首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We investigated the effect of positive end-expiratory pressure (PEEP) on the extravascular thermal volume of the lung (ETV) determined by the thermal-dye technique in three canine models of pulmonary edema created by injection of alpha-naphthylthiourea (ANTU) or oleic acid (OA) into the pulmonary circulation or intrabronchial instillation of hydrochloric acid (HCl). ETV was determined before, during, and after ventilation with 14 cmH2O PEEP, and final ETV was compared with the extravascular lung mass (ELM) determined postmortem. Final ETV correctly estimated ELM in 12 animals with ANTU injury, ETV/ELM = 1.04 +/- 0.13, but underestimated after HCl injury (n = 5), ETV/ELM = 0.61 +/- 0.23, and OA injury (n = 6), ETV/ELM = 0.73 +/- 0.19. Whereas PEEP had no consistent effect on extravascular thermal volume in ANTU edema, there was a reversible increase in ETV during PEEP in animals with HCl or OA injury and underestimation of ELM. The increase in ETV during PEEP averaged 9.3 +/- 3.8 ml/kg (62 +/- 42%) over the mean of the pre- and post-PEEP values after HCl injury (P less than 0.01) and 6.7 +/- 4.4 ml/kg (47 +/- 35%) after OA injury (P less than 0.02). There was an inverse correlation between the change in ETV during PEEP and the ETV/ELM ratio for animals with HCl and OA injury (r = -0.94). We conclude that PEEP produces a reversible increase in ETV in some models of lung injury by allowing for distribution of thermal indicator through a larger fraction of the lung water and that this response may be useful to detect underestimation when gravimetric measurements are not available.  相似文献   

2.
We hypothesized that in unilateral lung injury, bilateral hypoxic ventilation would induce vasoconstriction in the normal lung, redirect blood flow to the injured lung, and cause enhanced edema formation. Unilateral left lung injury was induced by intrabronchial instillation of 1.5 ml/kg of 0.1 N HCl. After HCl injury, blood flow to the injured left lung decreased progressively from 0.70 +/- 0.04 to 0.37 +/- 0.05 l/min and percent of flow to the injured left lung (QL/QT) decreased from 37.7 +/- 2.2 to 23.6 +/- 2.2% at 240 min. Exposure to hypoxia (12% O2) for three 10-min episodes did not affect QL/QT in normal animals, but after unilateral HCl injury, it caused blood flow to the injured left lung to increase significantly. A concomitant decrease in blood flow occurred to the noninjured right lung, resulting in a significant increase in QL/QT. The enhanced blood flow to the injured lung was associated with a significant increase in the wet-to-dry lung weight ratio in the dependent regions of the injured lung. These findings demonstrate that in unilateral HCl-induced lung injury, transient hypoxia can enhance blood flow to the areas of injury and increase lung edema formation.  相似文献   

3.
In low-pressure pulmonary edema increased cardiac output (QT) increases shunt (Qs/QT); we tested whether the mechanism is an increase in extravascular lung water in turn mediated by the accompanying increase in microvascular pressure. In six pentobarbital sodium-anesthetized dogs ventilated with O2 we administered oleic acid into the right atrium. From base line to 2 h post-oleic acid we measured concurrent significant increases in Qs/QT (6-29%, O2 technique) and extravascular thermal volume (ETV, 2.6-7.1 ml/g dry intravascular blood-free lung wt, thermal-green dye indicator technique) that were stable by 90 min. Then, bilateral femoral arteriovenous fistulas were opened and closed in 30-min periods to cause reversible increases in QT and associated Qs/QT. When fistulas were open the time-averaged QT increased from 5.1 to 6.9 min (P less than 0.05), the simultaneous Qs/QT rose from 30.7 to 38.4% (P less than 0.05), but ETV did not increase. We conclude that increasing lung edema does not account for our rise in Qs/QT when QT increased.  相似文献   

