首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
During 1999–2001 the chemical composition and fluxes were measured in rainfall, throughfall, soil solution and stream water in a remote forested site in the Italian Alps. The analysis of temporal patterns revealed the differential behaviour of nitrogen and sulphur and suggested that different mechanisms controlled their flux. No important changes in sulphate concentration and fluxes emerged as the solution passed through the various components of the forest ecosystem, and temporal variations of SO4 in the soil solution and stream were likely driven by the physical process of dilution. The availability of nitrate and ammonia, by contrast, was drastically reduced as throughfall water entered the soil and passed through the mineral layers, irrespective of season. The calculated hydrochemical budget based on throughfall and soil solution N fluxes revealed that ~80% N retention in the forest soil, corresponding to 12 kg ha−1 yr−1, despite a relatively high N deposition loading (15 kg ha−1 yr−1). Most of the leached nitrogen (90%) was in the organic form. Indicators of the N status of this ecosystem, such as C/N ratio in solid and solution phase of the soil and N foliage content as well as land use history were examined. Despite the strong N retention in the forested part of the catchment, the stream water N–NO3 levels were consistently above 10 μg l−1 suggesting that the Val Masino catchment as a whole was less efficient in processing atmospheric N inputs. This contrasting N behaviour illustrates the role of landscape features, such as the soil cover and vegetation type, that is characteristic of an alpine catchment.  相似文献   

2.
Post-fire changes in desert vegetation patterns are known, but the mechanisms are poorly understood. Theory suggests that pulse dynamics of resource availability confer advantages to invasive annual species, and that pulse timing can influence survival and competition among species. Precipitation patterns in the American Southwest are predicted to shift toward a drier climate, potentially altering post-fire resource availability and consequent vegetation dynamics. We quantified post-fire inorganic N dynamics and determined how annual plants respond to soil inorganic nitrogen variability following experimental fires in a Mojave Desert shrub community. Soil inorganic N, soil net N mineralization, and production of annual plants were measured beneath shrubs and in interspaces during 6 months following fire. Soil inorganic N pools in burned plots were up to 1 g m−2 greater than unburned plots for several weeks and increased under shrubs (0.5–1.0 g m−2) more than interspaces (0.1–0.2 g m−2). Soil NO3 −N (nitrate−N) increased more and persisted longer than soil NH4 +−N (ammonium−N). Laboratory incubations simulating low soil moisture conditions, and consistent with field moisture during the study, suggest that soil net ammonification and net nitrification were low and mostly unaffected by shrub canopy or burning. After late season rains, and where soil inorganic N pools were elevated after fire, productivity of the predominant invasive Schismus spp. increased and native annuals declined. Results suggest that increased N availability following wildfire can favor invasive annuals over natives. Whether the short-term success of invasive species following fire will direct long-term species composition changes remains to be seen, yet predicted changes in precipitation variability will likely interact with N cycling to affect invasive annual plant dominance following wildfire.  相似文献   

3.
This study was conducted to examine the influences of soil-moisture conditions on soil nitrogen (N) dynamics, including in situ soil N mineralization, N availability, and denitrification in a pure Alnus japonica forest located in Seoul, central Korea. The soil N mineralization, N availability, and denitrification were determined using the buried bag incubation method, ion exchange resin bag method, and acetylene block method, respectively. The annual net N mineralization rate (kg N ha−1 year−1) and annual N availability (mg N bag−1) were 40.26 and 80.65 in the relatively dry site, −5.43 and 45.39 in the moist site, and 7.09 and 39.17 in the wet site, respectively. The annual net N mineralization rate and annual N availability in the dry site were significantly higher than those in the moist and wet sites, whereas there was no significant difference between the moist and wet sites. The annual mean denitrification rate (kg N ha−1 year−1) in the dry, moist, and wet sites was 2.37, 2.76, and 1.59, respectively. However, there was no significant difference among sites due to the high spatial and temporal variations. Our results indicate that soil-moisture condition influenced the in situ N mineralization and resin bag N availability in an A. japonica forest, and treatments of proper drainage for poorly drained sites would increase soil N mineralization and N availability and consequently be useful to conserve and manage the A. japonica forest.  相似文献   

