首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We examined the effects of various protease substrates on Xenopus laevis embryogenesis. Thirty-three peptidyl-MCA substrates were added to the culture medium in which Xenopus embryos were developing. Five of the 33 substrates were found to inhibit embryogenesis at the early gastrula stage or much earlier ones. These results suggest that proteases that hydrolyze these substrates are involved in embryonic development. We found that the developmental stage of embryos is crucial for these substrates to inhibit their development. We purified a protease that hydrolyzes Pyr-Arg-Thr-Lys-Arg-MCA, a substrate that inhibits embryogenesis, from Xenopus embryos. This protease turned out to be a component of proteasomes. We found that 4 of the 5 substrates that inhibit embryogenesis are among the proteasome substrates. Thus, we concluded that proteasomes play a crucial role in the development of Xenopus embryos. Possibly, various catalytic subunits in proteasomes function independently, in stage-specific manners.  相似文献   

2.
We investigated the effects of three serine protease inhibitors (leupeptin, soybean trypsin inhibitor, and aprotinin) on the serum-free growth of two transformed cell lines in soft agar. Aprotinin markedly enhanced the growth of rat embryo fibroblasts that had been transformed by polyoma middle T antigen (PyMLV-REF52), while having only a slight effect on the colonial growth of SV40 transformed Balb/c 3T3 cells (SV3T3-Aga). Leupeptin and soybean trypsin inhibitor, on the other hand, significantly enhanced the growth of SV3T3-Aga cells while having little effect on PyMLV-REF52 growth. We observed no stimulatory effect of any of the protease inhibitors on serum-free monolayer growth. Under conditions of excess aprotinin, PyMLV-REF52 cells were found to be unresponsive to epidermal growth factor (EGF) at a concentration that would normally stimulate agar colony growth. However, aprotinin was not capable of supporting colony formation with transforming growth factor-beta. These results indicate that aprotinin acts primarily as a protease inhibitor in spite of its structural homology to EGF and that EGF may promote the soft agar growth of these cell lines either by inhibiting proteolysis directly or by enhancing the synthesis of a serine protease inhibitor.  相似文献   

3.
Rat ovaries produce a novel ovarian trypsin-like protease that is regulated during follicular development. The protease extracted from the ovaries of immature gonadotropin-treated female rats was unstable to denaturation, but was recoverable after non-denaturing electrophoresis. The activity was inhibited by synthetic serine protease inhibitors but not by aprotinin or soybean trypsin inhibitor, thus distinguishing the enzyme from pancreatic trypsin. Treatment with pregnant mare's serum gonadotropin (PMSG) significantly increased the levels of enzyme in the ovarian granulosa cells (Control, 0.0027 units/10(6) cells; PMSG-treated, 0.0062 units/10(6) cells) which was also secreted by these cells. The novel enzyme described here may be important for matrix remodelling during follicular growth.  相似文献   

4.
Yamada K  Takabatake T  Takeshima K 《Gene》2000,252(1-2):209-216
Three novel cDNAs encoding serine proteases, that may play a role in early vertebrate development, have been identified from Xenopus laevis. These Xenopus cDNAs encode trypsin-like serine proteases and are designated Xenopus embryonic serine protease (Xesp)-1, Xesp-2, and XMT-SP1, a homolog of human MT-SP1. Xesp-1 is likely to be a secreted protein that functions in the extracellular space. Xesp-2 and XMP-SP1 are likely to be type II membrane proteases with multidomain structures. Xesp-2 has eight low density lipoprotein receptor (LDLR) domains and one scavenger receptor cysteine-rich (SRCR) domain, and XMT-SP1 has four LDLR domains and two CUB domains. The temporal expressions of these serine protease genes show distinct and characteristic patterns during embryogenesis, and they are differently distributed in adult tissues. Overexpression of Xesp-1 caused no significant defect in embryonic development, but overexpression of Xesp-2 or XMT-SP1 caused defective gastrulation or apoptosis, respectively. These results suggest that these proteases may play important roles during early Xenopus development, such as regulation of cell movement in gastrulae.  相似文献   

