首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The purpose of this study was to evaluate the effect of pH on the dissolution behavior of metaxalone in the marketed product Skelaxin tablets. The dissolution was evaluated using United States Pharmacopeia (USP) dissolution Apparatus 2 and 3 at pHs ranging from 1.5 to 7.4 Results from these studies show that the dissolution of this product is pH dependent. At low pH (simulated gastric fluid, pH 1.5), the dissolution of metaxalone from Skelaxin tablets, was less than 10% over 75 minutes; whereas, dissolution at pH 4.5 showed greater than 90% release in the same time period. These results were consistent for both Apparatus 2 and 3. This suggests that Skelaxin Tablets should be considered a delayed release dosage form.KeyWords: Metaxalone, dissolution, pH dependence, apparatus 3  相似文献   

2.
The USP Apparatus 3 is a compendial dissolution Apparatus that has been mainly used to assess the performance of modified-release drug products. However, this Apparatus can be applied to dissolution testing of immediate-release tablets as well, with several advantages such as lower consumption of dissolution media, reduced setup time in quality control routine, and minimized hydrodynamic issues. In this work, three immediate-release (IR) tablets containing antihypertensive drugs of different Biopharmaceutic Classification System (BCS) classes were evaluated in order to assess the possible interchangeability between the official dissolution method using typical USP Apparatus 1 or 2 and the proposed methods using USP Apparatus 3. Depending on the selection of the appropriate operational conditions, such as dip rate and sieve mesh size, it was observed that USP Apparatus 3 could provide similar dissolution profiles compared to USP Apparatus 1 or 2 to the drug products tested. In addition, USP Apparatus 3 avoided conning issues related to USP Apparatus 2. The successful application of USP Apparatus 3 in dissolution tests for IR drug products depends on the definition of specific test conditions for each product, considering all the equipment variables, as well as drug and formulation characteristics.  相似文献   

3.
A series of poly[(N-isopropylacrylamide)-co-(methacrylic acid)] (P[(N-iPAAm)-co-(MAA)]) hydrogels was investigated to determine the composition that exhibits a better pH-modulated release of diltiazem hydrochloride (DIL.HCl). For this purpose hydrogel slabs were loaded with DIL.HCl by the immersion method, and its release under acidic medium (0.1N HCl, pH 1.2) and in phosphate buffer pH 7.2, using United States Pharmacopeia (USP) 24 Apparatus 1, was investigated. According to the results from the slabs, copolymers with 85% mol N-iPAAm content were selected to prepare tablets with different particle size. The effect of pH and particle size changes on DIL.HCl release from these last hydrogel tablets was investigated by a stepwise pH variation of the dissolution medium. The amount of DIL.HCl released from high N-iPAAm content copolymer slabs under acidic pH medium was not only very low but it was also released at a slow rate. In the 85% N-iPAAm tablets, significant differences between and within release profiles were found as a function of particle size and pH, respectively. A relationship between particle size and release rate has been found. The lower DIL.HCl release at acidic pH from enriched N-iPAAm copolymers is interpreted by a cooperative thermal- and pH-collapse. Although for the whole range of copolymer composition a dependence of the equilibrium of swelling on the pH was found, DIL.HCl release experiments indicated that hydrogels with 85% mol N-iPAAm are the more adequate to be used for modulated drug delivery systems. Additionally, the particle size of the tablet can be used to tailor the release rate.  相似文献   

4.
The purpose of this research was to design oral controlled release (CR) matrix tablets of zidovudine (AZT) using hydroxypropyl methylcellulose (HPMC), ethyl cellulose (EC) and carbopol-971P (CP) and to study the effect of various formulation factors on in vitro drug release. Release studies were carried out using USP type 1 apparatus in 900 ml of dissolution media. Release kinetics were analyzed using zero-order, Higuchi’s square root and Ritger–Peppas’ empirical equations. Release rate decreased with increase in polymer proportion and compression force. The release rate was lesser in formulations prepared using CP (20%) as compared to HPMC (20%) as compared to EC (20%). No significant difference was observed in the effect of pH of dissolution media on drug release from formulations prepared using HPMC or EC, but significant difference was observed in CP based formulations. Decrease in agitation speed from 100 to 50 rpm decreased release rate from HPMC and CP formulations but no significant difference was observed in EC formulations. Mechanism of release was found to be dependent predominantly on diffusion of drug through the matrix than polymer relaxation incase of HPMC and EC formulations, while polymer relaxation had a dominating influence on drug release than diffusion incase of CP formulations. Designed CR tablets with pH independent drug release characteristics and an initial release of 17–25% in first hour and extending the release up to 16–20 h, can overcome the disadvantages associated with conventional tablets of AZT.  相似文献   