4.
Hemodynamic, gas exchange, and hormonal response induced by application of a 25- to 40-mmHg lower body positive pressure (LBPP), during positive end-expiratory pressure (PEEP; 14 +/- 2.5 cmH2O) were studied in nine patients with acute respiratory failure. Compared with PEEP alone, LBPP increased cardiac index (CI) from 3.57 to 4.76 l X min-1 X m-2 (P less than 0.001) in relation to changes in right atrial pressure (RAP) (11 to 16 mmHg; P less than 0.01). Cardiopulmonary blood volume (CPBV) measured in five patients increased during LBPP from 546 +/- 126 to 664 +/- 150 ml (P less than 0.01), with a positive linear relationship between changes in RAP and CPBV (r = 0.88; P less than 0.001). Venous admixture (Qva/QT) decreased with PEEP from 24 to 16% (P less than 0.001) but did not change with LBPP despite the large increase in CI, leading to a marked O2 availability increase (P less than 0.001). Although PEEP induced a significant rise in plasma norepinephrine level (NE) (from 838 +/- 97 to 1008 +/- 139 pg/ml; P less than 0.05), NE was significantly decreased by LBPP to control level (from 1,008 +/- 139 to 794 +/- 124 pg/ml; P less than 0.003). Plasma epinephrine levels were not influenced by PEEP or LBPP. Changes of plasma renin activity (PRA) paralleled those of NE. No change in plasma arginine vasopressin (AVP) was recorded. We concluded that LBPP increases venous return and CPBV and counteracts hemodynamic effects of PEEP ventilation, without significant change in Qva/QT. Mechanical ventilation with PEEP stimulates sympathetic activity and PRA apparently by a reflex neuronal mechanism, at least partially inhibited by the loading of cardiopulmonary low-pressure reflex and high-pressure baroreflex. Finally, AVP does not appear to be involved in the acute cardiovascular adaptation to PEEP.  相似文献   

5.
We have previously shown (Am. Rev. Respir. Dis. 136: 886-891, 1987) improved cardiac output in dogs with pulmonary edema ventilated with external continuous negative chest pressure ventilation (CNPV) using negative end-expiratory pressure (NEEP), compared with continuous positive-pressure ventilation (CPPV) using equivalent positive end-expiratory pressure (PEEP). The present study examined the effect on lung water of CNPV compared with CPPV to determine whether the increased venous return created by NEEP worsened pulmonary edema in dogs with acute lung injury. Oleic acid (0.06 ml/kg) was administered to 27 anesthetized dogs. Supine animals were then divided into three groups and ventilated for 6 h. The first group (n = 10) was treated with intermittent positive-pressure ventilation (IPPV) alone; the second (n = 9) received CNPV with 10 cmH2O NEEP; the third (n = 8) received CPPV with 10 cmH2O PEEP. CNPV and CPPV produced similar improvements in oxygenation over IPPV. However, cardiac output was significantly depressed by CPPV, but not by CNPV, when compared with IPPV. Although there were no differences in extravascular lung water (Qwl/dQl) between CNPV and CPPV, both significantly increased Qwl/dQl compared with IPPV (7.81 +/- 0.21 and 7.87 +/- 0.31 vs. 6.71 +/- 0.25, respectively, P less than 0.01 in both instances). CNPV and CPPV, but not IPPV, enhanced lung water accumulation in the perihilar areas where interstitial pressures may be most negative at higher lung volumes.  相似文献   

6.
We examined the effects of positive end-expiratory pressure (PEEP) and tidal volume on the distribution of ventilation and perfusion in a canine model of asymmetric lung injury. Unilateral right lung edema was established in 10 animals by use of a selective infusion of ethchlorvynol. Five animals were tested in the supine position (horizontal asymmetry) and five in the right decubitus position (vertical asymmetry). Raising PEEP from 5 to 12 cmH2O improved oxygenation despite a redistribution of blood flow toward the damage lung and a consistent decrease in total respiratory system compliance. This improvement paralleled a redistribution of tidal ventilation to the injured lung. This was effected primarily by a fall in the compliance of the noninjured lung due to hyperinflation. The effects of higher tidal volume were additive to those of PEEP. We propose that the major effect of PEEP in inhomogeneous lung injury is to restore tidal ventilation to a population of alveoli recruitable only at high airway pressures.  相似文献   