5.
U H Weidle  P Buckel  R Mattes 《Gene》1988,73(2):439-447
We have constructed amplified Chinese hamster ovary cell lines constitutively synthesizing human tissue-type plasminogen activator (t-PA) or a derivative in which the domains homologous to epidermal growth factor and kringle 1 have been removed [delta(G + K1)]. The properties of the secreted proteins were investigated when synthesized in the presence or absence of the serine protease inhibitor aprotinin in the medium. t-PA in the culture supernatants was either single-chain or two-chain protein. The protease activity of both forms was stimulated by fibrin. The biochemical properties of delta(G + K1) were significantly different when harvested from cells grown under different culturing conditions. Protease activity of delta(G + K1) was stimulated ten- to 20-fold by fibrin when harvested from medium with aprotinin, but was stimulated only two- to three-fold when aprotinin was absent from the serum. Characterization of the secreted proteins revealed that the heavy-chain equivalent of delta(G + K1) is degraded when serine protease inhibitor is absent in the culture medium. These results indicate that the functional and biochemical properties of restructured versions of t-PA may depend on the presence of protease(s) in the culture supernatants.  相似文献   

6.
In this work, we characterized the activities of two classes of proteases and AcP during early embryogenesis of Periplaneta americana. AcP activity was first detected at day 6 and reached a maximum level at day 10 of development. Using phosphoamino acids, phosphatase activity was shown to be directed only against phosphotyrosine at day 6 while at day 10 it was also active against phosphoserine. In parallel, two classes of proteases were detected and located within yolk granules: a clan CA-cysteine protease, which was inhibited by E-64, insensitive to CA 074 and activated by acidic pH at day 3; and a neutral serine protease, which was inhibited by aprotinin at day 6. Assays of vitellin (Vt) degradation evidenced that incubations at neutral pH induced slight proteolysis, while the incubations at acidic pH did not result in Vt degradation. However, pre-incubations of Vt with AcP increased the levels of Vt acidic proteolysis and this could be inhibited by the addition of phosphatase inhibitors. On the other hand, the same pre-incubations showed no effects on the profile of degradation at neutral pH. We propose that AcP and cysteine protease cooperate to assure Vt breakdown during early embryogenesis of P. americana.  相似文献   

7.
Serine proteases are typically synthesized as proteolytically inactive zymogens that often become activated in a limited and highly localized manner. Consequently, determination of the spatial and temporal activation pattern of these molecules is of great importance to understanding the biological processes that they mediate. Until only recently, the tools to conveniently address the question of where and when serine proteases are active within complex tissues have been lacking. In order to detect spatially restricted serine protease activities in Drosophila embryos and ovaries we introduce a technique using fluorescent synthetic and protein-based inhibitors. With this approach we have detected a novel serine protease activity with a relative mobility of 37 kDa, localized to the surface of pole cells, the germ-line precursors, in embryos between nuclear cycles 11 and 14 in development. A second novel cell-specific protease activity was localized to the tissues of early gastrulating embryos. Microinjection of inhibitors into the perivitelline space of stage 2 embryos perturbed normal embryonic development. Fluorescein-conjugated chymotrypsin inhibitor and Bowman-Birk inhibitor labeled protease activity localized to the oocyte–somatic follicle cell interface of the developing egg chamber. Our results suggest that this technique holds promise to identify new spatially restricted activities in adult Drosophila tissues and developing embryos.  相似文献   

8.
An embryogenic grapevine rootstock cell suspension, continuously grown in the presence of auxin, was predominantly composed of proembryogenic masses. When transferred to an auxin-free medium, grapevine somatic embryos developed but were rapidly blocked at the heart stage. This inhibition has been related to the presence of extracellular macromolecules (Coutos-Thévenot et al., 1992a). In this study, the initial cell population density has been found to influence markedly embryo development. Inoculations below 5·103 cells per ml were required to obtain fully grown cotyledonary embryos. Interestingly, extracellular proteins of molecular weights of 32, 34, 48 and 52 kDa accumulated in cultures grown at high population cell densities and disappeared in cultures inoculated at densities below 5·103 cells per ml. Protein fractions partially purified by ion exchange chromatography caused both an early inhibition of embryogenesis and a stimulation of secondary embryogenesis. Moreover, to test for the possibility of modulating embryo development through alterations of extracellular proteins, cultures were supplemented with proteases and protease inhibitors. The addition of trypsin increased the rate of embryo development only in cultures inoculated at a low cell population density. Conversely, the protease inhibitor aprotinin inhibited development, arresting embryos at globular and heart stages. Together, these results provide evidence that extracellular proteins modulate somatic embryogenesis and suggest that an extracellular proteolitic mechanism could be implicated in development. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