4.
In the Florida Everglades, tree islands are conspicuous heterogeneous elements in the herbaceous wetland landscape. We characterized the biogeochemical role of a seasonally flooded tree island during wet season inundation, specifically examining hydrologically mediated flows of nitrogen (N) and N retention by the tree island. We estimated ecosystem N standing stocks and fluxes, soil and litter N transformation rates, and hydrologic fluxes of N to quantify the net ecosystem N mass flux. Results showed that hydrologic sources of N were dominated by surface water loads of nitrate (NO3) and ammonium (NH4). Nitrate immobilization by soils and surficial leaf litter was an important sink for surface water dissolved inorganic N (DIN). We estimated that the net annual DIN retention by a seasonally flooded tree island was 20.5 ± 5.0 g m−2 during wet season inundation. Based on the estimated tree island surface water DIN loading rate, a seasonally flooded tree island retained 76% of imported DIN. As such, seasonally flooded tree islands have the potential to retain 55% of DIN entering the marsh landscape via upstream canal overland flow in the wet season. By increasing reactive surface area and DOC availability, we suggest that tree islands promote convergence of elements that enhance DIN retention. Tree islands of this region are thus important components of landscape-scale restoration efforts that seek to reduce sources of anthropogenic DIN to downstream estuaries.  相似文献   

5.
Modification of fire regimes in tropical savannas can have significant impacts on the global carbon (C) cycle, and therefore, on the climate system. In Australian tropical savannas, there has been recent, large-scale implementation of fire management that aims to decrease Kyoto-compliant non-CO2 greenhouse gas emissions by reducing late dry season intense fires through strategic early dry season burning. However, there is no accounting for changes to soil C stocks resulting from changes to savanna fire management, although impacts on these pools may be considerable. We present a hypothesis that soil C storage is greatest under low intensity fires with an intermediate fire return interval. Simulations using the CENTURY Soil Organic Matter Model confirmed this hypothesis with greatest soil C storage under a fire regime of one low intensity fire every 5 years. Key areas of uncertainty for CENTURY model simulations include fine root dynamics, charcoal production and nitrogen (N) cycling, and better understanding of these processes could improve model predictions. Soil C stocks measured in the field after 5 years of annual, 3 year and unburned fire treatments were not significantly different (range 41–58 t ha−1), but further CENTURY modelling suggests that changes in fire management will take up to 100 years to have a detectable impact (+4 t ha−1) on soil C stocks. However, implementation of fire management that reduces fire frequency and intensity within the large area of intact savanna landscapes in northern Australia could result in emissions savings of 0.17 t CO2-e ha−1 y−1, four times greater than reductions of non-CO2 emissions.  相似文献   

6.
Whether plant invasion increases ecosystem carbon (C) stocks is controversial largely due to the lack of knowledge about differences in ecophysiological properties between invasive and native species. We conducted a field experiment in which we measured ecophysiological properties to explore the response of the ecosystem C stocks to the invasion of Spartina alterniflora (Spartina) in wetlands dominated by native Scirpus mariqueter (Scirpus) and Phragmites australis (Phragmites) in the Yangtze Estuary, China. We measured growing season length, leaf area index (LAI), net photosynthetic rate (Pn), root biomass, net primary production (NPP), litter quality and litter decomposition, plant and soil C and nitrogen (N) stocks in ecosystems dominated by the three species. Our results showed that Spartina had a longer growing season, higher LAI, higher Pn, and greater root biomass than Scirpus and Phragmites. Net primary production (NPP) was 2.16 kg C m−2 y−1 in Spartina ecosystems, which was, on average, 1.44 and 0.47 kg C m−2 y−1 greater than that in Scirpus and Phragmites ecosystems, respectively. The litter decomposition rate, particularly the belowground decomposition rate, was lower for Spartina than Scirpus and Phragmites due to the lower litter quality of Spartina. The ecosystem C stock (20.94 kg m−2) for Spartina was greater than that for Scirpus (17.07 kg m−2), Phragmites (19.51 kg m−2) and the mudflats (15.12 kg m−2). Additionally, Spartina ecosystems had a significantly greater N stock (698.8 g m−2) than Scirpus (597.1 g m−2), Phragmites ecosystems (578.2 g m−2) and the mudflats (375.1 g m−2). Our results suggest that Spartina invasion altered ecophysiological processes, resulted in changes in NPP and litter decomposition, and ultimately led to enhanced ecosystem C and N stocks in the invaded ecosystems in comparison to the ecosystems with native species.  相似文献   

