首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cellular degradative processes, which include lysosomal (autophagic) and proteasomal degradation, as well as catabolism of proteins by cytosolic and mitochondrial proteases, provide for a continuous turnover of cellular components, such as damaged or obsolete biomolecules and organelles. Inherent insufficiency of these degradative processes results in progressive accumulation within long-lived postmitotic cells of biological ‘garbage’ (waste material), such as various oxidized proteins, functionally effete mitochondria, and lipofuscin (age pigment), an intralysosomal, polymeric, undegradable material. There is increasing evidence that lipofuscin hampers lysosomal degradative capacity, thus promoting the aggravation of accumulated damage at old age. Being rich in redox-active iron, lipofuscin granules also may exacerbate oxidative stress levels in senescent cells. Thus, increasing the efficiency of cellular degradative pathways and preventing involvement of iron in oxidant-induced lysosomal and cellular damage may be potential strategies for anti-aging interventions.  相似文献   

2.
This paper deals with a detailed study of Sphenophyllum miravallis Vetter, a member of the “Sphenophyllum thonii group”. New material from the Reisbach colliery, working the “Illinger Flözzone” of the “Heusweiler Schichten” (Lower Stephanian, Saar Basin, German Federal Republic), is described morphologically and anatomically, and the species is discussed. The new material enlarges the known range of variability of the normal aspect of the foliage, i.e. the foliage of the thinner branches. Thicker stems with their aberrant polymorphous foliage, and cellular details, are described for the first time. An emended diagnosis is given. Comparisons with other species are made.

The new species Bowmanites cupulatus is introduced to accommodate fructufications most probably belonging to Sphenophyllum miravallis.

S. crenulatum Knight ex Wagner is considered to be a heterotypic synonym of S. miravallis, the latter name having priority.  相似文献   


3.
4.
One of the common explanations for oxidative stress in the physiological milieu is based on the Fenton reaction, i.e. the assumption that radical chain reactions are initiated by metal-catalyzed electron transfer to hydrogen peroxide yielding hydroxyl radicals. On the other hand — especially in the context of so-called “iron switches” — it is postulated that cellular signaling pathways originate from the interaction of reduced iron with hydrogen peroxide.

Using fluorescence detection and EPR for identification of radical intermediates, we determined the rate of iron complexation by physiological buffer together with the reaction rate of concomitant hydroxylations of aromatic compounds under aerobic and anaerobic conditions. With the obtained overall reaction rate of 1,700 M-1s-1 for the buffer-dependent reactions and the known rates for Fenton reactions, we derive estimates for the relative reaction probabilities of both processes.

As a consequence we suggest that under in vivo conditions initiation of chain reactions by hydroxyl radicals generated by the Fenton reaction is of minor importance and hence metal-dependent oxidative stress must be rather independent of the so-called “peroxide tone”. Furthermore, it is proposed that — in the low (subtoxic) concentration range — hydroxylated compounds derived from reactions of “non-free” (crypto) OH radicals are better candidates for iron-dependent sensing of redox-states and for explaining the origin of cellular signals than the generation of “free” hydroxyl radicals.  相似文献   

5.
Aging (senescence) is characterized by a progressive accumulation of macromolecular damage, supposedly due to a continuous minor oxidative stress associated with mitochondrial respiration. Aging mainly affects long-lived postmitotic cells, such as neurons and cardiac myocytes, which neither divide and dilute damaged structures, nor are replaced by newly differentiated cells. Because of inherent imperfect lysosomal degradation (autophagy) and other self-repair mechanisms, damaged structures (biological "garbage") progressively accumulate within such cells, both extra- and intralysosomally. Defective mitochondria and aggregated proteins are the most typical forms of extralysosomal "garbage", while lipofuscin that forms due to iron-catalyzed oxidation of autophagocytosed or heterophagocytosed material, represents intralysosomal "garbage". Based on findings that autophagy is diminished in lipofuscin-loaded cells and that cellular lipofuscin content positively correlates with oxidative stress and mitochondrial damage, we have proposed the mitochondrial-lysosomal axis theory of aging, according to which mitochondrial turnover progressively declines with age, resulting in decreased ATP production and increased oxidative damage. Due to autophagy of ferruginous material, lysosomes contain a pool of redox-active iron, which makes these organelles particularly susceptible to oxidative damage. Oxidant-mediated destabilization of lysosomal membranes releases hydrolytic enzymes to the cytosol, eventuating in cell death (either apoptotic or necrotic depending on the magnitude of the insult), while chelation of the intralysosomal pool of redox-active iron prevents these effects. In relation to the onset of oxidant-induced apoptosis, but after the initiating lysosomal rupture, cytochrome c is released from mitochondria and caspases are activated. Mitochondrial damage follows the release of lysosomal hydrolases, which may act either directly or indirectly, through activation of phospholipases or pro-apoptotic proteins such as Bid. Additional lysosomal rupture seems to be a consequence of a transient oxidative stress of mitochondrial origin that follows the attack by lysosomal hydrolases and/or phospholipases, creating an amplifying loop system.  相似文献   