9.
In silkworms, yolk proteins comprise vitellin, egg-specific protein and 30K proteins, which are sequentially degraded by endogenous proteases strictly regulated during embryogenesis. Although the process has been extensively investigated, there is still a gap in the knowledge about the degradation of silkworm yolk proteins on the last two days of embryonic development. In the present study, we isolated and purified a gut serine protease P-IIc, which demonstrated optimal activity at 25 °C and pH 11. Semi-quantitative RT-PCR combined with western blotting showed that P-IIc was actively expressed and significantly accumulated in the gut on the last two days of embryogenesis. When natural yolk proteins were incubated with P-IIc in vitro, vitellin and ESP were selectively degraded. P-IIc also demonstrated activity towards 30K proteins as evidenced by rapid and complete digestion of BmLP1 and partial digestion of BmLP2 and BmLP3. Furthermore, RNAi knockdown of P-IIc in silkworm embryos significantly reduced the degradation rate of residual yolk proteins on embryonic day 10. Taken together, our results indicate that P-IIc represents an embryonic gut protease with a relatively broad substrate specificity, which plays an important role in the degradation of yolk proteins at the late stage of silkworm embryogenesis.  相似文献   

10.
Human Fibroblast Activation Protein (FAP), a member of the serine prolyl oligopeptidase family, is a type II cell surface glycoprotein that acts as a dual-specificity dipeptidyl-peptidase (DPP) and collagenase in vitro. Its restricted expression pattern in embryonic mesenchyme, in wound healing and in reactive stromal fibroblasts of epithelial cancers, has suggested a role for the FAP protease in extracellular matrix degradation or growth factor activation in sites of tissue remodeling. The FAP homologue in Xenopus laevis has been reported to be induced in the thyroid hormone-induced tail resorption program during tadpole metamorphosis supporting a role for FAP in tissue remodeling processes during embryonic development. However, Fap-deficient mice show no overt developmental defects and are viable. To study the expression of FAP during mouse embryogenesis, a second Fap-deficient mouse strain expressing beta-Galactosidase under the control of the Fap promoter was generated by homologous recombination (Fap-/- lacZ mice). FAP deficiency was confirmed by the absence of FAP-specific dipeptidyl-peptidase activity in detergent-soluble extracts isolated from 17.5 d.p.c. Fap-/- lacZ embryos. We report that Fap-/- lacZ mice express beta-Galactosidase at regions of active tissue remodeling during embryogenesis including somites and perichondrial mesenchyme from cartilage primordia.  相似文献   

11.
Loss of either hepatocyte growth factor activator inhibitor (HAI)-1 or -2 is associated with embryonic lethality in mice, which can be rescued by the simultaneous inactivation of the membrane-anchored serine protease, matriptase, thereby demonstrating that a matriptase-dependent proteolytic pathway is a critical developmental target for both protease inhibitors. Here, we performed a genetic epistasis analysis to identify additional components of this pathway by generating mice with combined deficiency in either HAI-1 or HAI-2, along with genes encoding developmentally co-expressed candidate matriptase targets, and screening for the rescue of embryonic development. Hypomorphic mutations in Prss8, encoding the GPI-anchored serine protease, prostasin (CAP1, PRSS8), restored placentation and normal development of HAI-1-deficient embryos and prevented early embryonic lethality, mid-gestation lethality due to placental labyrinth failure, and neural tube defects in HAI-2-deficient embryos. Inactivation of genes encoding c-Met, protease-activated receptor-2 (PAR-2), or the epithelial sodium channel (ENaC) alpha subunit all failed to rescue embryonic lethality, suggesting that deregulated matriptase-prostasin activity causes developmental failure independent of aberrant c-Met and PAR-2 signaling or impaired epithelial sodium transport. Furthermore, phenotypic analysis of PAR-1 and matriptase double-deficient embryos suggests that the protease may not be critical for focal proteolytic activation of PAR-2 during neural tube closure. Paradoxically, although matriptase auto-activates and is a well-established upstream epidermal activator of prostasin, biochemical analysis of matriptase- and prostasin-deficient placental tissues revealed a requirement of prostasin for conversion of the matriptase zymogen to active matriptase, whereas prostasin zymogen activation was matriptase-independent.  相似文献   

