首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Latitudinal and elevational gradients both represent thermal gradients. Assessing the consistency of the relationships between phylogenetic structure and climate between latitudinal and elevational gradients can provide insight into the mechanisms driving assembly of species from regional pools into local assemblages. The aim of this study is to compare patterns of phylogenetic structure measures for angiosperm tree species between latitudinal and elevational gradients, using a dataset of angiosperm tree species in 14 092 forest plots in eastern North America. We assessed whether these two gradients produce similar relationships between climate and phylogenetic structure, hypothesizing that they should differ in magnitude but not direction. We used correlation and regression analyses to assess the relation of measures of phylogenetic structure to elevation, latitude and climatic variables, which included minimum temperature, temperature seasonality, annual precipitation and precipitation seasonality. We found that 1) phylogenetic relatedness of angiosperm trees increases with decreasing temperature along both latitudinal and elevational gradients but the relationship between phylogenetic relatedness and temperature is steeper for elevational gradients than for latitudinal gradients; 2) the tip-weighted metric of phylogenetic relatedness (nearest taxon index) is more strongly correlated with climatic variables than the basal-weighted metric of phylogenetic relatedness (net relatedness index); 3) winter cold temperature exerts a stronger effect on community assembly of angiosperm trees than does temperature seasonality. These results suggest that winter cold temperature, rather than temperature seasonality, drives phylogenetic structure of plants in local forest communities, and that species distributions along elevational gradients are more in equilibrium with temperature, compared with those along latitudinal gradients.  相似文献   

2.
Aims This study assesses the relationship between phylogenetic relatedness of angiosperm tree species and climatic variables in local forests distributed along a tropical elevational gradient in South America. In particular, this paper addresses two questions: Is phylogenetic relatedness of plant species in communities related to temperature variables more strongly than to water variables for tropical elevational gradients? Is phylogenetic relatedness of plant species in communities driven by extreme climatic conditions (e.g. minimum temperature (MT) and water deficit) more strongly than by climatic seasonal variability (e.g. temperature seasonality and precipitation seasonality)?Methods I used a set of 34 angiosperm woody plant assemblages along an elevational gradient in the Andes within less than 5 degrees of the equator. Phylogenetic relatedness was quantified as net relatedness index (NRI) and nearest taxon index (NTI) and was related to major climatic variables. Correlation analysis and structure equation modeling approach were used to assess the relationships between phylogenetic relatedness and climatic variables.Important findings Phylogenetic relatedness of angiosperm woody species in the local forest communities is more strongly associated with temperature-related variables than with water-related variables, is positively correlated with mean annual temperature (MAT) and MT, and is related with extreme cold temperature more strongly than with seasonal temperature variability. NTI was related with elevation, MAT and MT more strongly than was NRI. Niche convergence, rather than niche conservatism, has played a primary role in driving community assembly in local forests along the tropical elevational gradient examined. Negative correlations of phylogenetic relatedness with elevation and higher correlations of phylogenetic relatedness with elevation and temperature for NTI than for NRI indicate that evolution of cold tolerance at high elevations in tropical regions primarily occurred at recent (terminal) phylogenetic nodes widely distributed among major clades.  相似文献   

3.
阿拉善荒漠灌丛群落谱系结构及其影响因子   总被引:1,自引:0,他引:1  
闫瑞亚  娄安如 《西北植物学报》2019,39(11):2072-2081
为探究阿拉善荒漠灌丛群落的构建机制,该研究选取净亲缘关系指数(NRI)作为谱系结构指数,在对阿拉善荒漠灌丛群落野外调查的基础上,以群落物种组成为基础数据,计算各样地群落的NRI,并分析NRI在经纬度梯度上的变化趋势及其与土壤因子和水热因子的关系。结果表明:(1)阿拉善荒漠灌丛群落谱系结构在阿拉善高原东南部以发散状态为主,在阿拉善高原西部和北部地区以聚集状态为主。(2)阿拉善荒漠灌丛群落的NRI随经度的升高而减小,随纬度的升高而增大。(3)阿拉善荒漠土壤质地、土壤容重、土壤pH值和土壤有机碳含量与其群落谱系结构均无显著相关性;在降水因子和温度因子中,与群落谱系结构相关系数最大的分别为年降水量和年温度变化范围(最暖月最高温与最冷月最低温的差值),其中:年降水量与NRI呈显著负相关关系,年温度变化范围与NRI呈显著正相关关系,且最暖月最高温和最冷月最低温与NRI均有显著相关性,推测年温度变化范围对阿拉善灌丛群落谱系结构的影响是通过最暖月最高温和最冷月最低温起作用的。研究发现,阿拉善高原东南部区域的荒漠灌丛群落构成主要受竞争排斥的作用,其西部和北部地区的群落构成主要受环境过滤的影响;阿拉善荒漠灌丛群落的谱系结构主要受年降水量和极端温度的影响。  相似文献   