7.
The extravascular volume of distribution for heat in the lung has been advocated for the measurement of lung water. The purpose of these experiments was to investigate how extremes of ventilation-perfusion mismatch influence this measurement. Twenty-six dogs were studied with right and left atrium-to-aorta thermal and dye-dilution curves before and 60 min after total right main-stem bronchial obstruction or microembolization of the pulmonary circulation with 0.275-mm glass beads. Whereas atelectasis had no influence on our measurements, embolization with 0.32 g/kg of beads decreased the detected pulmonary blood volume from 10.63 to 8.55 ml/kg and increased the extravascular thermal volume (ETV) from 9.89 to 10.99 ml/kg. Embolization with 0.65 g/kg decreased the detected ETV from 9.29 to 8.38 ml/kg, while the extravascular wet-to-dry weight ratio was increased, and the regression of postmortem extravascular mass on ETV differed from control. We conclude that microembolization but not atelectasis causes errors in the measurement of lung fluid when the thermodye technique is used. The errors are variable and depend on the degree of embolization.  相似文献   

8.
Lung morpho-functional alterations and inflammatory response to various types of mechanical ventilation (MV) have been assessed in normal, anesthetized, open-chest rats. Measurements were taken during protective MV [tidal volume (Vt) = 8 ml/kg; positive end-expiratory pressure (PEEP) = 2.6 cmH(2)O] before and after a 2- to 2.5-h period of ventilation on PEEP (control group), zero EEP without (ZEEP group) or with administration of dioctylsodiumsulfosuccinate (ZEEP-DOSS group), on negative EEP (NEEP group), or with large Vt (26 ml/kg) on PEEP (Hi-Vt group). No change in lung mechanics occurred in the Control group. Relative to the initial period of MV on PEEP, airway resistance increased by 33 +/- 4, 49 +/- 9, 573 +/- 84, and 13 +/- 4%, and quasi-static elastance by 19 +/- 3, 35 +/- 7, 248 +/- 12, and 20 +/- 3% in the ZEEP, NEEP, ZEEP-DOSS, and Hi-Vt groups. Relative to Control, all groups ventilated from low lung volumes exhibited histologic signs of bronchiolar injury, more marked in the NEEP and ZEEP-DOSS groups. Parenchymal and vascular injury occurred in the ZEEP-DOSS and Hi-Vt groups. Pro-inflammatory cytokine concentration in the bronchoalveolar lavage fluid (BALF) was similar in the Control and ZEEP group, but increased in all other groups, and higher in the ZEEP-DOSS and Hi-Vt groups. Interrupter resistance was correlated with indexes of bronchiolar damage, and cytokine levels with vascular-alveolar damage, as indexed by lung wet-to-dry ratio. Hence, protective MV from resting lung volume causes mechanical alterations and small airway injury, but no cytokine release, which seems mainly related to stress-related damage of endothelial-alveolar cells. Enhanced small airway epithelial damage with induced surfactant dysfunction or MV on NEEP can, however, contribute to cytokine production.  相似文献   

9.
We studied the effect of edema on the regional distribution of pulmonary blood flow in 12 anesthetized dogs. Two were controls, six had low-pressure pulmonary edema, and four had high-pressure pulmonary edema. All were ventilated with 100% O2. The physiological shunt fraction (Qs/QT), as an indicator of the degree of venous admixture, was determined by measuring the arterial and venous blood gases and the hemoglobin at different times during the experiment. Cardiac output (QT) was modestly increased by opening the femoral arteriovenous shunts. The initial regional blood flow (Qi) and final regional blood flow (Qf) were marked before and after the shunts were opened, using two differently labeled macroaggregates. The dogs were then killed, and the lungs were removed and sampled completely so that Qi and Qf and the amount of regional extravascular lung water (Wdl) in each regional sample could be measured (sample size: wet wt = 5.9 +/- 2.9 g, n = 833; Wdl ranged from 5.15 +/- 1.18 to 14.42 +/- 2.34 g). The data show that QS/QT increased as QT increased in the three conditions studied. However, there was no correlation between Wdl and Qi, Qf, or the relative change in regional blood flow. The data also show that gravity affects regional blood flow more than it affects regional edema. We conclude that the increased Qs/QT seen with increased pulmonary blood flow cannot be explained by a preferential increase of blood flow to the more edematous regions.  相似文献   

