首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Kyte J 《Biophysical chemistry》2003,100(1-3):193-203
The property of a molecule that most reliably determines the magnitude of the hydrophobic effect that it will experience is the number of hydrogen–carbon bonds it contains not the accessible surface area of its nonpolar portions. This conclusion follows from an examination of the standard free energies of transfer of alkanes, alkenes, alkadienes, and arenes from water to hexadecane. When the standard free energies of transfer for hydrocarbons in these different classes are plotted as a function of the number of hydrogen–carbon bonds they contain, all of the data fall upon the same line. These standard free energies of transfer are also directly proportional to the number of hydrogen–carbon bonds the hydrocarbons contain. When the same standard free energies of transfer are plotted as a function of the accessible surface areas of the hydrocarbons, the data do not fall upon the same line nor are the standard free energies of transfer directly proportional to the accessible surface areas. An examination of the standard free energies of transfer for the different classes of hydrocarbons from the gas phase to water and from the gas phase to hexadecane reinforces the conclusion that the number of hydrogen–carbon bonds in a molecule rather than its accessible surface area is the basis of the hydrophobic effect. Consequently, estimates of the contribution of different functional groups to the hydrophobic effect providing the free energy of folding of a molecule of protein or providing the free energy of dissociation for the association of two proteins or the association of a ligand with a protein should be made by counting the number of hydrogen–carbon bonds excluded from water rather than computing the accessible surface areas excluded from water.  相似文献   

2.
Lee KH  Holl MM 《Biopolymers》2011,95(6):401-409
Molecular dynamics simulations were carried out to calculate the free energy change difference of two collagen-like peptide models for Gly --> Ser mutations causing two different osteogenesis imperfecta phenotypes. These simulations were performed to investigate the impact of local amino acid sequence environment adjacent to a mutation site on the stability of the collagen. The average free energy differences for a Gly --> Ser mutant relative to a wild type are 3.4 kcal/mol and 8.2 kcal/mol for a nonlethal site and a lethal site, respectively. The free energy change differences of mutant containing two Ser residues relative to the wild type at the nonlethal and lethal mutation sites are 4.6 and 9.8 kcal/mol, respectively. Although electrostatic interactions stabilize mutants containing one or two Ser residues at both mutation sites, van der Waals interactions are of sufficient magnitude to cause a net destabilization. The presence of Gln and Arg near the mutation site, which contain large and polar side chains, provide more destabilization than amino acids containing small and nonpolar side chains.  相似文献   

3.
The insertion of nascent polypeptide chains into lipid bilayer membranes and the stability of membrane proteins crucially depend on the equilibrium partitioning of polypeptides. For this, the transfer of full sequences of amino-acid residues into the bilayer, rather than individual amino acids, must be understood. Earlier studies have revealed that the most likely reference state for partitioning very hydrophobic sequences is the membrane interface. We have used μs-scale simulations to calculate the interface-to-transmembrane partitioning free energies ΔGS→TM for two hydrophobic carrier sequences in order to estimate the insertion free energy for all 20 amino acid residues when bonded to the center of a partitioning hydrophobic peptide. Our results show that prior single-residue scales likely overestimate the partitioning free energies of polypeptides. The correlation of ΔGS→TM with experimental full-peptide translocon insertion data is high, suggesting an important role for the membrane interface in translocon-based insertion. The choice of carrier sequence greatly modulates the contribution of each single-residue mutation to the overall partitioning free energy. Our results demonstrate the importance of quantifying the observed full-peptide partitioning equilibrium, which is between membrane interface and transmembrane inserted, rather than combining individual water-to-membrane amino acid transfer free energies.  相似文献   

4.
Hydrophobic interactions are essential for stabilizing protein-protein complexes, whose interfaces generally consist of a central cluster of hot spot residues surrounded by less important peripheral residues. According to the O-ring hypothesis, a condition for high affinity binding is solvent exclusion from interacting residues. This hypothesis predicts that the hydrophobicity at the center is significantly greater than at the periphery, which we estimated at 21 cal mol(-1) A(-2). To measure the hydrophobicity at the center, structures of an antigen-antibody complex where a buried phenylalanine was replaced by smaller hydrophobic residues were determined. By correlating structural changes with binding free energies, we estimate the hydrophobicity at this central site to be 46 cal mol(-1) A(-2), twice that at the periphery. This context dependence of the hydrophobic effect explains the clustering of hot spots at interface centers and has implications for hot spot prediction and the design of small molecule inhibitors.  相似文献   