4.
The observation of non‐random phylogenetic distribution of traits in communities provides evidence for niche‐based community assembly. Environment may influence the phylogenetic structure of communities because traits determining how species respond to prevailing conditions can be phylogenetically conserved. In this study, we investigate the variation of butterfly species richness and of phylogenetic α‐ and β‐diversities along temperature and plant species richness gradients. Our study indicates that butterfly richness is independently positively correlated to temperature and plant species richness in the study area. However, the variation of phylogenetic α‐ and β‐diversities is only correlated to temperature. The significant phylogenetic clustering at high elevation suggests that cold temperature filters butterfly lineages, leading to communities mostly composed of closely related species adapted to those climatic conditions. These results suggest that in colder and more severe conditions at high elevations deterministic processes and not purely stochastic events drive the assemblage of butterfly communities.  相似文献   

5.
6.
The mechanisms of species coexistence within a community have always been the focus in ecological research. Community phylogenetic structure reflects the relationship of historical processes, regional environments, and interactions between species, and studying it is imperative to understand the formation and maintenance mechanisms of community composition and biodiversity. We studied the phylogenetic structure of the shrub communities in arid and semiarid areas of the Mongolian Plateau. First, the phylogenetic signals of four plant traits (height, canopy, leaf length, and leaf width) of shrubs and subshrubs were measured to determine the phylogenetic conservation of these traits. Then, the net relatedness index (NRI) of shrub communities was calculated to characterize their phylogenetic structure. Finally, the relationship between the NRI and current climate and paleoclimate (since the Last Glacial Maximum, LGM) factors was analyzed to understand the formation and maintenance mechanisms of these plant communities. We found that desert shrub communities showed a trend toward phylogenetic overdispersion; that is, limiting similarity was predominant in arid and semiarid areas of the Mongolian Plateau despite the phylogenetic structure and formation mechanisms differing across habitats. The typical desert and sandy shrub communities showed a significant phylogenetic overdispersion, while the steppified desert shrub communities showed a weak phylogenetic clustering. It was found that mean winter temperature (i.e., in the driest quarter) was the major factor limiting steppified desert shrub phylogeny distribution. Both cold and drought (despite having opposite consequences) differentiated the typical desert to steppified desert shrub communities. The increase in temperature since the LGM is conducive to the invasion of shrub plants into steppe grassland, and this process may be intensified by global warming.  相似文献   

7.
We studied patterns of phylogenetic and compositional diversity of fleas parasitic on small mammals and asked whether these patterns are affected by environmental variation or evolutionary/historical processes. We considered environmental variation via both off‐host (air temperature, precipitation, the amount of green vegetation, latitude) and host‐associated (phylogenetic and species composition) environments. The indicators of evolutionary/historical processes were phylogenetic and compositional uniqueness estimated via phylogenetic or compositional, respectively, β‐diversity of either fleas or hosts. We found that phylogenetic uniqueness of flea assemblages was the main predictor of their phylogenetic diversity in all realms. In addition, host phylogenetic diversity and uniqueness played also some role in the Palearctic, whereas the effect of the off‐host environment was either extremely weak or absent. Compositional diversity of fleas was consistently affected by compositional diversity of hosts in all realms except the Neotropics. The effect of the off‐host environment on compositional flea diversity was substantial in all realms except the Palearctic. No effect of latitude on either metric of flea diversity was found. We conclude that phylogenetic diversity of fleas is driven mainly by evolutionary/historical processes, whereas drivers of their compositional diversity are associated with current ecological conditions.  相似文献   