10.
Ventilator settings influence the development and outcome of acute lung injury. This study investigates the influence of low versus high tidal volume (V(t)) on oxidative stress-induced lung injury.Isolated rabbit lungs were subjected to one of three ventilation patterns (V(t)-positive end-expiratory pressure, PEEP): LVZP (6 ml/kg-0 cm H(2)O), HVZP (12 ml/kg-0 cm H(2)O), LV5P (6 ml/kg-5 cm H(2)O). These ventilation patterns allowed a comparison between low and high V(t) without dependence on peak inspiratory pressure (PIP). Infusion of hypochlorite (1000 nmol/min) or buffer (control) was started at t=0 min. Pulmonary artery pressure (PAP), PIP and weight were continuously recorded. Capillary filtration coefficient [K(f,c) (10(-4) ml s(-1) cm H(2)O(-1) g(-1))] was gravimetrically determined (-15/30/60/90/120 min).PIP averaged 5.8+/-0.6/13.9+/-0.6/13.9+/-0.4 cm H(2)O in the LVZP, HVZP and LV5P groups. PIP, K(f,c) or PAP did not change in control groups, indicating that none of the ventilation patterns caused lung injury by themselves. Hypochlorite-induced increase in K(f,c) but not hypochlorite-induced increase in PAP, was significantly attenuated in the LVZP-/LV5P- versus the HVZP-group (K(f,c,max.) 1.0+/-0.23/1.4+/-0.40 versus 3.2+/-1.0*). Experiments with hypochlorite were terminated due to excessive edema (>50 g) at 97+/-2.2/94.5+/-4.5 min in the LVZP-/LV5P-group versus 82+/-3.8* min in the HVZP-group (*: P<0.05).Low V(t) attenuated oxidative stress-induced increase in vascular permeability independently from PIP and PEEP.  相似文献   

11.
Current recommendations suggest the use of positive end-expiratory pressures (PEEP) to assist very preterm infants to develop a functional residual capacity (FRC) and establish gas exchange at birth. However, maintaining a consistent PEEP is difficult and so the lungs are exposed to changing distending pressures after birth, which can affect respiratory function. Our aim was to determine how changing PEEP levels alters the distribution of ventilation within the lung. Preterm rabbit pups (28 days gestation) were delivered and mechanically ventilated with one of three strategies, whereby PEEP was changed in sequence; 0-5-10-5-0 cmH2O, 5-10-0-5-0 cmH2O or 10-5-0-10-0 cmH2O. Phase contrast X-ray imaging was used to analyse the distribution of ventilation in the upper left (UL), upper right (UR), lower left (LL) and lower right (LR) quadrants of the lung. Initiating ventilation with 10PEEP resulted in a uniform increase in FRC throughout the lung whereas initiating ventilation with 5PEEP or 0PEEP preferentially aerated the UR than both lower quadrants (p<0.05). Consequently, the relative distribution of incoming VT was preferentially directed into the lower lobes at low PEEP, primarily due to the loss of FRC in those lobes. Following ventilation at 10PEEP, the distribution of air at end-inflation was uniform across all quadrants and remained so regardless of the PEEP level. Uniform distribution of ventilation can be achieved by initiating ventilation with a high PEEP. After the lungs have aerated, small and stepped reductions in PEEP result in more uniform changes in ventilation.  相似文献   