5.
Molecular dynamics simulations probe the origins of aberrant functionality of R175H p53, which normally prevent tumorigenesis. This hotspot mutation exhibits loss of its essential zinc cofactor, aggregation, and activation of gain of function promoters, characteristics contributing to the loss of normal p53 activity. This study provided molecular level insight into the reorganization of the hydrogen bonding network and the formation of a hydrophobic patch on the surface of the protein. The hydrogen bonding network globally redistributes at the expense of the stability of the β‐sandwich structure, and surface residues reorganize to expose a 250 Å2 hydrophobic patch of residues covering approximately 2% of the solvent accessible surface. These changes could both stabilize the protein in the conformation exposing the patch to solvent to mediate the reported aggregation, and cause a destabilization in the area associated with DNA binding residues to affect the specificity. The development of the patch prior to loss of zinc indicates that stabilizing the patch quickly may prevent zinc loss. Considerations for rational design of small molecule therapeutics in light of the structural insight has been discussed and it suggest the positive ring around the hydrophobic patch and conserved residues may constitute a druggable site. © 2015 Wiley Periodicals, Inc. Biopolymers 105: 176–185, 2016.  相似文献   

6.
For the first time, a direct approach for the derivation of an atomic solvation parameter from macromolecular structural data alone is presented. The specific free energy of solvation for hydrophobic surface regions of proteins is delineated from the area distribution of hydrophobic surface patches. The resulting value is 18 cal/(mol.A2), with a statistical uncertainty of +/-2 cal/mol.A2) at the 5% significance level. It compares favorably with the parameters for carbon obtained by other authors who use the the crystal geometry of succinic acid or energies of transfer from hydrophobic solvent to water for small organic compounds. Thus, the transferability of atomic solvation parameters for hydrophobic atoms to macromolecules has been directly demonstrated. A careful statistical analysis demonstrates that surface energy parameters derived from thermodynamic data of protein mutation experiments are clearly less confident.  相似文献   

7.
The transfer free energies of amino acid side chains from water to N-methylacetamide have been determined and compared with those obtained from other model systems. Although the process of transfer from water to N-methylacetamide represents transfer from a lower dielectric phase to a higher dielectric phase, the transfer free energies of most of the amino acid side chains are nearly the same as those obtained from the water to ethanol system. Among the apolar side chains studied, only the transfer free energies of methionine and the aromatic side chains are apparently influenced to some extent by the polarity of the organic solvent phase. The transfer free energies of the neutral polar side chains also exhibit significant dependence on solvent polarity. The van't Hoff plots for most of the apolar side chains exhibit nonlinear curves, indicating that the enthalpy of transfer from water to N-methylacetamide is temperature-dependent. It is suggested that to assess the contribution of the hydrophobic free energy to the stability of globular proteins, it is probably not necessary to account for variation in the internal environment of the protein.  相似文献   

8.
Protein molecules can accommodate a large number of mutations without noticeable effects on their stability and folding kinetics. On the other hand, some mutations can have quite strong effects on protein conformational properties. Such mutations either destabilize secondary structures, e.g., alpha-helices, are incompatible with close packing of protein hydrophobic cores, or lead to disruption of some specific interactions such as disulfide cross links, salt bridges, hydrogen bonds, or aromatic-aromatic contacts. The Met8 --> Leu mutation in CMTI-I results in significant destabilization of the protein structure. This effect could hardly be expected since the mutation is highly conservative, and the side chain of residue 8 is situated on the protein surface. We show that the protein destabilization is caused by rearrangement of a hydrophobic cluster formed by side chains of residues 8, Ile6, and Leu17 that leads to partial breaking of a hydrogen bond formed by the amide group of Leu17 with water and to a reduction of a hydrophobic surface buried within the cluster. The mutation perturbs also the protein folding. In aerobic conditions the reduced wild-type protein folds effectively into its native structure, whereas more then 75% of the mutant molecules are trapped in various misfolded species. The main conclusion of this work is that conservative mutations of hydrophobic residues can destabilize a protein structure even if these residues are situated on the protein surface and partially accessible to water. Structural rearrangement of small hydrophobic clusters formed by such residues can lead to local changes in protein hydration, and consequently, can affect considerably protein stability and folding process.  相似文献   