5.
The purpose of the research was to evaluate Sterculia foetida gum as a hydrophilic matrix polymer for controlled release preparation. For evaluation as a matrix polymer; characterization of Sterculia foetida gum was done. Viscosity, pH, scanning electronmicrographs were determined. Different formulation aspects considered were: gum concentration (10–40%), particle size (75–420 μm) and type of fillers and those for dissolution studies; pH, and stirring speed were considered. Tablets prepared with Sterculia foetida gum were compared with tablets prepared with Hydroxymethylcellulose K15M. The release rate profiles were evaluated through different kinetic equations: zero-order, first-order, Higuchi, Hixon-Crowell and Korsemeyer and Peppas models. The scanning electronmicrographs showed that the gum particles were somewhat triangular. The viscosity of 1% solution was found to be 950 centipoise and pH was in range of 4–5. Suitable matrix release profile could be obtained at 40% gum concentration. Higher sustained release profiles were obtained for Sterculia foetida gum particles in size range of 76–125 μm. Notable influences were obtained for type of fillers. Significant differences were also observed with rotational speed and dissolution media pH. The in vitro release profiles indicated that tablets prepared from Sterculia foetida gum had higher retarding capacity than tablets prepared with Hydroxymethylcellulose K15M prepared tablets. The differential scanning calorimetry results indicated that there are no interactions of Sterculia foetida gum with diltiazem hydrochloride. It was observed that release of the drug followed through surface erosion and anomalous diffusion. Thus, it could be concluded that Sterculia foetida gum could be used a controlled release matrix polymer.  相似文献   

6.
Controlled-release (CR) tablet formulation of olanzapine was developed using a binary mixture of Methocel® K100 LV-CR and Ethocel® standard 7FP premium by the dry granulation slugging method. Drug release kinetics of CR tablet formulations F1, F2, and F3, each one suitably compressed for 9-, 12-, and 15-kg hardness, were determined in a dissolution media of 0.1 N HCl (pH 1.5) and phosphate buffer (pH 6.8) using type II dissolution apparatus with paddles run at 50 rpm. Ethocel® was found to be distinctly controlling drug release, whereas the hardness of tablets and pH of the dissolution media did not significantly affect release kinetics. The CR test tablets containing 30% Methocel® and 60% Ethocel® (F3) with 12-kg hardness exhibited pH-independent zero-order release kinetics for 24 h. In vivo performance of the CR test tablet and conventional reference tablet were determined in rabbit serum using high-performance liquid chromatography coupled with electrochemical detector. Bioavailability parameters including Cmax, Tmax, and AUC0–48 h of both tablets were compared. The CR test tablets produced optimized Cmax and extended Tmax (P < 0.05). A good correlation of drug absorption in vivo and drug release in vitro (R2 = 0.9082) was observed. Relative bioavailability of the test tablet was calculated as 94%. The manufacturing process employed was reproducible and the CR test tablets were stable for 6 months at 40 ± 2°C/75 ± 5% relative humidity. It was concluded that the CR test tablet formulation successfully developed may improve tolerability and patient adherence by reducing adverse effects.Key words: bioavailability, controlled release, Ethocel®, olanzapine  相似文献   