12.
To investigate the influence of atrial natriuretic factor (ANF) on renal function during mechanical ventilation (MV), we examined the renal and hormonal responses to synthetic human ANF infusion in eight patients during MV with zero (ZEEP) or 10 cmH2O positive end-expiratory pressure (PEEP). Compared with ZEEP, MV with PEEP was associated with a reduction in diuresis (V) from 208 +/- 51 to 68 +/- 11 ml/h (P less than 0.02), in natriuresis (UNa) from 12.4 +/- 3.3 to 6.2 +/- 2.1 mmol/h (P less than 0.02), and in fractional excretion of sodium (FENa) from 1.07 +/- 0.02), 0.21 to 0.67 +/- 0.17% (P less than 0.02) and with an increase in plasma renin activity (PRA) from 4.83 +/- 1.53 to 7.85 +/- 3.02 ng.ml-1.h-1 (P less than 0.05). Plasma ANF levels markedly decreased during PEEP in four patients but showed only minor changes in the other four patients, and mean plasma ANF levels did not change (163 +/- 33 pg/ml during ZEEP and 126 +/- 30 pg/ml during PEEP). Glomerular filtration rate and renal plasma flow were unchanged. Infusion of ANF (5 ng.kg-1.min-1) during PEEP markedly increased V and UNa by 110 +/- 61 and 107 +/- 26%, respectively, whereas PRA decreased from 7.85 +/- 3.02 to 4.40 +/- 1.5 ng.ml-1.min-1 (P less than 0.05). In response to a 10 ng.kg-1.min-1 ANF infusion, V increased to 338 +/- 79 ml/h during ZEEP but only to 134 +/- 45 ml/h during PEEP (P less than 0.02), whereas UNa increased, respectively, to 23.8 +/- 5.3 and 11.3 +/- 3.3 mmol/h (P less than 0.02).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
Hyaluronan affects extravascular water in lungs of unanesthetized rabbits   总被引:1,自引:0,他引:1  
We have determined whether changes in lung hyaluronan content affect extravascular water in lungs of unanesthetized rabbits. Three groups of experiments were performed. In group 1 (n = 12), no infusions were given; in group 2, nine pairs of rabbits received either intravenous hyaluronidase (750 U.kg-1.min-1) or an equivalent volume of saline; in group 3, nine pairs of rabbits received either hyaluronidase or saline, followed by intravenous saline infusion amounting to 24% of body weight. At the end of each experiment, one lung was analyzed for extravascular lung water by the wet-dry method. Except for group 3, in all animals the other lung was analyzed for hyaluronan content by a method that involved hydrolyzing lung hyaluronan with fungal hyaluronidase to release reducing N-acetyl glucosamine groups, which were quantified. In group 1, lung hyaluronan, which varied from 50 to 159 micrograms/g dry wt (mean 106 +/- 35 micrograms/g dry wt), significantly correlated with variation in extravascular lung water (mean 4.2 +/- 0.3 g/g dry wt). In group 2 rabbits given hyaluronidase, lung hyaluronan was 40% lower and extravascular lung water was 14.6% lower than in paired controls (P less than 0.01). In group 3, volume expansion did not affect lung water, except after hyaluronidase when lung water was 47% higher than paired controls. We conclude that in the lung the content of hyaluronan is one of the determinants of extravascular water content.  相似文献   

14.
We assessed pulmonary endothelial and epithelial permeability and lung lymph flow in nine adult sheep under base-line conditions and after resuscitation from profound hemorrhagic shock. Animals were mechanically ventilated and maintained on 1% halothane anesthesia while aortic pressure was held at 40 Torr for 3 h. Systemic heparin was not used. After reinfusion of shed blood, sheep recovered from anesthesia and we measured lung lymph flow (QL), lymph-to-plasma concentration ratio for proteins, and time taken to reach half-equilibrium concentration of intravenous tracer albumin in lymph (t1/2). Twenty-four hours after bolus injection of radio-albumin we lavaged subsegments of the right upper lobe and determined fractional equilibration of the tracer in the alveolar luminal-lining layer. In each sheep we had measured these parameters 7 days earlier under base-line conditions. Animals were killed, and the lungs were used for gravimetric determination of extravascular lung water (gravimetric extravascular lung water-to-dry weight ratio) 24 h after resuscitation from shock. Pulmonary endothelial injury after resuscitation was evidenced by marked increase in QL, without fall in lymph-to-plasma ratio. Time taken to reach half-equilibrium concentration fell from 169 +/- 47 (SD) min in base-line studies to 53 +/- 33 min after shock. There was no evidence of lung epithelial injury. Gravimetric extravascular lung water-to-dry weight ratio was significantly increased in these animals killed 24 h after resuscitation (4.94 +/- 0.29) compared with values in our laboratory controls (4.13 +/- 0.09, mean +/- SD). These data demonstrate a loss of lung endothelial integrity in sheep after resuscitation from profound hemorrhagic shock.  相似文献   