8.
Evidence of phylogenetic conservatism in plant ecological traits has accumulated over the past few years, suggesting an interplay between the distribution of phylogenetic clades and major environmental gradients. Nonetheless, determining what environmental factors underlie the distribution of phylogenetic lineages remains a challenge because environmental factors are correlated with spatial gradients where the latter might indicate some degree of dispersal limitation in phylogenetic pools. We analyzed the phylogenetic structure of plant assemblages across the Brazilian Araucaria forests and assessed how phylogenetic structure responds to environmental and spatial gradients. We compiled data on plant occurrence in 45 plots across the Araucaria forest biome. The phylogenetic structure of the plots was characterized using phylogenetic fuzzy‐weighting followed by principal coordinates of phylogenetic structure (PCPS). We used distance‐based redundancy analysis (db‐RDA) to analyze the relationships between phylogenetic clades and environmental and spatial factors. Variation partitioning showed that the phylogenetic structure of Brazilian Araucaria forests was better explained by environment factors (altitude and annual mean temperature) than by space. Yet, spatially‐structured environmental variation explained about one‐third of total variation in the phylogenetic structure. Thus, the influence of spatial filters on the phylogenetic structure was more related to environmental gradients across the Brazilian Araucaria forest biome than to dispersal limitation of phylogenetic lineages. Furthermore, the influence of explanatory factors on the phylogenetic structure was concentrated in few nodes, the one splitting tree ferns from seed plants, and a second splitting malvids from other eurosids. Assessing the functional links between species distribution patterns and environmental gradients is not an easy task when we have to deal with large species pools. Identifying major phylogenetic gradients across an environmental and/or geographical range of interest can represent a first step towards a better understanding of general assembly processes in ecological communities.  相似文献   

9.
A large number of analyses have examined how basal metabolic rate (BMR) is affected by body mass in mammals. By contrast, the critical ambient temperatures that define the thermo‐neutral zone (TNZ), in which BMR is measured, have received much less attention. We provide the first phylogenetic analyses on scaling of lower and upper critical temperatures and the breadth of the TNZ in 204 mammal species from diverse orders. The phylogenetic signal of thermal variables was strong for all variables analysed. Most allometric relationships between thermal variables and body mass were significant and regressions using phylogenetic analyses fitted the data better than conventional regressions. Allometric exponents for all mammals were 0.19 for the lower critical temperature (expressed as body temperature ‐ lower critical temperature), ?0.027 for the upper critical temperature, and 0.17 for the breadth of TNZ. The small exponents for the breadth of the TNZ compared to the large exponents for BMR suggest that BMR per se affects the influence of body mass on TNZ only marginally. However, the breadth of the TNZ is also related to the apparent thermal conductance and it is therefore possible that BMR at different body masses is a function of both the heat exchange in the TNZ and that encountered below and above the TNZ to permit effective homeothermic thermoregulation.  相似文献   

10.
Aims Environmental gradients are drivers of species diversity; however, we know relatively little about the evolutionary processes underlying these relationships. A potentially powerful approach to studying diversity gradients is to quantify the phylogenetic structure within and between assemblages arrayed along broad spatial and environmental gradients. Here, we evaluate the phylogenetic structure of plant assemblages along an environmental gradient with the expectation that the habitat specialization of entire lineages is an important evolutionary pattern influencing the structure of tree communities along environmental gradients.Methods We evaluated the effect of several environmental variables on the phylogenetic structure of plant assemblages in 145 plots distributed in northwestern South America that cover a broad environmental gradient. The phylogenetic alpha diversity was quantified for each plot and the phylogenetic beta diversity between each pair of plots was also quantified. Both the alpha and beta diversity measures were then related to spatial and environmental gradients in the study system.Important findings We found that gradients in temperature and potential evapotranspiration have a strong relationship with the phylogenetic alpha diversity in our study system, with phylogenetic overdispersion in low temperatures and phylogenetic clustering at higher temperatures. Further, the phylogenetic beta diversity between two plots increases with an increasing difference in temperature, whereas annual precipitation was not a significant predictor of community phylogenetic turnover. We also found that the phylogenetic structure of the plots in our study system was related to the degree of seasonal flooding and seasonality in precipitation. In particular, more stressful environments such as dry forests and flooded forests showed phylogenetic clustering. Finally, in contrast with previous studies, we find that phylogenetic beta diversity was not strongly related to the spatial distance separating two forest plots, which may be the result of the importance of the three independent mountain ranges in our study system, which generate a high degree of environmental variation over very short distances. In conclusion, we found that environmental gradients are important drivers of both phylogenetic alpha and phylogenetic beta diversities in these forests over spatial distance.  相似文献   