9.
We explore the question of whether local effects (originating from the amino acids intrinsic secondary structure propensities) or nonlocal effects (reflecting the sequence of amino acids as a whole) play a larger role in determining the fold of globular proteins. Earlier circular dichroism studies have shown that the pattern of polar, non polar amino acids (nonlocal effect) dominates over the amino acid intrinsic propensity (local effect) in determining the secondary structure of oligomeric peptides. In this article, we present a coarse grained computational model that allows us to quantitatively estimate the role of local and nonlocal factors in determining both the secondary and tertiary structure of small, globular proteins. The amino acid intrinsic secondary structure propensity is modeled by a dihedral potential term. This dihedral potential is parametrized to match with experimental measurements of secondary structure propensity. Similarly, the magnitude of the attraction between hydrophobic residues is parametrized to match the experimental transfer free energies of hydrophobic amino acids. Under these parametrization conditions, we systematically explore the degree of frustration a given polar, non polar pattern can tolerate when the secondary structure intrinsic propensities are in opposition to it. When the parameters are in the biophysically relevant range, we observe that the fold of small, globular proteins is determined by the pattern of polar, non polar amino acids regardless of their instrinsic secondary structure propensities. Our simulations shed new light on previous observations that tertiary interactions are more influential in determining protein structure than secondary structure propensity. The fact that this can be inferred using a simple polymer model that lacks most of the biochemical details points to the fundamental importance of binary patterning in governing folding.  相似文献   

10.
Rashin AA  Rashin AH 《Proteins》2007,66(2):321-341
Two-dimensional lattice protein models were studied in two approximations of the conformational equilibrium to elucidate the role of surface hydrophobic groups in their stabilities. We demonstrate that stability of any compactly folded sequence is determined by its ability to "flip-flop" (refold) into alternative compact structures. The degree of stability required for folded sequences determines the average numbers of surface hydrophobic groups in stable lattice structures which are in good agreement with ratios of core to surface hydrophobic groups in real proteins. However, the average destabilization of the native structure per surface hydrophobic group is small (0-0.25 kcal/mol), often disagrees with the free energies derived from the ratios of core to surface hydrophobic groups in the same structures, and has a combinatorial entropic nature independent of the strength of structure stabilizing interactions. This suggests that the free energies derived from the core to surface ratios of hydrophobic groups in real proteins have little to do with folding thermodynamics. On average, sequences with highly stable native structures are the least hydrophobic. The results suggest that in designing novel stable proteins hydrophobic groups on the surface should be avoided to reduce the possibility of flip-flopping. The average stability of highly designable structures is never higher than that of some low designability structures, contrary to the accepted view. In the equilibrium approximation with alternative compact and partially unfolded structures, the requirement of high stability selects a unique 5 x 5 structure formed by only a few sequences, suggesting much stronger sequence selectivity than commonly thought.  相似文献   

11.
Cavity complementation has been observed in many proteins, where an appropriate small molecule binds to a cavity-forming mutant. Here, the binding of compounds to the W191G cavity mutant of cytochrome c peroxidase is characterized by X-ray crystallography and binding thermodynamics. Unlike cavities created by removal of hydrophobic side-chains, the W191G cavity does not bind neutral or hydrophobic compounds, but displays a strong specificity for heterocyclic cations, consistent with the role of the protein to stabilize a tryptophan radical at this site. Ligand dissociation constants for the protonated cationic state ranged from 6 microM for 2-amino-5-methylthiazole to 1 mM for neutral ligands, and binding was associated with a large enthalpy-entropy compensation. X-ray structures show that each of 18 compounds with binding behavior bind specifically within the artificial cavity and not elsewhere in the protein. The compounds make multiple hydrogen bonds to the cavity walls using a subset of the interactions seen between the protein and solvent in the absence of ligand. For all ligands, every atom that is capable of making a hydrogen bond does so with either protein or solvent. The most often seen interaction is to Asp235, and most compounds bind with a specific orientation that is defined by their ability to interact with this residue. Four of the ligands do not have conventional hydrogen bonding atoms, but were nevertheless observed to orient their most polar CH bond towards Asp235. Two of the larger ligands induce disorder in a surface loop between Pro190 and Asn195 that has been identified as a mobile gate to cavity access. Despite the predominance of hydrogen bonding and electrostatic interactions, the small variation in observed binding free energies were not correlated readily with the strength, type or number of hydrogen bonds or with calculated electrostatic energies alone. Thus, as with naturally occurring binding sites, affinities to W191G are likely to be due to a subtle balance of polar, non-polar, and solvation terms. These studies demonstrate how cavity complementation and judicious choice of site can be used to produce a protein template with an unusual ligand-binding specificity.  相似文献   

