CAI only 30% of the activity of CAII. All three CA isoforms increased transport activity of NBCe1, as measured by the transport current and the rate of intracellular sodium rise in oocytes. Two CAII mutants, altered in their intramolecular proton pathway, CAII-H64A and CAII-Y7F, showed significant catalytic activity and also enhanced NBCe1 transport activity. The effect of CAI, CAII, and CAII mutants on NBCe1 activity could be reversed by blocking CA activity with ethoxyzolamide (EZA, 10 μM), while the effect of the less EZA-sensitive CAIII was not reversed. Our results indicate that different CA isoforms and mutants, even if they show little enzymatic activity in vitro, may display significant catalytic activity in intact cells, and that the ability of CA to enhance NBCe1 transport appears to depend primarily on its catalytic activity.  相似文献   

8.
Kuo WH  Chiang WL  Yang SF  Yeh KT  Yeh CM  Hsieh YS  Chu SC 《Life sciences》2003,73(17):2211-2223
Cytosolic carbonic anhydrases (CAs), including CAI, CAII and CAIII are present in normal hepatocytes. This study was aimed to investigate the expression status of CAs in hepatocellular carcinomas (HCC) and cholangiocellular carcinoma (CCC) and the role of tumor progression. The activity, protein expression pattern and messenger RNA of cytosolic CA were analyzed by CA activity analysis, immunoblot and RT-PCR in 60 human hepatocellular carcinomas and 10 human cholangiocellular carcinoma surgical specimens. The in situ distribution of CAI, CAII and CAIII in hepatocellular carcinomas tissues were analyzed by immunohistochemistry. The result showed that in each of 60 human hepatocellular carcinomas and 10 cholangiocellular carcinoma, CA activity and protein expression in tumor area was significantly lower than that of paired adjacent normal tissues (P < 0.01), and mRNA expressions in tumor areas were also reduced (P < 0.001). Furthermore, the immunohistochemical studies have further confirmed this reduction of CAI, CAII and CAIII protein expression in tumor areas. There was a statistically significant reduction in the expression of cytosolic CAII in poorly differentiated cancer (P < 0.001). Furthermore, the reduction of CAI, CAII and CAIII in HCC tumor areas was also revealed in this study and this reduction might promote tumor cell motility and contribute to tumor growth and metastasis.  相似文献   

9.
Specific antisera were raised against the three carbonic anhydrase (CA) isozymes, CAI, CAII, and CAIII, and were used to determine the fiber distribution of these isozymes in skeletal muscle. Fiber types were determined by ATPase staining, and the CA isozymes were detected using a peroxidase-anti-peroxidase (PAP) technique. All three isozymes were present in type I fibers; CAII and CAIII were exclusive to these fibers, and CAI were also present in some small type 2A fibers.  相似文献   

10.
A gene (designated ecaA) encoding a vertebrate-like (alpha-type) carbonic anhydrase (CA) has been isolated from two disparate cyanobacteria, Anabaena sp. strain PCC 7120 and Synechococcus sp. strain PCC 7942. The deduced amino acid sequences correspond to proteins of 29 and 26 kDa, respectively, and revealed significant sequence similarity to human CAI and CAII, as well as Chlamydomonas CAHI, including conservation of most active-site residues identified in the animal enzymes. Structural similarities between the animal and cyanobacterial enzymes extend to the levels of antigenicity, as the Anabaena protein cross-reacts with antisera derived against chicken CAII. Expression of the cyanobacterial ecaA is regulated by CO2 concentration and is highest in cells grown at elevated levels of CO2. Immunogold localization using an antibody derived against the ecaA protein indicated an extracellular location. Preliminary analysis of Synechococcus mutants in which ecaA has been inactivated by insertion of a drug resistance cassette suggests that extracellular carbonic anhydrase plays a role in inorganic-carbon accumulation by maintaining equilibrium levels of CO2 and HCO3- in the periplasm.  相似文献   

11.
Mini Review     
To allow cells to control their pH and bicarbonate levels, cells express bicarbonate transport proteins that rapidly and selectively move bicarbonate across the plasma membrane. Physical interactions have been identified between the carbonic anhydrase isoform, CAII, and the erythrocyte membrane [Formula: See Text] anion exchanger, AE1, mediated by an acidic motif in the AE1 C-terminus. We have found that the presence of CAII attached to AE1 accelerates AE1 [Formula: See Text] transport activity, as AE1 moves bicarbonate either into or out of the cell. In efflux mode the presence of CAII attached to AE1 will increase the local concentration of bicarbonate at the AE1 transport site. As bicarbonate is transported into the cell by AE1, the presence of CAII on the cytosolic surface accelerates transport by consumption of bicarbonate, thereby maximizing the transmembrane bicarbonate concentration gradient experienced by the AE1 molecule. Functional and physical interactions also occur between CAII and [Formula: See Text] co-transporter isoforms NBC1 and NBC3. All examined bicarbonate transport proteins, except the DRA (SLC26A3) [Formula: See Text] exchange protein, have a consensus CAII binding site in their cytoplasmic C-terminus. Interestingly, CAII does not bind DRA. CAIV is anchored to the extracellular surface of cells via a glycosylphosphatidyl inositol linkage. We have identified extracellular regions of AE1 and NBC1 that directly interact with CAIV, to form a physical complex between the proteins. In summary, bicarbonate transporters directly interact with the CAII and CAIV carbonic anhydrases to increase the transmembrane bicarbonate flux. The complex of a bicarbonate transporter with carbonic anhydrase forms a "Bicarbonate Transport Metabolon."  相似文献   