7.
Sphagnum, the main genus which forms boreal peat, is strongly affected by N and S deposition and raised temperature, but the physiological mechanisms behind the responses are largely unknown. We measured maximum photosynthetic rate (NPmax), maximum efficiency of photosystem II [variable fluorescence (F v)/maximum fluorescence yield (F m)] and concentrations of N, C, chlorophyll and carotenoids as responses to N and S addition and increased temperature in Sphagnum balticum (a widespread species in the northern peatlands) in a 12-year factorial experiment. NPmax did not differ between control (0.2 g N m−2 year−1) and high N (3.0 g N m−2 year−1), but was higher in the mid N treatment (1.5 g N m−2 year−1). N, C, carotenoids and chlorophyll concentration increased in shoot apices after N addition. F v/F m did not differ between N treatments. Increased temperature (+3.6°C) had a small negative effect on N concentration, but had no significant effect on NPmax or F v/F m. Addition of 2 g S m−2 year−1 showed a weak negative effect on NPmax and F v/F m. Our results suggest a unimodal response of NPmax to N addition and tissue N concentration in S. balticum, with an optimum N concentration for photosynthetic rate of ~13 mg N g−1. In conclusion, high S deposition may reduce photosynthetic capacity in Sphagnum, but the negative effects may be relaxed under high N availability. We suggest that previously reported negative effects on Sphagnum productivity under high N deposition are not related to negative effects on the photosynthetic apparatus, but differences in optimum N concentration among Sphagnum species may affect their competitive ability under different N deposition regimes.  相似文献   

8.
A number of studies have investigated regional and continental scale patterns of carbon (C) stocks in forest ecosystems; however, the altitudinal changes in C storage in different components (vegetation, detritus, and soil) of forest ecosystems remain poorly understood. In this study, we measured C stocks of vegetation, detritus, and soil of 22 forest plots along an altitudinal gradient of 700–2,000 m to quantify altitudinal changes in carbon storage of major forest ecosystems (Pinus koraiensis and broadleaf mixed forest, 700–1,100 m; Picea and Abies forest, 1,100–1,800 m; and Betula ermanii forest, 1,800–2,000 m) on Mt Changbai, Northeast China. Total ecosystem C density (carbon stock per hectare) averaged 237 t C ha−1 (ranging from 112 to 338 t C ha−1) across all the forest stands, of which 153 t C ha−1 (52–245 t C ha−1) was stored in vegetation biomass, 14 t C ha−1 (2.2–48 t C ha−1) in forest detritus (including standing dead trees, fallen trees, and floor material), and 70 t C ha−1 (35–113 t C ha−1) in soil organic matter (1-m depth). Among all the forest types, the lowest vegetation and total C density but the highest soil organic carbon (SOC) density occurred in Betula ermanii forest, whereas the highest detritus C density was observed in Picea and Abies forest. The C density of the three ecosystem components showed distinct altitudinal patterns: with increasing altitude, vegetation C density decreased significantly, detritus C density first increased and then decreased, and SOC density exhibited increasing but insignificant trends. The allocation of total ecosystem C to each component exhibited similar but more significant trends along the altitudinal gradient. Our results suggest that carbon storage and partitioning among different components in temperate forests on Mt Changbai vary greatly with forest type and altitude.  相似文献   