7.
The aim of the present work was the investigation of robustness and reliability of drug release from 50 to 400 mg quetiapine extended release HPMC matrix tablets towards mechanical stresses of biorelevant intensity. The tests were performed under standard conditions (USP apparatus II) as well as under simulated gastrointestinal stress conditions. Mechanical stresses including pressure and agitation were applied by using the biorelevant dissolution stress test apparatus as it has been introduced recently. Test algorithms already established in previous studies were applied to simulate fasting gastrointestinal conditions. The dissolution experiments demonstrated striking differences in the product performance among standard and stress test conditions as well as dose strengths. In USP apparatus II, dissolution profiles were affected mainly by media pH. The dissolution experiments performed in biorelevant dissolution stress test device demonstrated that stress events of biorelevant intensity provoked accelerated drug release from the tablets.  相似文献   

8.
The purposes of this work were: (1) to comparatively evaluate the effects of hypromellose viscosity grade and content on ketoprofen release from matrix tablets, using Bio-Dis and the paddle apparatuses, (2) to investigate the influence of the pH of the dissolution medium on drug release. Furthermore, since direct compression had not shown to be appropriate to obtain the matrices under study, it was also an objective (3) to evaluate the impact of granulation on drug release process. Six formulations of ketoprofen matrix tablets were obtained by compression, with or without previous granulation, varying the content and viscosity grade of hypromellose. Dissolution tests were carried out at a fixed pH, in each experiment, with the paddle method (pH 4.5, 6.0, 6.8, or 7.2), while a pH gradient was used in Bio-Dis (pH 1.2 to 7.2). The higher the hypromellose viscosity grade and content were, the lower the amount of ketoprofen released was in both apparatuses, the content effect being more expressive. Drug dissolution enhanced with the increase of the pH of the medium due to its pH-dependent solubility. Granulation caused an increase in drug dissolution and modified the mechanism of the release process.Key words: apparatus 3, Bio-Dis, dissolution, hypromellose matrix, ketoprofen  相似文献   

9.
Li H  Hardy RJ  Gu X 《AAPS PharmSciTech》2008,9(2):437-443
The purpose of the study was to investigate the effect of drug solubility on polymer hydration and drug dissolution from modified release matrix tablets of polyethylene oxide (PEO). Different PEO matrix tablets were prepared using acetaminophen (ACE) and ibuprofen (IBU) as study compounds and Polyox WSR301 (PEO) as primary hydrophilic matrix polymer. Tablet dissolution was tested using the USP Apparatus II, and the hydration of PEO polymer during dissolution was recorded using a texture analyzer. Drug dissolution from the preparations was dependent upon drug solubility, hydrogel formation and polymer proportion in the preparation. Delayed drug release was attributed to the formation of hydrogel layer on the surface of the tablet and the penetration of water into matrix core through drug dissolution and diffusion. A multiple linear regression model could be used to describe the relationship among drug dissolution, polymer ratio, hydrogel formation and drug solubility; the mathematical correlation was also proven to be valid and adaptable to a series of study compounds. The developed methodology would be beneficial to formulation scientists in dosage form design and optimization.  相似文献   

10.
United States Pharmacopeia dissolution apparatus II (paddle) and III (reciprocating cylinder) coupled with automatic sampling devices and software were used to develop a testing procedure for acquiring release profiles of colon-specific drug delivery system (CODES) drug formulations in multi-pH media using acetaminophen (APAP) as a model drug. System suitability was examined. Several important instrument parameters and formulation variables were evaluated. Release profiles in artificial gastric fluid (pH 1.2), intestinal fluid (pH 6.8), and pH 5.0 buffer were determined. As expected, the percent release of APAP from coated core tablets was highly pH dependent. A release profile exhibiting a negligible release in pH 1.2 and 6.8 buffers followed by a rapid release in pH 5.0 buffer was established. The drug release in pH 5.0 buffer increased significantly with the increase in the dip or paddle speed but was inversely related to the screen mesh observed at lower dip speeds. It was interesting to note that there was a close similarity (f 2=80.6) between the release profiles at dip speed 5 dpm and paddle speed 100 rpm. In addition, the release rate was reduced significantly with the increase in acid-soluble Eudragit E coating levels, but lactulose loading showed only a negligible effect. In conclusion, the established reciprocating cylinder method at lower agitation rates can give release profiles equivalent to those for the paddle procedure for CODES drug pH-gradient release testing. Apparatus III was demonstrated to be more convenient and efficient than apparatus II by providing various programmable options in sampling times, agitation rates, and medium changes, which suggested that the apparatus II approach has better potential for in vitro evaluation of colon-specific drug delivery systems.  相似文献   