12.
To allow cells to control their pH and bicarbonate levels, cells express bicarbonate transport proteins that rapidly and selectively move bicarbonate across the plasma membrane. Physical interactions have been identified between the carbonic anhydrase isoform, CAII, and the erythrocyte membrane Cl- /HCO3(-) anion exchanger, AE1, mediated by an acidic motif in the AE1 C-terminus. We have found that the presence of CAII attached to AE1 accelerates AE1 HCO3(-) transport activity, as AE1 moves bicarbonate either into or out of the cell. In efflux mode the presence of CAII attached to AE1 will increase the local concentration of bicarbonate at the AE1 transport site. As bicarbonate is transported into the cell by AE1, the presence of CAII on the cytosolic surface accelerates transport by consumption of bicarbonate, thereby maximizing the transmembrane bicarbonate concentration gradient experienced by the AE1 molecule. Functional and physical interactions also occur between CAII and Na+/HCO3(-) co-transporter isoforms NBC1 and NBC3. All examined bicarbonate transport proteins, except the DRA (SLC26A3) Cl-/HCO3(-) exchange protein, have a consensus CAII binding site in their cytoplasmic C-terminus. Interestingly, CAII does not bind DRA. CAIV is anchored to the extracellular surface of cells via a glycosylphosphatidyl inositol linkage. We have identified extracellular regions of AE1 and NBC1 that directly interact with CAIV, to form a physical complex between the proteins. In summary, bicarbonate transporters directly interact with the CAII and CAIV carbonic anhydrases to increase the transmembrane bicarbonate flux. The complex of a bicarbonate transporter with carbonic anhydrase forms a "Bicarbonate Transport Metabolon."  相似文献   

13.
We examined the ability of carbonic anhydrase II to bind to and affect the transport efficiency of the NHE1 isoform of the mammalian Na(+)/H(+) exchanger. The C-terminal region of NHE1 was expressed in Escherichia coli fused with an N-terminal glutathionine S-transferase or with a C-terminal polyhistidine tag. Using a microtiter plate binding assay we showed that the C-terminal region of NHE1 binds carbonic anhydrase II (CAII) and binding was stimulated by low pH and blocked by antibodies against the C-terminal of NHE1. The binding to NHE1 was confirmed by demonstrating protein-protein interaction using affinity blotting with CAII and immobilized NHE1 fusion proteins. CAII co-immunoprecipitated with NHE1 from CHO cells suggesting the proteins form a complex in vivo. In cells expressing CAII and NHE1, the H(+) transport rate was almost 2-fold greater than in cells expressing NHE1 alone. The CAII inhibitor acetazolamide significantly decreased the H(+) transport rate of NHE1 and transfection with a dominant negative CAII inhibited NHE1 activity. Phosphorylation of the C-terminal of NHE1 greatly increased the binding of CAII. Our study suggests that NHE1 transport efficiency is influenced by CAII, likely through a direct interaction at the C-terminal region. Regulation of NHE1 activity by phosphorylation could involve modulation of CAII binding.  相似文献   

14.
15.
A linear quantitative structure-activity relationship has been developed for a series of para-substituted aromatic sulfonamides by using topological index methodologies. The compounds were studied for their carbonic anhydrase II (CAII) inhibitory activity. A large series of topological indices were calculated and the stepwise regression method was used to derive the most significant model. Very good results were obtained using multi-parametric regressions and showed that the information approach used in the present work is quite useful for modeling carbonic anhydrase inhibition.  相似文献   

16.
We examined the histochemical localization of carbonic anhydrase (CA) in Bowman's glands by light and electron microscopy. Neither CAI nor CAII was detected immunohistochemically in the duct cells. However, by enzyme histochemistry the duct cells revealed electron-dense precipitates demonstrative of CA in the microvilli and intercellular digitations. The reaction product was also noted in small vesicles in the cytoplasm of duct cells. In cells of the acini, the well-developed short microvilli, basolateral cell membrane, and mitochondria along the basolateral membrane showed strong deposits indicating CA activity. Dense reaction product of CA was also detected in a small core within the electron-lucent granules of the secretory cells, although CAI and CAII were not detected by immunostaining in the secretory granules. Although the functional significance of CA in Bowman's glands is obscure, the enzyme may play a role in regulation of pH and ion balance in the mucous layer covering the olfactory epithelium. The presence of CA activity in the ducts suggests that these structures are not simple tubes serving as a conduit for secretory substances but participate in modifying the luminal content by secreting CA. (J Histochem Cytochem 47:1525-1531, 1999)  相似文献   