9.
The effects of changes in tropical land use on soil emissions of nitrous oxide (N2O) and nitric oxide (NO) are not well understood. We examined emissions of N2O and NO and their relationships to land use and forest composition, litterfall, soil nitrogen (N) pools and turnover, soil moisture, and patterns of carbon (C) cycling in a lower montane, subtropical wet region of Puerto Rico. Fluxes of N2O and NO were measured monthly for over 1 year in old (more than 60 years old) pastures, early- and mid-successional forests previously in pasture, and late-successional forests not known to have been in pasture within the tabonuco (Dacryodes excelsa) forest zone. Additional, though less frequent, measures were also made in an experimentally fertilized tabonuco forest. N2O fluxes exceeded NO fluxes at all sites, reflecting the consistently wet environment. The fertilized forest had the highest N oxide emissions (22.0 kg N · ha−1· y−1). Among the unfertilized sites, the expected pattern of increasing emissions with stand age did not occur in all cases. The mid-successional forest most dominated by leguminous trees had the highest emissions (9.0 kg N · ha−1· y−1), whereas the mid-successional forest lacking legumes had the lowest emissions (0.09 kg N · ha−1· y−1). N oxide fluxes from late-successional forests were higher than fluxes from pastures. Annual N oxide fluxes correlated positively to leaf litter N, net nitrification, potential nitrification, soil nitrate, and net N mineralization and negatively to leaf litter C:N ratio. Soil ammonium was not related to N oxide emissions. Forests with lower fluxes of N oxides had higher rates of C mineralization than sites with higher N oxide emissions. We conclude that (a) N oxide fluxes were substantial where the availability of inorganic N exceeded the requirements of competing biota; (b) species composition resulting from historical land use or varying successional dynamics played an important role in determining N availability; and (c) the established ecosystem models that predict N oxide loss from positive relationships with soil ammonium may need to be modified. Received 22 February 2000; accepted 6 September 2000.  相似文献   

10.
The objective of this study was to evaluate the effect of N fertilization and the presence of N2 fixing leguminous trees on soil fluxes of greenhouse gases. For a one year period, we measured soil fluxes of nitrous oxide (N2O), carbon dioxide (CO2) and methane (CH4), related soil parameters (temperature, water-filled pore space, mineral nitrogen content, N mineralization potential) and litterfall in two highly fertilized (250 kg N ha−1 year−1) coffee cultivation: a monoculture (CM) and a culture shaded by the N2 fixing legume species Inga densiflora (CIn). Nitrogen fertilizer addition significantly influenced N2O emissions with 84% of the annual N2O emitted during the post fertilization periods, and temporarily increased soil respiration and decreased CH4 uptakes. The higher annual N2O emissions from the shaded plantation (5.8 ± 0.3 kg N ha−1 year−1) when compared to that from the monoculture (4.3 ± 0.1 kg N ha−1 year−1) was related to the higher N input through litterfall (246 ± 16 kg N ha−1 year−1) and higher potential soil N mineralization rate (3.7 ± 0.2 mg N kg−1 d.w. d−1) in the shaded cultivation when compared to the monoculture (153 ± 6.8 kg N ha−1 year−1 and 2.2 ± 0.2 mg N kg−1 d.w. d−1). This confirms that the presence of N2 fixing shade trees can increase N2O emissions. Annual CO2 and CH4 fluxes of both systems were similar (8.4 ± 2.6 and 7.5 ± 2.3 t C-CO2 ha−1 year−1, −1.1 ± 1.5 and 3.3 ± 1.1 kg C-CH4 ha−1 year−1, respectively in the CIn and CM plantations) but, unexpectedly increased during the dry season.  相似文献   