15.
Pneumonia caused by Pseudomonas aeruginosa carries a high rate of morbidity and mortality. A lung-protective strategy using low tidal volume (V(T)) ventilation for acute lung injury improves patient outcomes. The goal of this study was to determine whether low V(T) ventilation has similar utility in severe P. aeruginosa infection. A cytotoxic P. aeruginosa strain, PA103, was instilled into the left lung of rats anesthetized with pentobarbital. The lung-protective effect of low V(T) (6 ml/kg) with or without high positive end-expiratory pressure (PEEP, 10 or 3 cmH(2)O) was then compared with high V(T) with low PEEP ventilation (V(T) 12 ml/kg, PEEP 3 cmH(2)O). Severe lung injury and septic shock was induced. Although ventilatory mode had little effect on the involved lung or septic physiology, injury to noninvolved regions was attenuated by low V(T) ventilation as indicated by the wet-to-dry weight ratio (W/D; 6.13 +/- 0.78 vs. 3.78 +/- 0.26, respectively) and confirmed by histopathological examinations. High PEEP did not yield a significant protective effect (W/D, 4.03 +/- 0.32) but, rather, caused overdistension of noninvolved lungs. Bronchoalveolar lavage revealed higher concentrations of TNF-alpha in the fluid of noninvolved lung undergoing high V(T) ventilation compared with those animals receiving low V(T). We conclude that low V(T) ventilation is protective in noninvolved regions and that the application of high PEEP attenuated the beneficial effects of low V(T) ventilation, at least short term. Furthermore, low V(T) ventilation cannot protect the involved lung, and high PEEP did not significantly alter lung injury over a short time course.  相似文献   

16.
Previous studies in anesthetized humans positioned in the left lateral decubitus (LLD) posture have shown that unilateral positive end-expiratory pressure (PEEP) to the dependent lung produce a more even ventilation distribution and improves gas exchange. Unilateral PEEP to the dependent lung may offer special advantages during LLD surgery by reducing the alveolar-to-arterial oxygen pressure difference {(A-a)PO2 or venous admixture} in patients with thoracic trauma or unilateral lung injury. We measured the effects of unilateral PEEP on regional distribution of blood flow (Q) and ventilation (V(A)) using fluorescent microspheres in pentobarbital anesthetized and air ventilation dogs in left lateral decubitus posture with synchronous lung inflation. Tidal volume to left and right lung is maintained constant to permit the effect on gas exchange to be examined. The addition of unilateral PEEP to the left lung increased its FRC with no change in left-right blood flow distribution or venous admixture. The overall lung V(A)/Q distribution remained relatively constant with increasing unilateral PEEP. Bilateral PEEP disproportionately increased FRC in the right lung but again produced no significant changes in venous admixture or V(A)/Q distribution. We conclude that the reduced dependent lung blood flow observed without PEEP occurs secondary to a reduction in lung volume. When tidal volume is maintained, unilateral PEEP increases dependent lung volume with little effect of perfusion distribution maintaining gas exchange.  相似文献   

17.
Alveolar edema inactivates surfactant, and surfactant depletion causes edema by reducing lung interstitial pressure (Pis). We reasoned that surfactant repletion might reduce edema by raising Pis after acute lung injury and that positive end-expiratory pressure (PEEP) might facilitate this effect. One hour after tracheal administration of hydrochloric acid in 18 anesthetized dogs with transmural pulmonary capillary wedge pressure of 8 Torr, the animals were randomized into three groups: in the SURF + PEEP group, 50 mg/kg of calf lung surfactant extract (CLSE) was instilled into each main stem bronchus with 8 cmH2O of PEEP; in the SAL + PEEP group, PEEP was followed by an equal volume of saline (SAL); in the SURF group, CLSE was given without PEEP. After 5 h, edema in excised lungs (wet-to-dry weight ratios) was significantly less in the SURF + PEEP group (9.1 +/- 1.0) than in the other groups (11.3 +/- 1.8 and 11.3 +/- 1.8, respectively). In the SURF + PEEP group, pulmonary venous admixture fell by 6%; this change was different from the 7% increase in the SAL + PEEP group and 40% increase in the SURF group (P less than 0.05). Airway secretions obtained in the SURF + PEEP group had normal minimum surface tensions of 4 +/- 2 mN/m, a value much lower than in SAL + PEEP and SURF groups (32 +/- 4 and 22 +/- 7 mN/m, respectively). We conclude that surfactant normalizes surface tension and decreases transcapillary hydrostatic forces in this lung injury model, thereby reducing edema formation and improving gas exchange. These benefits occur only if surfactant is given with PEEP, allowing surfactant access to the alveoli and/or minimizing its inhibition by edema proteins.  相似文献   