11.
Evolutionary experience and the phylogenetic relationships of plants have both been proposed to influence herbivore–plant interactions and plant invasion success. However, the direction and magnitude of these effects, and how such patterns are altered with increasing temperature, are rarely studied. Through laboratory functional response experiments, we tested whether the per capita feeding efficiency of an invasive generalist herbivore, the golden apple snail, Pomacea canaliculata, is dependent on the biogeographic origin and phylogenetic relatedness of host plants, and how increasing temperature alters these dependencies. The feeding efficiency of the herbivore was highest on plant species with which it had no shared evolutionary history, that is, novel plants. Further, among evolutionarily familiar plants, snail feeding efficiency was higher on those species more closely related to the novel plants. However, these biogeographic dependencies became less pronounced with increasing temperature, whereas the phylogenetic dependence was unaffected. Collectively, our findings indicate that the susceptibility of plants to this invasive herbivore is mediated by both biogeographic origin and phylogenetic relatedness. We hypothesize that warming erodes the influence of evolutionary exposure, thereby altering herbivore–plant interactions and perhaps the invasion success of plants.  相似文献   

12.
The study of phylogenetic conservatism in alpine plant phenology is critical for predicting climate change impacts; currently we have a poor understanding of how phylogeny and climate factors interactively influence plant phenology. Therefore, we explored the influence of phylogeny and climate factors on flowering phenology in alpine meadows. For two different types of alpine plant communities, we recorded phenological data, including flowering peak, first flower budding, first flowering, first fruiting and the flowering end for 62 species over the course of 5 years (2008–2012). From sequences in two plastid regions, we constructed phylogenetic trees. We used Blomberg’s K and Pagel’s lambda to assess the phylogenetic signal in phenological traits and species’ phenological responses to climate factors. We found a significant phylogenetic signal in the date of all reproductive phenological events and in species’ phenological responses to weekly day length and temperature. The number of species in flower was strongly associated with the weekly day lengths and followed by the weekly temperature prior to phenological activity. Based on phylogenetic eigenvector regression (PVR) analysis, we found a highly shared influence of phylogeny and climate factors on alpine species flowering phenology. Our results suggest the phylogenetic conservatism in both flowering and fruiting phenology may depend on the similarity of responses to external environmental cues among close relatives.  相似文献   

13.
Climate and evolutionary factors (e.g. diversification, time‐for‐speciation, niche conservatism) are both thought to be major drivers of species richness in regional assemblages. However, few studies have simultaneously investigated the relative effects of climate and evolutionary factors on species richness across a broad geographical extent. Here, we assess their relative effects on species richness of angiosperm trees across North America. Species richness of angiosperm trees in 1175 regional assemblages were related to climate and phylogenetic structure using a structural equation modeling (SEM) approach. Climate was quantified based on the mean temperature of the coldest month and mean annual precipitation. Evolutionary factors (time‐for‐speciation vs diversification) were inferred from phylogeny‐based measures of mean root distance, phylogenetic species variability, and net relatedness index. We found that at the continental scale, species richness is correlated with temperature and precipitation with approximately similar strength. In the SEM with net relatedness index and phylogenetic species variability and with all the 1175 quadrats, the total direct effect size of phylogenetic structure on species richness is greater than the total direct effect size of climate on species richness by a factor of 3.7. The specific patterns of phylogenetic structure (i.e. greater phylogenetic distances in more species rich regions) are consistent with the idea that time and niche conservatism drive richness patterns in North American angiosperm trees. We conclude that angiosperm tree species richness in regional assemblages in North America is more strongly related to patterns of phylogenetic relatedness than to climatic variation. The results of the present study support the idea that climatic and evolutionary explanations for richness patterns are not in conflict, and that evolutionary processes explain both the relationship between climate and richness and substantial variation in richness that is independent of climate.  相似文献   