11.
Recent research has dramatically advanced our understanding of soil organic matter chemistry and the role of N in some organic matter transformations, but the effects of N deposition on soil C dynamics remain difficult to anticipate. We examined soil organic matter chemistry and enzyme kinetics in three size fractions (>250 μm, 63–250 μm, and <63 μm) following 6 years of simulated atmospheric N deposition in two ecosystems with contrasting litter biochemistry (sugar maple, Acer saccharum—basswood, Tilia americana and black oak, Quercus velutina—white oak, Q. alba). Ambient and simulated (80-kg NO3 –N ha−1 year−1) atmospheric N deposition were studied in three replicate stands in each ecosystem. We found striking, ecosystem-specific effects of N deposition on soil organic matter chemistry using pyrolysis gas chromatography/mass spectrometry. First, furfural, the dominant pyrolysis product of polysaccharides, was significantly decreased by simulated N deposition in the sugar maple–basswood ecosystem (15.9 vs. 5.0%) but was increased by N deposition in the black oak–white oak ecosystem (8.8 vs. 24.0%). Second, simulated atmospheric N deposition increased the ratio of total lignin derivatives to total polysaccharides in the >250 μm fraction of the sugar maple–basswood ecosystem from 0.9 to 3.3 but there were no changes in other size classes or in the black oak–white oak ecosystem. Third, simulated N deposition increased the ratio of lignin derivatives to N-bearing compounds in the 63–250 and >250 μm fractions in both ecosystems but not in the <63 μm fraction. Relationships between enzyme kinetics and organic matter chemistry were strongest in the particulate fractions (>63 μm) where there were multiple correlations between oxidative enzyme activities and concentrations of lignin derivatives and between glycanolytic enzyme activities and concentrations of carbohydrates. Within silt-clay fractions (<63 μm), these enzyme-substrate correlations were attenuated by interactions with particle surfaces. Our results demonstrate that variation in enzyme activity resulting from atmospheric N deposition is directly linked to changes in soil organic matter chemistry, particularly those that occur within coarse soil size fractions. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

12.
The aim of this study was to quantify the effects of fertiliser N on C stocks in trees (stems, stumps, branches, needles, and coarse roots) and soils (organic layer +0–10 cm mineral soil) by analysing data from 15 long-term (14–30 years) experiments in Picea abies and Pinus sylvestris stands in Sweden and Finland. Low application rates (30–50 kg N ha−1 year−1) were always more efficient per unit of N than high application rates (50–200 kg N ha−1 year−1). Addition of a cumulative amount of N of 600–1800 kg N ha−1 resulted in a mean increase in tree and soil C stock of 25 and 11 kg (C sequestered) kg−1 (N added) (“N-use efficiency”), respectively. The corresponding estimates for NPK addition were 38 and 11 kg (C) kg−1 (N). N-use efficiency for C sequestration in trees strongly depended on soil N status and increased from close to zero at C/N 25 in the humus layer up to 40 kg (C) kg−1 (N) at C/N 35 and decreased again to about 20 kg (C) kg−1 (N) at C/N 50 when N only was added. In contrast, addition of NPK resulted in high (40–50 kg (C) kg−1 (N)) N-use efficiency also at N-rich (C/N 25) sites. The great difference in N-use efficiency between addition of NPK and N at N-rich sites reflects a limitation of P and K for tree growth at these sites. N-use efficiency for soil organic carbon (SOC) sequestration was, on average, 3–4 times lower than for tree C sequestration. However, SOC sequestration was about twice as high at P. abies as at P. sylvestris sites and averaged 13 and 7 kg (C) kg−1 (N), respectively. The strong relation between N-use efficiency and humus C/N ratio was used to evaluate the impact of N deposition on C sequestration. The data imply that the 10 kg N ha−1 year−1 higher deposition in southern Sweden than in northern Sweden for a whole century should have resulted in 2.0 ± 1.0 (95% confidence interval) kg m−2 more tree C and 1.3 ± 0.5 kg m−2 more SOC at P. abies sites in the south than in the north for a 100-year period. These estimates are consistent with differences between south and north in tree C and SOC found by other studies, and 70–80% of the difference in SOC can be explained by different N deposition.  相似文献   