11.
The objective of this study was to investigate the combined effect of pH modifiers and nucleation inhibitors on enhancing and sustaining the dissolution of AMG 009 tablet via supersaturation. Several bases and polymers were added as pH modifiers and nucleation inhibitors, respectively, to evaluate their impact on the dissolution of AMG 009 tablets. The results indicate that sodium carbonate, among the bases investigated, enhanced AMG 009 dissolution the most. HPMC E5 LV, among the nucleation inhibitors tested, was the most effective in sustaining AMG 009 supersaturation. The release of AMG 009 went from 4% for tablets which did not contain both sodium carbonate and HPMC E5 LV to 70% for the ones that did, resulting in a 17.5-fold increase in the extent of dissolution. The effect of compression force and disintegrant on the dissolution of tablets were also evaluated. The results indicate that compression force had no effect on AMG 009 release. The addition of disintegrating agents, on the other hand, decreased the dissolution of AMG 009.  相似文献   

12.
The addition of polysorbate 20 (T20) is required to achieve “sink” conditions during a dissolution test for tablets with candesartan cilexetil (CC). Polysorbate 20 (0.35%–0.7% w/w) added to 0.05 mol/L of phosphate buffer pH 6.5 dramatically increased the apparent solubility of the drug from 0.8 μg/ml even to 353 μg/ml, while its effect in lower pH or in water was much smaller (20 μg/ml in pH 4.5). The increased concentration of phosphate salts (0.2 mol/l) at pH 6.5 in the presence of 0.7% of polysorbate 20, resulted in further increase of candesartan cilexetil solubility to 620 μg/ml. The change of pH from 1.2 to 7.4 resulted in a 1.5-fold increase of the activation energy and, depending on temperature, 8–14-fold decrease of the degradation rate. When polysorbate 20 increased the activation energy 2-fold, independent of pH, it protected candesartan cilexetil from degradation; however, this effect was temperature dependent and was very small at 310 K—the degradation rate in pH 6.5 decreased by 13% only. It was calculated that in the phosphate buffer pH 6.5 with polysorbate, one can expect during 24 h the degradation at the level of 9.3%, thus a flow-through dissolution apparatus was recommended for testing prolonged release dosage forms.  相似文献   

13.
The aim of this research was to design and evaluate a hydrophilic matrix system for sustained release of glipizide, a weakly acidic poor soluble drug. A combination of inclusion complexation and microenvironmental pH modification techniques was utilized to improve the dissolution and pH-independent release of glipizide. Hydroxypropyl-β-cyclodextrin (HP-β-CD) was used as the complexation agent while sodium citrate and magnesium oxide (MgO) were used as model pH modifiers. The hydrophilic matrix tablets were prepared by powder direct compression and evaluated by in vitro dissolution study respectively in pH 6.8 and pH 1.2 dissolution media. The formulations containing MgO exhibited increased cumulative drug release from less than 40% in the reference formulation to 90% within 24 h in acidic media (pH 1.2). The release profile in acidic media was similar to the alkaline media (pH 6.8) with a similarity factor (f2) of 55.0, suggesting the weakening of the effect of pH on the dissolution efficiency of glipizide. The release profile fitted well into the Higuchi model and the dominant mechanism of drug release was Fickian diffusion while case II transport/polymer relaxation occurred. In conclusion, combining inclusion complexation agents and pH modifiers had improved the dissolution of glipizide as well as achieved the pH-independent release profile.  相似文献   