12.
We report the distribution of hydrophobic core contacts during the folding reaction transition state for villin 14T, a small 126-residue protein domain. The solution structure of villin 14T contains a central beta-sheet with two flanking hydrophobic cores; transition states for this protein topology have not been previously studied. Villin 14T has no disulfide bonds or cis-proline residues in its native state; it folds reversibly, and in an apparently two-state manner under some conditions. To map the hydrophobic core contacts in the transition state, 27 point mutations were generated at positions spread throughout the two hydrophobic cores. After each point mutation, comparison of the change in folding kinetics with the equilibrium destabilization indicates whether the site of mutation is stabilized in the transition state. The results show that the folding nucleus, or the sub-region with the strongest transition state contacts, is located in one of the two hydrophobic cores (the predominantly aliphatic core). The other hydrophobic core, which is mostly aromatic, makes much weaker contacts in the transition state. This work is the first transition state mapping for a protein with multiple major hydrophobic cores in a single folding unit; the hydrophobic cores cannot be separated into individual folding subdomains. The stabilization of only one hydrophobic core in the transition state illustrates that hydrophobic core formation is not intrinsically capable of nucleating folding, but must also involve the right specific interactions or topological factors in order to be kinetically important.  相似文献   

13.
The Sec7 domain of the guanine nucleotide exchange factor ARNO (ARNO-Sec7) is responsible for the exchange activity on the small GTP-binding protein ARF1. ARNO-Sec7 forms a stable complex with the nucleotide-free form of [Delta17]ARF1, a soluble truncated form of ARF1. The crystal structure of ARNO-Sec7 has been solved recently, and a site-directed mutagenesis approach identified a hydrophobic groove and an adjacent hydrophilic loop as the ARF1-binding site. We show that Glu156 in the hydrophilic loop of ARNO-Sec7 is involved in the destabilization of Mg2+ and GDP from ARF1. The conservative mutation E156D and the charge reversal mutation E156K reduce the exchange activity of ARNO-Sec7 by several orders of magnitude. Moreover, [E156K]ARNO-Sec7 forms a complex with the Mg2+-free form of [Delta17]ARF1-GDP without inducing the release of GDP. Other mutations in ARNO-Sec7 and in [Delta17]ARF1 suggest that prominent hydrophobic residues of the switch I region of ARF1 insert into the groove of the Sec7 domain, and that Lys73 of the switch II region of ARF1 forms an ion pair with Asp183 of ARNO-Sec7.  相似文献   

14.
Cheng CS  Samuel D  Liu YJ  Shyu JC  Lai SM  Lin KF  Lyu PC 《Biochemistry》2004,43(43):13628-13636
Plant nonspecific lipid transfer proteins (nsLTPs) are small basic proteins that transport phospholipids between membranes. On the basis of molecular mass, nsLTPs are subdivided into nsLTP1 and nsLTP2. NsLTPs are all helical proteins stabilized by four conserved disulfide bonds. The existence of an internal hydrophobic cavity, running through the molecule, is a typical characteristic of nsLTPs that serves as the binding site for lipid-like substrates. NsLTPs are known to participate in plant defense, but the exact mechanism of their antimicrobial action against fungi or bacteria is still unclear. To trigger plant defense responses, a receptor at the plant surface needs to recognize the complex of a fungal protein (elicitin) and ergosterol. NsLTPs share high structural similarities with elicitin and need to be associated with a hydrophobic ligand to stimulate a defense response. In this study, binding of sterol molecules with rice nsLTPs is analyzed using various biophysical methods. NsLTP2 can accommodate a planar sterol molecule, but nsLTP1 binds only linear lipid molecules. Although the hydrophobic cavity of rice nsLTP2 is smaller than that of rice nsLTP1, it is flexible enough to accommodate the voluminous sterol molecule. The dissociation constant for the nsLTP2/cholesterol complex is approximately 71.21 microM as measured by H/D exchange and mass spectroscopic detection. Schematic models of the nsLTP complex structure give interesting clues about the reason for differential binding modes. Comparisons of NMR spectra of the sterol/rice nsLTP2 complex and free nsLTP2 revealed the residues involved in binding.  相似文献   