13.
Inorganic nitrogen (N) availability hot spots have been documented in many ecosystems, but major uncertainties remain about their prevalence, timing, and causes. Using a novel mathematical definition of hot spots, spatially explicit measurements of KCl-extractable inorganic N, 2-week soil incubations in the field, ion-exchange resins deployed for 1 year, and a set of associated biotic and abiotic variables, we investigated inorganic N availability hot spots within a 0.89 km2 alpine-subalpine ecosystem in the Colorado Front Range. Measurements of KCl-extractable NH4 + and NO3 taken on multiple dates showed that hot spots of N availability were present in some but not all parts of the study site and that hot spot location varied over the course of the season. Ion-exchange resins showed that over a 1-year period hot spots were important contributors to resin-available N at the landscape level, with 14% of resin locations accounting for 58% of total resin-extractable inorganic N. The KCl-extractable and resin-available inorganic N measurements showed that although spatial variation in the timing of hot spots (that is, hot moments) spreads the influence of short-term hot spots across the landscape to some extent, spatial variation in inorganic N availability is still important when integrated over 1 year. Resin-available N was poorly correlated with the biotic and abiotic variables that we measured, though we did observe that hot spots of resin-available N were twice as common below tree and shrub canopies than in herbaceous areas. Beyond this relationship with canopy structure, neither KCl-extractable nor resin-available inorganic N hot spots were closely related to plant species identity. Instead, the most effective predictor of KCl-extractable NH4 + was the size of the soil organic matter (SOM) N pool, with nearly all hot spots appearing in soils that had greater than 1.4% SOM N.  相似文献   

14.
A field study was conducted on a clay soil (Andaqueptic Haplaquoll) in the Philippines to directly measure the evolution of (N2+N2O)−15N from 98 atom %15N-labeled urea broadcast at 29 kg N ha−1 into 0.05-m-deep floodwater at 15 days after transplanting (DT) rice. The flux of (N2+N2O)−15N during the 19 days following urea application never exceeded 28 g N ha−1 day−1. The total recovery of (N2+N2O)−15N evolved from the field was only 0.51% of the applied N, whereas total gaseous15N loss estimated from unrecovered15N in the15N balance was 41% of the applied N. Floodwater (nitrate+nitrite)−N in the 5 days following urea application never exceeded 0.14 g N m−3 or 0.3% of the applied N. Prior cropping of cowpea [Vigna unguiculata (L.) Walp.] to flowering with subsequent incorporation of the green manure (dry matter=2.5 Mg ha−1, C/N=15) at 15 days before rice transplanting had no effect on fate of urea applied to rice at 15 DT. The recovery of (N2+N2O)−15N and total15N loss during the 19 days following urea application were 0.46 and 40%, respectively. Direct recovery of evolved (N2+N2O)−15N and total15N loss from 27 kg applied nitrate-N ha−1 were 20% and 53% during the same 19-day period. The failure of directly-recovered (N2+N2O)−15N to match total15N loss from added nitrate-15N might be due to entrapment of denitrification end products in soil or transport of gaseous end products to the atmosphere through rice plants. The rapid conversion of added nitrate-N to (N2+N2O)−N, the apparently sufficient water soluble soil organic C for denitrification (101 μg C g−1 in the top 0.15-m soil layer), and the low floodwater nitrate following urea application suggested that denitrification loss from urea was controlled by supply of nitrate rather than by availability of organic C.  相似文献   

15.
Allelopathy has been regarded as a mechanism for successful exotic plant invasion. However, it is not clear if and what effects of allelopathic substances may exert on soil nutrient. The exotic plant Mikania micrantha H.B.K. (M. micrantha) has invaded many forests in south China, and recent studies have suggested it has allelopathic potential for other plants and soil microbial community. Thus, we hypothesized that M. micrantha could influence soil nutrients and N transformation through allelopathy. We measured total C and N, NO3 , NH4 + and pH of the soil beneath M. micrantha and the adjacent open soil, and then measured the above soil properties after treating soil with 3 concentrations of aqueous extracts of M. micrantha (T1: 0.005 g ml−1; T2: 0.025 g ml−1; T3: 0.100 g ml−1). In addition, a bioassay was conducted to determine the allelopathic potential of the soil beneath M. micrantha. The results showed that M. micrantha significantly affected soil nutrients and N transformation. Soil beneath M. micrantha had inhibitory effects on seed germination and seedling growth of test plant, and had significantly higher C, N, ammonia, net nitrification rate than those of open soil. The plant extracts decreased soil pH, and T1 decreased it the most, and it increased soil C and N, and T1 represented the greatest increase in both C and N. The extracts also increased both NO3 and NH4 + in soil, whereas no significant difference existed among the 3 extract treatments. Compared to the water control, the soil net mineralization rate was higher under T1, while lower under T2 and T3. However, the extracts increased the soil nitrification rates under all the treatments (T1, T2 and T3). Our results suggest that the water soluble allelochemicals of M. micrantha improve soil nutrient availability, through which the invasive plant M. micrantha may successfully invade and establish in new habitats.  相似文献   