14.
Compaction of controlled-release coated pellets into tablets is challenging because of the fusion of pellets and the rupturing of coated film. The difficulty in compaction intensifies with the use of extremely water-soluble drugs. Therefore, the present study was conducted to prepare and compact pellets containing pseudoephedrine hydrochloride as an extremely water-soluble model drug. The pellets were produced using an extrusion–spheronization technique. The drug-loaded pellets were coated to extend the drug release up to 12-h employing various polymers, and then they were compressed into tablets using microcrystalline cellulose Ceolus KG-801 as a novel tabletting excipient. The in vitro drug release studies of coated pellets and tablets were undertaken using the USP basket method in dissolution test apparatus I. The amount of drug released was analyzed at a wavelength of 215 nm. The combined coatings of hydroxypropyl methylcellulose and Kollicoat SR-30D yielded 12-h extended-release pellets with drug release independent of pH of dissolution medium following zero-order kinetics. The drug release from the tablets prepared using inert Celous KG-801 granules as tabletting excipient was found faster than that of coated pellets. However, a modification in drug release rate occurred with the incorporation of inert Ceolus KG-801 pellets. The drug dissolution profile from tablets containing 40% w/w each of coated pellets and inert granules along with 20% w/w inert pellets was found to be closely similar to that of coated pellets. Furthermore, the friability, tensile strength, and disintegration time of the tablets were within the USP specifications.  相似文献   

15.
The purpose of this study was to investigate the formulation variables influencing the drug release from the layered tablets containing chitosan and xanthan gum as matrix component. Increasing the amount of lactose could diminish pH sensitive release behavior of these matrix tablets. Effect of formulation variables on drug release from the prepared three-layered matrix tablets was investigated. The amount of drug loading did not affect the drug release which was influenced by the hydrodynamic force and the matrix composition. An increase in stirring rate correspondingly increased the release rate. Moreover, incorporation of soluble diluents in core or barrier could enhance the drug release. Least square fitting the experimental dissolution data to the mathematical expressions (power law, first order, Higuchi’s and zero order) was carried out to study the drug release mechanism. Most dissolution profiles of the prepared three-layered tablets provided a better fit to zero order kinetic than to first order kinetic and Higuchi’s equation.  相似文献   

16.
The objective of the study was to develop guar gum matrix tablets for oral controlled release of water-soluble diltiazem hydrochloride. Matrix tablets of diltiazem hydrochloride, using various viscosity grades of guar gum in 2 proportions, were prepared by wet granulation method and subjected to in vitro drug release studies. Diltiazem hydrochloride matrix tablets containing either 30% wt/wt lowviscosity (LM1), 40% wt/wt medium-viscosity (MM2), or 50% wt/wt high-viscosity (HM2) guar gum showed controlled release. The drug release from all guar gum matrix tablets followed first-order kinetics via Fickian-diffusion. Further, the results of in vitro drug release studies in simulated gastrointestinal and colonic fluids showed that HM2 tablets provided controlled release comparable with marketed sustained release diltiazem hydrochloride tablets (D-SR tablets). Guar gum matrix tablets HM2 showed no change in physical appearance, drug content, or in dissolution pattern after storage at 40°C/relative humidity 75% for 6 months. When subjectd to in vivo pharmacokinetic evaluation in healthy volunteers, the HM2 tablets provided a slow and prolonged drug release when compared with D-SR tablets. Based on the results of in vitro and in vivo studies it was concluded that that guar gum matrix tablets provided oral controlled release of water-soluble diltiazem hydrochloride. Published: June 30, 2005  相似文献   

17.
A dissolution test for tablets containing 40 mg of olmesartan medoxomil (OLM) was developed and validated using both LC-UV and UV methods. After evaluation of the sink condition, dissolution medium, and stability of the drug, the method was validated using USP apparatus 2, 50 rpm rotation speed, and 900 ml of deaerated H2O + 0.5% sodium lauryl sulfate (w/v) at pH 6.8 (adjusted with 18% phosphoric acid) as the dissolution medium. The model-independent method using difference factor (f 1) and similarity factor (f 2), model-dependent method, and dissolution efficiency were employed to compare dissolution profiles. The kinetic parameters of drug release were also investigated. The obtained results provided adequate dissolution profiles. The developed dissolution test was validated according to international guidelines. Since there is no monograph for this drug in tablets, the dissolution method presented here can be used as a quality control test for OLM in this dosage form, especially in a batch to batch evaluation.  相似文献   