15.
Enzymes stabilize transition states of reactions while limiting binding to ground states, as is generally required for any catalyst. Alkaline Phosphatase (AP) and other nonspecific phosphatases are some of Nature''s most impressive catalysts, achieving preferential transition state over ground state stabilization of more than 1022-fold while utilizing interactions with only the five atoms attached to the transferred phosphorus. We tested a model that AP achieves a portion of this preference by destabilizing ground state binding via charge repulsion between the anionic active site nucleophile, Ser102, and the negatively charged phosphate monoester substrate. Removal of the Ser102 alkoxide by mutation to glycine or alanine increases the observed Pi affinity by orders of magnitude at pH 8.0. To allow precise and quantitative comparisons, the ionic form of bound Pi was determined from pH dependencies of the binding of Pi and tungstate, a Pi analog lacking titratable protons over the pH range of 5–11, and from the 31P chemical shift of bound Pi. The results show that the Pi trianion binds with an exceptionally strong femtomolar affinity in the absence of Ser102, show that its binding is destabilized by ≥108-fold by the Ser102 alkoxide, and provide direct evidence for ground state destabilization. Comparisons of X-ray crystal structures of AP with and without Ser102 reveal the same active site and Pi binding geometry upon removal of Ser102, suggesting that the destabilization does not result from a major structural rearrangement upon mutation of Ser102. Analogous Pi binding measurements with a protein tyrosine phosphatase suggest the generality of this ground state destabilization mechanism. Our results have uncovered an important contribution of anionic nucleophiles to phosphoryl transfer catalysis via ground state electrostatic destabilization and an enormous capacity of the AP active site for specific and strong recognition of the phosphoryl group in the transition state.  相似文献   

16.
B Roux  M Nina  R Pomès    J C Smith 《Biophysical journal》1996,71(2):670-681
The proton transfer activity of the light-driven proton pump, bacteriorhodopsin (bR) in the photochemical cycle might imply internal water molecules. The free energy of inserting water molecules in specific sites along the bR transmembrane channel has been calculated using molecular dynamics simulations based on a microscopic model. The existence of internal hydration is related to the free energy change on transfer of a water molecule from bulk solvent into a specific binding site. Thermodynamic integration and perturbation methods were used to calculate free energies of hydration for each hydrated model from molecular dynamics simulations of the creation of water molecules into specific protein-binding sites. A rigorous statistical mechanical formulation allowing the calculation of the free energy of transfer of water molecules from the bulk to a protein cavity is used to estimate the probabilities of occupancy in the putative bR proton channel. The channel contains a region lined primarily by nonpolar side-chains. Nevertheless, the results indicate that the transfer of four water molecules from bulk water to this apparently hydrophobic region is thermodynamically permitted. The column forms a continuous hydrogen-bonded chain over 12 A between a proton donor, Asp 96, and the retinal Schiff base acceptor. The presence of two water molecules in direct hydrogen-bonding association with the Schiff base is found to be strongly favorable thermodynamically. The implications of these results for the mechanism of proton transfer in bR are discussed.  相似文献   

17.
FSD-1 (full sequence design 1) is a protein folded in a betabetaalpha motif, designed on the basis of the second zinc finger domain of Zif268 by a substitution of its metal coordination site with a hydrophobic core. In this work, we analyzed the possibility of introducing the DNA recognition motif of the template zinc finger (S(13)RSDH(17)) into FSD-1 sequence in order to obtain a small DNA-binding module devoid of cross-link(s) or metal cofactors. The hybrid protein was unfolded, as judged by CD and NMR criteria. To reveal the role of each of the five amino acids, which form the N-capping motif of the alpha-helix, we analyzed conformational and stability properties of eight FSD-1 mutants. We used a shielded methyl group of Leu 18 and a CD signal at 215 nm as a convenient measure of the folded state. Glu 17-->His substitution at the N(3) in S(13)NEKE(17) variant decreased the folded structure content from 90% to 25% (equivalent to 1.8 kcal * mole(-1) destabilization) by disruption of N-capping interactions, and had the most significant effect among single mutants studied here. The N(cap) Asn 14 substitution with Arg considerably decreased stability, reducing structure content from 90% to 40% (1.4 kcal * mole(-1) destabilization) by disruption of a helix-capping hydrogen bond and destabilization of a helix macrodipole. The N(1) Glu 15-->Ser mutation also produced a considerable effect (1.0 kcal * mole(-1) destabilization), again emphasizing the significance of electrostatic interactions in alpha-helix stabilization.  相似文献   