16.
Anthropogenic nitrogen (N) loading has the potential to affect plant community structure and function, and the carbon dioxide (CO2) sink of peatlands. Our aim is to study how vegetation changes, induced by nutrient input, affect the CO2 exchange of a nutrient-limited bog. We conducted 9- and 4-year fertilization experiments at Mer Bleue bog, where we applied N addition levels of 1.6, 3.2, and 6.4 g N m−2 a−1, upon a background deposition of about 0.8 g N m−2 a−1, with or without phosphorus and potassium (PK). Only the treatments 3.2 and 6.4 g N m−2 a−1 with PK significantly affected CO2 fluxes. These treatments shifted the Sphagnum moss and dwarf shrub community to taller dwarf shrub thickets without moss, and the CO2 responses depended on the phase of vegetation transition. Overall, compared to the large observed changes in the vegetation, the changes in CO2 fluxes were small. Following Sphagnum loss after 5 years, maximum ecosystem photosynthesis (Pgmax) and net CO2 exchange (NEEmax) were lowered (−19 and −46%, respectively) in the highest NPK treatment. In the following years, while shrub height increased, the vascular foliar biomass did not fully compensate for the loss of moss biomass; yet, by year 8 there were no significant differences in Pgmax and NEEmax between the nutrient and the control treatments. At the same time, an increase (24–32%) in ecosystem respiration (ER) became evident. Trends in the N-only experiment resembled those in the older NPK experiment by the fourth year. The increasing ER with increasing vascular plant and decreasing Sphagnum moss biomass across the experimental plots suggest that high N deposition may lessen the CO2 sink of a bog.  相似文献   

17.
Ungulate herbivory can have profound effects on ecosystem processes by altering organic inputs of leaves and roots as well as changing soil physical and chemical properties. These effects may be especially important when the herbivore is an introduced species. Utilizing large mammal exclosures to prevent access by introduced elk at multiple sites along a fire chronosequence, we examined the effects of elk herbivory and fire on soil microbial activity and nutrient availability. Using time since fire as a co-variate and herbivore exclosures, paired with areas outside of the exclosures, we hypothesized that reductions in plant biomass due to herbivory would reduce organic inputs to soils and impact soil microbial activities and nutrient storage. We found three major patterns: (1) when elk were excluded, surface mineral soils had higher soil organic carbon (C), total nitrogen (N), microbial N pools, and increased extra-cellular enzyme activity of a C-acquiring enzyme across a gradient of time since fire. (2) When introduced elk are present, the activity of some extracellular enzymes as well as NO3 availability are enhanced in the soil but the post-fire patterns described above with respect to nutrient accrual over time are delayed. (3) Herbivory by an introduced ungulate upsets the trajectory of ecosystem “recovery” after wildfire and delays soil C and N dynamics by an estimated 14.5–21 years, respectively. These results suggest that introduced, browsing herbivores significantly decelerate ecosystem processes but herbivory by exotics may also result in unpredictability in specific soil responses.  相似文献   