18.
As part of the overall product development and manufacturing strategy, pharmaceutical companies routinely change formulation and manufacturing site. Depending on the type and level of change and the BCS class of the molecule, dissolution data and/or bioequivalence (BE) may be needed to support the change for immediate release dosage forms. In this report, we demonstrate that for certain weakly basic low-solubility molecules which rapidly dissolve in the stomach, absorption modeling could be used to justify a BE study waiver even when there is failure to show dissolution similarity under some conditions. The development of an absorption model for etoricoxib is described here, which was then used to a priori predict the BE outcome of tablet batches manufactured at two sites. Dissolution studies in 0.01 N HCl media (pH 2.0) had demonstrated similarity of etoricoxib tablets manufactured at two different sites. However, dissolution testing at pH 4.5 and pH 6.8 media failed to show comparability of the tablets manufactured at the two sites. Single simulations and virtual trials conducted using the 0.01 N HCl dissolution showed similarity in AUC and Cmax for all tablet strengths for batches manufactured at the two manufacturing sites. These predicted results were verified in a definitive bioequivalence study, which showed that both tablet batches were bioequivalent. Since the development of traditional in vitroin vivo correlations (IVIVC) for immediate release (IR) products is challenging, in cases such as etoricoxib, absorption modeling could be used as an alternative to support waiver of a BE study.KEY WORDS: bioequivalence, dissolution, modeling, pharmacokinetics, SUPAC  相似文献   

19.
The aim of the present investigation was to develop a novel dosage form of rifampicin and isoniazid to minimize degradation of rifampicin in acidic medium and to modulate the release of rifampicin in the stomach and isoniazid in the intestine. Gastroretentive tablets of rifampicin (150 mg) were prepared by the wet granulation method using hydroxypropyl methylcellulose, calcium carbonate, and polyethylene glycol 4000. The granules and tablets of rifampicin were characterized. Hard gelatin capsules (size 4) containing a compacted mass of isoniazid (150 mg) and dicalcium phosphate (75 mg) were enteric coated. Two tablets of rifampicin and 1 capsule (size 4) of isoniazid were put into a hard gelatin capsule (size 00). The in vitro drug release and in vitro drug degradation studies were performed. Rifampicin was released over 4 hours by zero-order kinetics from the novel dosage form. More than 90% of isoniazid was released in alkaline medium in 30 minutes. The results of dissolution studies with the US Pharmacopeia XXIII method revealed that a substantial amount of rifampicin was degraded from the immediate release capsule containing rifampicin and isoniazid powder owing to drug accumulation in the dissolution vessel and also to the presence of isoniazid. The degradation of rifampicin to 3-formyl rifampicin SV (3FRSV) was arrested (3.6%–4.8% degradation of rifampicin at 4 hours) because of the minimization of physical contact between the 2 drugs and controlled release of rifampicin in acidic medium in the modified Rossett-Rice apparatus. This study concludes that the problem of rifampicin degradation can be alleviated to a certain extent by this novel dosage form. Published: August 24, 2007  相似文献   

20.
The Food and Drug Administration (FDA) approved the New Drug Application for Wellbutrin sustained release (SR) 100 mg tablets on October 4, 1996. However, by 1998, the FDA expressed concern about the stability of this drug product based on an increase in the dissolution profile on storage. Data submitted in the annual report showed that this drug product could not meet the expiry of 18 months at the International Committee on Harmonization storage condition of 25°C/60% relative humidity. The FDA mandated a 12-month expiry and GlaxoWellcome tightened this further by instituting an expiry of 9 months. The FDA also requested a long-term solution to the stability of Wellbutrin SR 100 mg tablets. Investigations via colloidal solutions revealed that the dissolution rate increase on storage occurred due to acid hydrolysis of the release controlling polymer. This drug product was successfully reformulated by slowing the initial dissolution rate and having an increased ratio of release controlling polymer to acid stabilizer. The reformulation used the same ingredients and manufacturing unit processes as the original formulation. The reformulated drug product was approved by the FDA on October 11, 2000 with an 18-month shelf-life. The shelf-life was extended to 36 months in an annual update to the FDA on December 1, 2005.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号