18.
The present study examined the effects of mechanical ventilation, with or without positive end-expiratory pressure (PEEP), on the alveolar surfactant system in an animal model of sepsis-induced lung injury. Septic animals ventilated without PEEP had a significant deterioration in oxygenation compared with preventilated values (arterial PO(2)/inspired O(2) fraction 316 +/- 16 vs. 151 +/- 14 Torr; P < 0.05). This was associated with a significantly lower percentage of the functional large aggregates (59 +/- 3 vs. 72 +/- 4%) along with a significantly reduced function (minimum surface tension 17.7 +/- 1.8 vs. 11.8 +/- 3.8 mN/m) compared with nonventilated septic animals (P < 0.05). Sham animals similarly ventilated without PEEP maintained oxygenation, percent large aggregates and surfactant function. With the addition of PEEP, the deterioration in oxygenation was not observed in the septic animals and was associated with no alterations in the surfactant system. We conclude that animals with sepsis-induced lung injury are more susceptible to the harmful effects of mechanical ventilation, specifically lung collapse and reopening, and that alterations in alveolar surfactant may contribute to the development of lung dysfunction.  相似文献   

19.
We have investigated the effect of positive end-expiratory pressure ventilation (PEEP) on regional splanchnic vascular capacitance. In 12 anesthetized dogs hepatic and splenic blood volumes were assessed by sonomicrometry. Vascular pressure-diameter curves were defined by obstructing hepatic outflow. With 10 and 15 cmH2O PEEP portal venous pressure increased 3.1 +/- 0.3 and 5.1 +/- 0.4 mmHg (P less than 0.001) while hepatic venous pressure increased 4.9 +/- 0.4 and 7.3 +/- 0.4 mmHg (P less than 0.001), respectively. Hepatic blood volume increased (P less than 0.01) 3.8 +/- 0.9 and 6.3 +/- 1.4 ml/kg body wt while splenic volume decreased (P less than 0.01) 0.8 +/- 0.2 and 1.3 +/- 0.2 ml/kg body wt. The changes were similar with closed abdomen. The slope of the hepatic vascular pressure-diameter curves decreased with PEEP (P less than 0.01), possibly reflecting reduced vascular compliance. There was an increase (P less than 0.01) in unstressed hepatic vascular volume. The slope of the splenic pressure-diameter curves was unchanged, but there was a significant (P less than 0.05) decrease in unstressed diameter during PEEP. In conclusion, hepatic blood volume increased during PEEP. This was mainly a reflection of passive distension due to elevated venous pressures. The spleen expelled blood and thus prevented a further reduction in central blood volume.  相似文献   

20.
Mechanical ventilation has been demonstrated to exacerbate lung injury, and a sufficiently high tidal volume can induce injury in otherwise healthy lungs. However, it remains controversial whether injurious ventilation per se, without preceding lung injury, can initiate cytokine-mediated pulmonary inflammation. To address this, we developed an in vivo mouse model of acute lung injury produced by high tidal volume (Vt) ventilation. Anesthetized C57BL6 mice were ventilated at high Vt (34.5 +/- 2.9 ml/kg, mean +/- SD) for a duration of 156 +/- 17 min until mean blood pressure fell below 45 mmHg (series 1); high Vt for 120 min (series 2); or low Vt (8.8 +/- 0.5 ml/kg) for 120 or 180 min (series 3). High Vt produced progressive lung injury with a decrease in respiratory system compliance, increase in protein concentration in lung lavage fluid, and lung pathology showing hyaline membrane formation. High-Vt ventilation was associated with increased TNF-alpha in lung lavage fluid at the early stage of injury (series 2) but not the later stage (series 1). In contrast, lavage fluid macrophage inflammatory protein-2 (MIP-2) was increased in all high-Vt animals. Lavage fluid from high-Vt animals contained bioactive TNF-alpha by WEHI bioassay. Low-Vt ventilation induced minimal changes in physiology and pathology with negligible TNF-alpha and MIP-2 proteins and TNF-alpha bioactivity. These results demonstrate that high-Vt ventilation in the absence of underlying injury induces intrapulmonary TNF-alpha and MIP-2 expression in mice. The apparently transient nature of TNF-alpha upregulation may help explain previous controversy regarding the involvement of cytokines in ventilator-induced lung injury.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号