6.
Two commercial immobilized lipases (“Lipozyme® IM” and “Novozym® 435”) were tested as biocatalysts for the glycerolysis of olive residue oil in n-hexane aimed at the production of monoglycerides (MG) and diglycerides (DG). A central composite rotatable design (CCRD) was followed to model and optimize glycerolysis as a function of both the amount of biocatalyst (L) and of the molar ratio glycerol/triglycerides (Gly/TG). For both biocatalysts, the production of free fatty acids (FFA) was described by second order models. In terms of MG and DG production, as well as of TG conversion, the best fits were obtained with first-order models. The highest MG productions were in the range 43–45% (w/w, on the basis of total fat) for both biocatalysts tested at a (Gly/TG) ratio of one. In the case of “Novozym 435”, the lowest load used (12%, w/w) gave the best results, in contrast with “Lipozyme IM” with which a concentration of about 26% (w/w) was necessary to obtain the highest production. Under these conditions, the amount of FFA produced was about 2% and 10% (w/w), respectively, for “Novozym 435” and “Lipozyme IM” catalyzed systems. Considering both FFA production and lipase loading, “Novozym 435” was shown to be a better biocatalyst for the glycerolysis of olive residue oil in n-hexane, aimed at the production of MG, than “Lipozyme IM”.  相似文献   

7.
Fusions have been carried out between fibroblasts from patients with “I-cell” disease and enucleated human fibroblasts with a single lysosomal enzyme deficiency derived from patients with GM1-gangliosidosis, Sandhoff disease and mannosidosis. Pure cytoplasts were obtained using cytochalasin B treatment followed by fluorescence activated cell sorting. After fusion with whole “I-cells”, the cybrid populations showed a restoration of deficient lysosomal enzyme activity and also the abnormal electrophoretic pattern characteristic for the residual hexosaminidase activity in “I-cells” was found to be corrected. The results described in this paper indicate that the defective post-translational modification, which is responsible for the multiple lysosomal enzyme deficiency, can be corrected by a factor that is stable for at least three days in enucleated cells. During this period the cytoplasmic factor can act without the need of de novo synthesis but the absence of correction in in vitro experiments shows that cellular integrity is required.  相似文献   

8.
The ultrastructure of the epidermis and the protonephridia of the free-living rhabdocoel Mesoscastrada führmanni is described. The epidermis consists of polarized cells, the nucleus located in the basal part of the cell and the mitochondria in the apical part. The surface is entirely covered by cilia anchored in the cytoplasm by horizontal and vertical striated rootlets. Cilia of the flame bulbs also have horizontal and vertical striated rootlets. The weir apparatus of the cyrtocyte is composed of a single row of ribs connected by a thin “membrane” of extracellular material. Bundles of microtubules, located in the ribs originate in the centrioles. Epidermal cells and flame bulbs of M. führmanni closely resemble those of the other Typhloplanoida examined so far.  相似文献   

9.
Bentolila S 《Bio Systems》2005,80(3):251-261
We propose to designate by the term “live memory” of the cell, the cytoplasmic memory. This phenomenon consists of non-genetic memory, but nevertheless includes transmission function, which may be “hereditary” via the ovum, from mother cell to daughter cell, or simply within the same cell from instant t to instant t + 1. To understand this notion of “live memory”, its role and interactions with DNA must be resituated; indeed, operational information belongs as much to the cell body and to its cytoplasmic regulatory protein components and other endogenous or exogenous ligands as it does to the DNA database. We will see in Section 2, using examples from recent experiments in biology, the principal roles of “live memory” in relation to the four aspects of cellular identity, memory of form, hereditary transmission and also working memory.  相似文献   