18.
C Narasimhan  C S Lai 《Biopolymers》1991,31(10):1159-1170
We report here a novel approach to label specifically one of the two cryptic, free sulfhydryl groups per subunit of human plasma fibronectin with either an 15N,2H-maleimide spin label or a coumarinylphenyl maleimide fluorescent label. This permits the use of electron spin resonance (ESR) or fluorescence techniques to study molecular dynamics of fibronectin with the label attached to a single site per chain on the protein molecule. The method is based on our observation that upon adsorption of fibronectin to a gelatin-coated surface, the SH1 site, located between the DNA-binding and the cell-binding domains, is partially exposed, while the SH2 site, located within the carboxyl-terminal fibrin-binding domain, remains buried and unreactive. The procedures for the preparation of the selectively labeled fibronectins are described in detail. The physicochemical properties of these single-site labeled fibronectins, particularly as affected by high salt, heparin, surface binding, and temperature, were characterized by ESR spin-label and steady-state fluorescence techniques. The steady-state fluorescence measurement indicates that both local environments of SH1 and SH2 sites are relatively hydrophobic, and that the SH2 site is more hydrophobic than the SH1 site. The ESR results show that heparin or high salt induces an increase in the domainal flexibility in both SH1 and SH2 regions, perhaps through the disruption of domain-domain interactions in the fibronectin molecule, and that the former is more effective than the latter in producing such an effect. The observed heparin effect is reversible by addition of calcium ions in the SH2 regions but not in the SH1 regions. In addition, at temperatures above 44 degrees C, both type III homologous regions containing the free sulfhydryl groups are shown to undergo denaturation and aggregation processes. The data presented here suggest that the newly developed method for differential labeling of the free sulfhydryl groups in fibronectin should be useful for mapping the spatial arrangement of structural domains in the protein molecule using spin-label-spin-probe and fluorescence energy transfer techniques.  相似文献   

19.
We have performed a detailed analysis of streptavidin variants with altered specificity towards desthiobiotin. In addition to changes in key residues which widen the ligand binding pocket and accommodate the more structurally flexible desthiobiotin, the data revealed the role of a key, non-active site mutation at the base of the flexible loop (S52G) which slows dissociation of this ligand by approximately sevenfold. Our data suggest that this mutation results in the loss of a stabilizing contact which keeps this loop open and accessible in the absence of ligand. When this mutation was introduced into the wild-type protein, destabilization of the opened loop conferred a ~10-fold decrease in both the on-rate and off-rate for the ligand biotin-4-fluoroscein. A similar effect was observed when this mutation was added to a monomeric form of this protein. Our results provide key insight into the role of the streptavidin flexible loop in ligand binding and maintaining high affinity interactions.  相似文献   

20.
A point mutation (I53A) in the core of Escherichia coli RNase H* is known to destabilize both the native conformation (DeltaG(UN)) and the kinetic intermediate (DeltaG(UI)) by 2 kcal/mole. Here, we have used native-state hydrogen deuterium exchange to ask how this destabilization is propagated throughout the molecule. Stability parameters were obtained for individual residues in I53A and compared with those from the wild-type protein. A destabilization of 2 kcal/mole was observed in residues in the core but was not detected in the periphery of the molecule. These results are consistent with the localized destabilization of the core observed in the early intermediate of the kinetic folding pathway, supporting the resemblance of this kinetic intermediate to the partially unfolded form detected in the native state at equilibrium. A thermodynamic cycle also shows no interaction between Ile 53 and a residue in the periphery. There is, however, an increase in the number of denaturant-independent exchange events in the periphery of I53A, showing that effects of the point mutation are communicated to regions outside the core, although perhaps not through changes in stability. In sum, this work shows that localized regions within a protein can be destabilized independently. Furthermore, it implies a correspondence between the kinetic intermediate and the equilibrium PUF, as the magnitude and localization of the destabilization are the same in both.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号