17.
A new variant of human erythrocyte carbonic anhydrase II (CAII) was discovered in a single heterozygous individual during routine screening of blood samples from the island of Java in Indonesia. The normal and variant components of the heterozygous CAII mixture were resolved by isoelectric focusing following purification by a specific affinity matrix. Specific esterase activities and Michaelis-Menten constants were identical. Only very small differences were noted with respect to inhibition by acetazolamide and chloride. Double diffusion analysis showed the immunological identify of the normal and variant enzymes. The variant CAII was considerably less heat stable than the normal enzyme. The variant was slightly more stable than the normal enzyme upon dialysis against the zinc chelator dipicolinic acid (PDCA), indicating a tighter binding of zinc than the normal enzyme. Analysis of tryptic peptides from the normal and variant enzymes indicated that, in the variant, lysine at position 17 from the N terminus had changed to glutamic acid. The differences in physiochemical properties observed for the normal and variant enzyme are discussed in relation to the possible effects of this substitution on the structure of the CAII molecule.  相似文献   

18.
A quantitative Structure-activity relationship study (QSAR) on a set of carbonic anhydrase (CA, EC 4.2.1.1) inhibitors is reported using first-order valence connectivity index ((1)chi(v)). The inhibitory activity against three isozymes CAI, CAII (cystolic forms), and CAIV (membrane bound form), some of which are involved in important physiological processes, were considered for this purpose. All the three activities were excellently modeled by (1)chi(v) in multi-parametric regression containing indicator parameters. The results are critically discussed on the basis of various regression parameters.  相似文献   

19.
Several acid/base-coupled membrane transporters, such as the electrogenic sodium-bicarbonate cotransporter (NBCe1), have been shown to bind to different carbonic anhydrase isoforms to create a "transport metabolon." We have expressed NBCe1 derived from human kidney in oocytes of Xenopus leavis and determined its transport activity by recording the membrane current in voltage clamp, and the cytosolic H(+) and Na(+) concentrations using ion-selective microelectrodes. When carbonic anhydrase isoform II (CAII) had been injected into oocytes, the membrane current and the rate of cytosolic Na(+) rise, indicative for NBCe1 activity, increased significantly with the amount of injected CAII (2-200 ng). The CAII inhibitor ethoxyzolamide reversed the effects of CAII on the NBCe1 activity. Co-expressing wild-type CAII or NH(2)-terminal mutant CAII together with NBCe1 provided similar results, whereas co-expressing the catalytically inactive CAII mutant V143Y had no effect on NBCe1 activity. Mass spectrometric analysis and the rate of cytosolic H(+) change following addition of CO(2)/HCO(3)(-) confirmed the catalytic activity of injected and expressed CAII in oocytes. Our results show that the transport capacity of NBCe1 is enhanced by the catalytic activity of CAII, in line with the notion that CAII forms a transport metabolon with NBCe1.  相似文献   

20.
Vince JW  Reithmeier RA 《Biochemistry》2000,39(18):5527-5533
The human Cl(-)/HCO(3)(-) anion exchanger (AE1) possesses a binding site within its 33 residue carboxyl-terminal region (Ct) for carbonic anhydrase II (CAII). The amino acid sequence comprising this CAII binding site was determined by peptide competition and by testing the ability of truncation and point mutants of the Ct sequence to bind CAII with a sensitive microtiter plate binding assay. A synthetic peptide consisting of the entire 33 residues of the Ct (residues 879-911) could compete with a GST fusion protein of the Ct (GST-Ct) for binding to immobilized CAII, while a peptide consisting of the last 16 residues (896-911) could not. A series of truncation mutants of the GST-Ct showed that the terminal 21 residues of AE1 were not required for binding CAII. Removal of four additional residues (887-890) from the Ct resulted in loss of CAII binding. Acidic residues in this region (D887ADD) were critical for binding since mutating this sequence in the GST-Ct to DAAA, AAAA, or NANN caused loss of CAII binding. A GST-Ct construct mutated to D887ANE, the homologous sequence in AE2, could bind CAII. AE2 is a widely expressed anion exchanger and has a homologous Ct region with 60% sequence identity to AE1. A GST fusion protein of the 33 residue Ct of AE2 could bind to CAII similarly to the Ct of AE1. Tethering of CAII to an acidic motif within the Ct of anion exchangers may be a general mechanism for promoting bicarbonate transport across cell membranes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号