18.
Anthropogenic nitrogen (N) inputs in terrestrial ecosystems are higher than those that occur naturally and have been related to global biodiversity loss and altered ecosystem functioning. However, its effects on Mediterranean-type ecosystems, where production is water-limited and N regulated, remain unclear. We conducted a green-house experiment where we evaluated the effects of four simulated scenarios of N pollution (0, 10, 20 and 50 kg N ha−1 year−1) and two differential water supply regimes on the germination (experiment 1) and early plant establishment (experiment 2) of a seed bank from a semi-arid Mediterranean ecosystem of central Spain. Seed bank density was estimated as 62,374 ± 3,279 seeds m−2. Approximately 99.5% of emerged seeds corresponded to only 14 species of a total of 52, the majority of which were the annual forb Sagina apetala. The responses for N treatments were species-specific, mainly positive or unimodal, with watering treatments having some interactive effects. N and water supply also affected total and specific productivity; the responses found for N treatments were mainly humpback-shaped and an increased water supply had additive effects on community establishment in terms of total plant biomass. This response was linked to forb responsiveness. Contrary to predictions, grass biomass did not change with N supply; however, grass to forb ratio was affected because of changes in the latter. Overall, these experiments suggest a critical load for plant biomass production and conclude that N and water availability and supply can modify germination and plant establishment. This should be taken into account when analysing the effects of global change on the dynamics of plant communities where annuals are dominant or vegetation must establish from seed following a natural or anthropogenic disturbance regime.  相似文献   

19.
Variation in the stable N isotope ratio (δ15N) of plants and soils often reflects the influence of environment on the N cycle. We measured leaf δ15N and N concentration ([N]) on all individuals of Prosopis glandulosa (deciduous tree legume), Condalia hookeri (evergreen shrub), and Zanthoxylum fagara (evergreen shrub) present within a belt transect 308 m long × 12 m wide in a subtropical savanna ecosystem in southern Texas, USA in April and August 2005. Soil texture, gravimetric water content (GWC), total N and δ15N were also measured along the transect. At the landscape scale, leaf δ15N was negatively related to elevation for all the three species along this topoedaphic sequence. Changes in soil δ15N, total N, and GWC appeared to contribute to this spatial pattern of leaf δ15N. In lower portions of the landscape, greater soil N availability and GWC are associated with relatively high rates of both N mineralization and nitrification. Both soil δ15N and leaf [N] were positively correlated with leaf δ15N of non-N2 fixing plants. Leaf δ15N of P. glandulosa, an N2-fixing legume, did not correlate with leaf [N]; the δ15N of P. glandulosa’s leaves were closer to atmospheric N2 and significantly lower than those of C. hookeri and Z. fagara. Additionally, at smaller spatial scales, a proximity index (which reflected the density and distance of surrounding P. glandulosa trees) was negatively correlated with leaf δ15N of C. hookeri and Z. fagara, indicating the N2-fixing P. glandulosa may be important to the N nutrition of nearby non-N2-fixing species. Our results indicate plant 15N natural abundance can reflect the extent of N retention and help us better understand N dynamics and plant-soil interactions at ecosystem and landscape scales.  相似文献   

20.
Addressing spatial variability in nitrogen (N) availability in the Central Brazilian Amazon, we hypothesized that N availability varies among white-sand vegetation types (campina and campinarana) and lowland tropical forests (dense terra-firme forests) in the Central Brazilian Amazon, under the same climate conditions. Accordingly, we measured soil and foliar N concentration and N isotope ratios (δ15N) throughout the campina-campinarana transect and compared to published dense terra-firme forest results. There were no differences between white-sand vegetation types in regard to soil N concentration, C:N ratio and δ15N across the transect. Both white-sand vegetation types showed very low foliar N concentrations and elevated foliar C:N ratios, and no significant difference between site types was observed. Foliar δ15N was depleted, varying from −9.6 to 1.6‰ in the white-sand vegetations. The legume Aldina heterophylla had the highest average δ15N values (−1.5‰) as well as the highest foliar N concentration (2.1%) while the non-legume species had more depleted δ15N values and the average foliar N concentrations varied from 0.9 to 1.5% among them. Despite the high variation in foliar δ15N among plants, a significant and gradual 15N-enrichment in foliar isotopic signatures throughout the campina–campinarana transect was observed. Individual plants growing in the campinarana were significantly enriched in 15N compared to those in campina. In the white-sand N-limited ecosystems, the differentiation of N use seems to be a major cause of variations observed in foliar δ15N values throughout the campina–campinarana transect.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号