12.
《The Journal of cell biology》1986,102(4):1378-1383
A series of protease inhibitors were tested on the motility of human, rat, bull, and rabbit demembranated reactivated spermatozoa. Some inhibitors, including aprotinin, boc-gln-leu-lys-H, and D-phe-pro-arg- H, could inhibit motility as well as prevent initiation of motility. In general, with the exception of aprotinin, protease inhibitors were more potent in preventing the initiation of movement than in blocking motility of demembranated spermatozoa. Protease substrates could also block sperm motility. Of the substrates tested only those with arg or lys ester bonds were active. The inhibition of motility by protease substrates was reversible, as once spermatozoa hydrolyzed the added exogenous protease substrates, motility reappeared. The importance of ester bond in the inhibitory action of protease substrates was confirmed by experiments that showed the lack of effect of pre- hydrolyzed protease substrates. The results suggest that a serine protease with lys and arg ester bond specificity is involved in the control of sperm motility. The fact that protease substrates also block motility of intact spermatozoa further emphasizes the physiological relevance of this new regulatory system.  相似文献   

13.
Recombinant proteins secreted from plant suspension cells into the medium are susceptible to degradation by host proteases secreted during growth. Some degradation phenomena are inhibited in the presence of various protease inhibitors, such as EDTA or AEBSF/PMSF, suggesting the presence of different classes of proteases in the medium. Here, we report the results of a proteomic analysis of the extracellular medium of a Nicotiana tabacum bright yellow 2 culture. Several serine proteases belonging to a Solanaceae-specific subtilase subfamily were identified and the genes for four cloned. Their expression at the RNA level during culture growth varied depending on the gene. An in-gel protease assay (zymography) demonstrated serine protease activity in the extracellular medium from cultures. This was confirmed by testing the degradation of an antibody added to the culture medium. This particular subtilase subfamily, therefore, represents an interesting target for gene silencing to improve recombinant protein production. Key message The extracellular medium of Nicotiana tabacum suspension cells contains serine proteases that degrade antibodies.  相似文献   

14.
The effect of a novel enzyme (PreR-Co) that activates renal prorenin was studied on rabbit aortas with and without endothelium. It was tested 1) in the basal tone of nonstimulated or ANG II-sensitized rings or rings precontracted with norepinephrine (NE), PGF(2alpha), high KCl concentration, and 2) in rings pretreated with enalaprilat, losartan, PD-123319, N(omega)-nitro-l-arginine methyl ester, HOE-140, indomethacin, or serine protease inhibitors (PMSF, aprotinin, or soybean trypsin inhibitor); kallilkrein and bradykinin were also tested in ANG II-sensitized rings. PreR-Co produced a vasorelaxant effect in the basal tone and in the precontracted rabbit aorta. The effect was endothelium independent, potentiated by endothelium removal or nitric oxide (NO) synthase inhibition, and abolished by boiling the enzyme. In addition, the effect improved when basal tone was increased in ANG II-sensitized aortic rings or in precontracted vessels. No activation of the ANG II, bradykinin, prostaglandin, or NO pathway mediating the PreR-Co response could be obtained, suggesting a direct action of the enzyme. This action seems to be dependent on esterasic activity because serine protease inhibitors like PMSF and aprotinin were able to block the vasorelaxant effect of PreR-Co.  相似文献   

15.
G S Prins  C Lee 《Steroids》1982,40(2):189-201
Prostate androgen receptors are liable to proteolytic digestion during in vitro analysis; thus, various proteolytic enzyme inhibitors were tested for their ability to improve the androgen receptor assay. The serine (phenylmethylsulfonylflouride, aprotinin, p-aminobenzamidine) and thiol-senine (leupeptin, bacitracin) protease inhibitors individually present in the homogenization buffer significantly increased the measurable androgen binding sites by 30-35% in rat prostate cytosol as determined by saturation analysis with [3H]-17 beta-hydroxy-17-methyl- 4,9 11-estratrien-3-one (R-1881) for 20 hr at 4 degrees C. The apparent binding affinity was also increased by these compounds. Various combinations were tried and aprotinin/bacitracin was found to be additive in effect. This combination was also shown to prevent receptor degradation as determined by sucrose density gradient centrifugation. The carboxyl protease inhibitor, pepstatin A, was ineffective in improving the receptor assay. Rabbit bile, an inhibitor of seminin, interfered with receptor binding thus rendering it ineffective for use in saturation analysis. The results show that the use of serine-thiol protease inhibitors significantly improves the cytosol androgen receptor yield and assay sensitivity; therefore, we recommend routine inclusion of these compounds(s) in the homogenization buffer for androgen receptor assays.  相似文献   