10.
11.
The objective of this study was to examine the mechanisms of estrogen receptor (ER) processing and replenishment in the uterus of ovariectomized rats after estradiol and progesterone treatment. Uterine ER binding activity, ER protein and ER mRNA were measured by receptor binding exchange assay, Western blot and slot blot, respectively. The regulation of ER levels in rat uterus by estradiol and progesterone was very dramatic. Changes in ER protein were faithfully reflected by changes in binding activity. Estradiol caused receptor “processing” within 4 h of administration followed by recovery or “replenishment” of ER levels to the initial level by 20 h. The term “processing” has previously been used to describe the loss of ER binding activity in the early phase of estradiol-action, but it was never clear whether the ligand binding site was inactivated by processing or if the receptor molecule actually disappeared. This study shows that receptor “processing” constitutes disappearance of receptor protein and the later “replenishment” phase represents new ER protein rather than recycling of “processed” receptor. Progesterone-action, on the other hand, influenced only the “replenishment” phase by blocking recovery of ER protein. ER mRNA was suppressed by estradiol at 8 h, after the receptor was “processed” and “replenishment” already initiated. Progesterone, on the other hand, did not alter the steady state level of the message. Other mechanisms, such as regulation of translation rate of existing mRNA and changes in the rate of degradation of ER proteins are more likely involved in acute regulation of ER by these ovarian steroid hormones.  相似文献   

12.
Cellular manifestations of aging are most pronounced in postmitotic cells, such as neurons and cardiac myocytes. Alterations of these cells, which are responsible for essential functions of brain and heart, are particularly important contributors to the overall aging process. Mitochondria and lysosomes of postmitotic cells suffer the most remarkable age-related alterations of all cellular organelles. Many mitochondria undergo enlargement and structural disorganization, while lysosomes, which are normally responsible for mitochondrial turnover, gradually accumulate an undegradable, polymeric, autofluorescent material called lipofuscin, or age pigment. We believe that these changes occur not only due to continuous oxidative stress (causing oxidation of mitochondrial constituents and autophagocytosed material), but also because of the inherent inability of cells to completely remove oxidatively damaged structures (biological 'garbage'). A possible factor limiting the effectiveness of mitochondial turnover is the enlargement of mitochondria which may reflect their impaired fission. Non-autophagocytosed mitochondria undergo further oxidative damage, resulting in decreasing energy production and increasing generation of reactive oxygen species. Damaged, enlarged and functionally disabled mitochondria gradually displace normal ones, which cannot replicate indefinitely because of limited cell volume. Although lipofuscin-loaded lysosomes continue to receive newly synthesized lysosomal enzymes, the pigment is undegradable. Therefore, advanced lipofuscin accumulation may greatly diminish lysosomal degradative capacity by preventing lysosomal enzymes from targeting to functional autophagosomes, further limiting mitochondrial recycling. This interrelated mitochondrial and lysosomal damage irreversibly leads to functional decay and death of postmitotic cells.  相似文献   

13.
Gene flow and genetic drift in a species subject to frequent local extinctions   总被引:19,自引:0,他引:19  
Two models of the effect of extinction and recolonization on the genetic differentiation of local populations are analyzed. One model is Wright's “island model” in which there is gene flow from a source of fixed gene frequency. The other is an island model with a continuous production of new alleles and gene flow among all the populations. Individual and group selection are not considered. It is shown that the extent of population differentiation and the direction of the effect of the colonization and extinction process depend on the manner in which the propagules that establish new colonies are formed. Two extreme cases are considered. In the “propagule pool” model all the individuals in a single propagule are derived from one population while in the “migrant pool” model, the individuals in a propagule are derived from a random sample of the entire collection of populations.  相似文献   

14.
The in vivo production of HO- requires iron ions, H2O2 and O2- or other oxidants but probably does not occur through the Haber-Weiss reaction. Instead oxidants, such as O2-, increase free iron by releasing Fe(II) from the iron-sulfur clusters of dehydratases and by interfering with the iron-sulfur clusters reassembly. Fe(II) then reduces H2O2, and in turn Fe(III) and the oxidized cluster are re-reduced by cellular reductants such as NADPH and glutathione. In this way, SOD cooperates with cellular reductants in keeping the iron-sulfur clusters intact and the rate of HO- production to a minimum.

O2- and other oxidants can release iron from Fe(II)-containing enzymes as well as copper from thionein. The released Fe(III) and Cu(II) are then reduced to Fe(II) and Cu(I) and can then participate in the Fenton reaction.

In mammalian cells oxidants are able to convert cytosolic aconitase into active IRE-BP, which increases the “free” iron concentration intracellularly both by decreasing the biosynthesis of ferritin and increasing biosynthesis of transferrin receptors.

The biological role of the soxRS regulon of Escherichia coli, which is involved in the adaptation toward oxidative stress, is presumably to counteract the oxidative inactivation of the iron clusters and the subsequent release of iron with consequent increased rate of production of HO.  相似文献   

15.
Yeast cells harvested from aerobic or anaerobic culture are able to synthesize considerable amounts of Zn-protoporphyrin, by aeration of resting cells in phosphate buffer (pH 8).

In yeast cells harvested from aerobic growth, Zn-protoporphyrin accumulation inhibits respiratory activity and produces some letality. In yeast cells harvested from anaerobic growth this accumulation produces both a strong inhibition of cytochrome biosynthesis and of respiratory adaptation, accompanied by an important letality.