14.
柴达木盆地荒漠灌丛群落谱系结构研究   总被引:1,自引:0,他引:1  
谱系信息是群落生态学和保育生物学研究的主要内容之一。为探究柴达木盆地荒漠灌丛群落谱系结构及其与环境因子的关系,该研究以柴达木盆地荒漠灌丛为对象,基于群落中物种存在与否的物种组成数据,使用R语言中picante软件包计算了灌丛群落谱系多样性指数和谱系结构指数,并且分析了谱系结构指数与年均温度、年均降水以及土壤含水量之间的关系,以揭示柴达木盆地灌丛群落物种之间的亲缘关系和群落生物多样性维持机制。结果表明:(1)柴达木盆地灌丛群落谱系结构与土壤含水量之间存在极显著相关性(P=2.77×10-6),随着土壤含水量的增加,群落谱系结构聚集程度逐渐降低,表现出生境过滤作用逐步减弱,生物间相互作用逐渐加强的变化趋势。(2)群落谱系结构与年均温度、年均降水之间无显著相关性。(3)典型荒漠生境灌丛和河谷(河漫滩)生境灌丛群落的谱系结构差异显著(P0.05),整体上分别表现为谱系聚集状态和谱系发散状态;河谷(河漫滩)生境灌丛群落的谱系多样性显著高于典型荒漠生境灌丛(P0.05)。(4)将群落谱系信息应用在生物多样性保护实践中,发现河谷(河漫滩)生境灌丛群落较典型荒漠生境的灌丛群落可能具有更高的保护价值。研究认为,将群落谱系研究与保育生物学理论结合将会使生物多样性保护策略更加科学有效。  相似文献   

15.
Elevational diversity gradients (EDGs) of vegetation are shaped by the evolutionary histories of plants as well as by ecological factors. However, few studies of EDGs have focused on the roles of phylogenetic constraints and the effects of complicated interactions among environmental factors. Here, we examine the direct and indirect effects of environmental factors in forming EDGs of forest understory vegetation. The study plots were selected along elevational gradients in cool-temperate and sub-alpine forests in the University of Tokyo Chichibu Forest of central Japan. Tree seedlings and herbs were identified, and environmental factors (elevation, soil temperature, soil pH, soil CN ratio, forest type, basal area, canopy openness, and slope) were measured in these plots. Structural equation modeling (SEM) including taxonomic and phylogenetic diversity was used to consider the causal relationships between environmental conditions and the diversity of understory vegetation. In addition, phylogenetic signals in habitat requirements were tested. The taxonomic and phylogenetic diversities of tree seedlings increased monotonically with elevation, and the same pattern was found for the taxonomic diversity of herbs. The SEM indicated that both the taxonomic and phylogenetic diversity of tree seedlings were most affected by soil properties, although the phylogenetic diversity of herbs was determined by light conditions. These results highlight the importance of environmental filtering by soil properties in shaping EDGs of tree seedlings. This study implies that phylogenetic constraints in the adaptation to soil properties should be considered when predicting changes in EDGs under environmental fluctuations.  相似文献   