16.
17.
Swedberg JE  Harris JM 《Biochemistry》2011,50(39):8454-8462
Perioperative bleeding is a cause of major blood loss and is associated with increased rates of postoperative morbidity and mortality. To combat this, antifibrinolytic inhibitors of the serine protease plasmin are commonly used to reduce bleeding during surgery. The most effective and previously widely used of these is the broad range serine protease inhibitor aprotinin. However, adverse clinical outcomes have led to use of alternative serine lysine analogues to inhibit plasmin. These compounds suffer from low selectivity and binding affinity. Consequently, a concerted effort to discover potent and selective plasmin inhibitors has developed. This study used a noncombinatorial peptide library to define plasmin's extended substrate specificity and guide the design of potent transition state analogue inhibitors. The various substrate binding sites of plasmin were found to exhibit a higher degree of cooperativity than had previously been appreciated. Peptide sequences capitalizing on these features produced high-affinity inhibitors of plasmin. The most potent of these, Lys-Met(sulfone)-Tyr-Arg-H [KM(O(2))YR-H], inhibited plasmin with a K(i) of 3.1 nM while maintaining 25-fold selectivity over plasma kallikrein. Furthermore, 125 nM (0.16 μg/mL) KM(O(2))YR-H attenuated fibrinolysis in vitro with an efficacy similar to that of 15 nM (0.20 μg/mL) aprotinin. To date, this is the most potent peptide inhibitor of plasmin that exhibits selectivity against plasma kallikrein, making this compound an attractive candidate for further therapeutic development.  相似文献   

18.
In order to evaluate the possible roles of secretory proteases in the pathogenesis of amoebic keratitis, we purified and characterized a serine protease secreted by Acanthamoeba lugdunensis KA/E2, isolated from a Korean keratitis patient. The ammonium sulfate-precipitated culture supernatant of the isolate was purified by sequential chromatography on CM-Sepharose, Sephacryl S-200, and mono Q-anion exchange column. The purified 33 kDa protease had a pH optimum of 8.5 and a temperature optimum of 55 degrees C. Phenylmethylsulfonylfluoride and 4-(2- Aminoethyl)-benzenesulfonyl-fluoride, both serine protease specific inhibitors, inhibited almost completely the activity of the 33 kDa protease whereas other classes of inhibitors did not affect its activity. The 33 kDa enzyme degraded various extracellular matrix proteins and serum proteins. Our results strongly suggest that the 33 kDa serine protease secreted from this keratopathogenic Acanthamoeba play important roles in the pathogenesis of amoebic keratitis, such as in corneal tissue invasion, immune evasion and nutrient uptake.  相似文献   

19.
Extracellular serine protease cascades have evolved in vertebrates and invertebrates to mediate rapid, local reactions to physiological or pathological cues. The serine protease cascade that triggers the Toll signaling pathway in Drosophila embryogenesis shares several organizational characteristics with those involved in mammalian complement and blood clotting. One of the hallmarks of such cascades is their regulation by serine protease inhibitors (serpins). Serpins act as suicide substrates and are cleaved by their target protease, forming an essentially irreversible 1:1 complex. The biological importance of serpins is highlighted by serpin dysfunction diseases, such as thrombosis caused by a deficiency in antithrombin. Here, we describe how a serpin controls the serine protease cascade, leading to Toll pathway activation. Female flies deficient in Serpin-27A produce embryos that lack dorsal-ventral polarity and show uniform high levels of Toll signaling. Since this serpin has been recently shown to restrain an immune reaction in the blood of Drosophila, it demonstrates that proteolysis can be regulated by the same serpin in different biological contexts.  相似文献   

20.
贾彩风  李悦 《植物学报》2006,23(2):186-191
探索华山松(Pinus armandii)体细胞胚胎发生技术对其实施规模化无性繁殖和开展遗传转化具有重要意义。本文以1/2LM为基本培养基, 通过激素调节等措施对华山松的胚性愈伤组织诱导和幼胚的离体培养技术进行了初步研究。研究结果: 胚性愈伤组织诱导率最高可达52.71%, 但愈伤组织继代培养后没有体细胞胚胎的分化; 首次从其子叶期的幼胚中直接诱导出具有根和茎的完整植株, 诱导率达92%以上。文章确认了采集的幼胚发育状态对胚性愈伤组织的诱导有重要影响, 并对诱导的培养条件等进行了探讨。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号