Zn-protoporphyrin is accumulated into the mitochondrial fraction and causes a total inhibition of O2 consumption by isolated mitochondria. The “in vitro” addition of purified Zn-protoporphyrin to intact mitochondria induces a lost of respiratory control.  相似文献   


16.
Cytochalasin B (CB) was used to enucleate cells (cytoplasts) and to obtain karyoplasts (nuclei) from the human diploid fetal lung fibroblast strain WI-38. Fusion of cytoplasts and nuclei from young and old cells was accomplished with the aid of inactivated Sendai virus. Viable nuclei may be obtained from the karyoplast pellet after passage through a layer of bovine albumin which retains any contamination cytoplasts. The majority of successful fusions forming “whole cells” occurred when cytoplast from “old” cultures (PDL 40–51) and karyoplasts from “young” cultures were used (PDL 12–22), but almost always resulted in limited division of the viable reconstructed cells. When successful fusion occurred between “young” cytoplasts and “young” karyoplasts the number of cell divisions obtained was comparable to control cells kept under similar conditions.  相似文献   

17.
Oxygen radicals are no doubt involved in the development of many pathological states. Nevertheless, the possibility that oxygen radical production was selected for during biological evolution in order to perform useful roles in relation to cellular metabolism is contemplated; previous data on this subject are briefly reviewed. The concept of an “oxygen radical cycle” is proposed as a useful theoretical model.  相似文献   

18.
The Fisher “Permount” naphthalene polymer, the Hartman Leddon “H.S.R.” terpene polymer resin, a Monsanto polystyrene P-1, the Will Corporation “Diaphane” and “Green Diaphane”, and the du Pont “Lucite” methyl methacrylate polymer were examined, and the possibility of use of some other plastics was also explored. The first 5 mentioned were tested for color preservation of a variety of stains in comparison with Canada balsam and Clarite X. From this point of view polystyrene, the Hartman Leddon “H.S.R.” and the Fisher “Permount” resins were the most satisfactory, then the “Diaphanes”. Both “Permount” and “H.S.R.” show some yellowing. The H.S.R. with a melting point of 115°C, the Permount with 150°C. melting point, and the Polystyrene with a thermal denaturation point above 220°C. all excell Canada balsam in heat resistance. Trimethylbenzene, cymene and monoamylbenzene appear to be the best solvents for polystyrene. Mounts made in a solution of 20 g. polystyrene in 100 ml. trimethylbenzene can be packed flat slide to slide in 24 hours after mounting without sticking together.

This report is not intended to deprecate the use of other resinous mounting media which have not as yet been tested or compared with those mentioned herein.  相似文献   

19.
1. Under the appropriate conditions intact yeast and mammalian mitochondria exhibit a heretofore unobserved sensitivity to the polyene antibiotic, filipin. The activity of the “filipin complex” (Filipins I, II, III and IV) is shown to be primarily due to the component designated Filipin II.

2. Yeast mitochondria treated with filipin complex, or purified Filipin II, exhibit “uncoupled” succinate oxidation and inhibited -ketoglutarate oxidation. Maximum filipin effect is observed at a concentration of 4 mM Filipin II. Rat-liver mitochondria are more sensitive to filipin than yeast mitochondria, and respiratory inhibition is observed regardless of substrate.

3. In liver mitochondria filipin-inhibited respiration is not relieved by Mg2+, K+, Ca2+ or 2,4-dinitrophenol, but is reversed by cytochrome c.

4. It is proposed that filipin treatment leads to altered membrane permeability and that respiratory inhibition is due to a loss of endogenous respiratory cofactors or an inactivation of primary dehydrogenases. The filipin-uncoupled yeast respiration may likewise be attributed to an altered phosphate permeability of the yeast mitochondrial membranes.  相似文献   


20.
Therapeutic applications of ultrasound predate its use in imaging. A range of biological effects can be induced by ultrasound, depending on the exposure levels used. At low levels, beneficial, reversible cellular effects may be produced, whereas at high intensities instantaneous cell death is sought. Therapy ultrasound can therefore be broadly divided into “low power” and “high power” applications. The “low power” group includes physiotherapy, fracture repair, sonophoresis, sonoporation and gene therapy, whereas the most common use of “high power” ultrasound in medicine is probably now high intensity focused ultrasound. Therapeutic effect through the intensity spectrum is obtained by both thermal and non-thermal interaction mechanisms. At low intensities, acoustic streaming is likely to be significant, but at higher levels, heating and acoustic cavitation will predominate. While useful therapeutic effects are now being demonstrated clinically, the mechanisms by which they occur are often not well understood.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号