16.
The strength of biodiversity–biomass production relationships increases with increasing environmental stress and time. However, we know little about the effects of abiotic (e.g., climate) and biotic (e.g., species pool and community composition) factors on this trend. Whether variation in biomass production is best explained by phylogenetic diversity metrics or traditional measures of species richness also remains elusive. We compiled estimates of community composition and biomass production for tree species in 111 permanent quadrats spanning three natural forests (tropical, subtropical, and temperate) in China. Based on ~10 years of data, we compared temperature, rainfall, species pool size, and community composition in each forest each year. We estimated species richness and phylogenetic diversity in each quadrat each year; the latter metric was based on the sum of branch lengths of a phylogeny that connects species in each quadrat each year. Using generalized linear mixed‐effect models, we found that top‐ranked models included the interaction between forest and biodiversity and the interaction between forest and year for both biodiversity metrics. Variation in biomass production was best explained by phylogenetic diversity; biomass production generally increased with phylogenetic diversity, and the relationship was stronger in subtropical and temperate forests. Increasing species pool size, temperature, and rainfall and decreasing inter‐quadrat dissimilarity range shifted the relationship between biomass production and phylogenetic diversity from positive to neutral. When considered alone, species pool size had the strongest influence on biomass production, while species pool size, rainfall, and their interaction with phylogenetic diversity constituted the top‐ranked model. Our study highlights the importance of species pool size and rainfall on the relationship between phylogenetic diversity and biomass production in natural forest ecosystems.  相似文献   

17.
The thermal dependence of biochemical reaction rates means that many animals regulate their body temperature so that fluctuations in body temperature are small compared to environmental temperature fluctuations. Thermoregulation is a complex process that involves sensing of the environment, and subsequent processing of the environmental information. We suggest that the physiological mechanisms that facilitate thermoregulation transcend phylogenetic boundaries. Reptiles are primarily used as model organisms for ecological and evolutionary research and, unlike in mammals, the physiological basis of many aspects in thermoregulation remains obscure. Here, we review recent research on regulation of body temperature, thermoreception, body temperature set-points, and cardiovascular control of heating and cooling in reptiles. The aim of this review is to place physiological thermoregulation of reptiles in a wider phylogenetic context. Future research on reptilian thermoregulation should focus on the pathways that connect peripheral sensing to central processing which will ultimately lead to the thermoregulatory response.  相似文献   

18.
高山生态系统的低温环境不利于植物繁殖器官的发育和传粉过程,因此能改善花内或花序温度的结构对植物繁殖具有积极意义。该研究利用红外测温仪测量了高寒草甸中64种植物的花温度和叶温度以计算花温度积累,并检测了系统发育、花大小、花对称方式和花大小对花温度积累的影响。结果表明:所测量的64种植物种类,花部温度均高于叶部温度。花温度积累的系统发育信号较弱,表明物种间花温度积累的差异可能主要与不同物种对温度的需求有关。花温度积累与花大小存在显著的正相关关系,且两侧对称花的温度积累比辐射对称花更为迅速,但花对称方式和花颜色对花温度积累并没有显著的影响。该研究结果表明花温度积累在不同植物间存在很大的差异,但这些差异对植物繁殖的实际贡献和意义仍需要进一步验证。  相似文献   

19.
目的:从常温土壤中筛选冷适应微生物,并进行初步鉴定和产低温酶分析。方法:采集吉首大学校园内土壤样品,通过低温富集培养筛选冷适应微生物;通过形态观察、生理生化特性检测和基于16S rRNA基因序列的系统发育分析,对分离的菌株进行初步鉴定;利用平板筛选法检测其产低温酶特性。结果:分离获得6株耐冷细菌JSBP-1~JSBP-6,初步鉴定其分属假单胞菌属(Pseudomonas)、紫色杆菌属(Janthinobacterium)和节杆菌属(Arthrobacter);在5℃和15℃培养条件下,菌株JSBP-1产蛋白酶能力较强,JSBP-2和JSBP-6产淀粉酶能力较强,JSBP-5仅在5℃条件下有较强的产脂肪酶特性。结论:常温土壤中存在一定数量的冷适应微生物,其中假单胞菌是其优势菌群之一。这类适冷微生物菌群具有潜在的生产低温酶能力。  相似文献   

20.
Latitudinal and elevational richness gradients have received much attention from ecologists but there is little consensus on underlying causes. One possible proximate cause is increased levels of species turnover, or β diversity, in the tropics compared to temperate regions. Here, we leverage a large botanical dataset to map taxonomic and phylogenetic β diversity, as mean turnover between neighboring 100 × 100 km cells, across the Americas and determine key climatic drivers. We find taxonomic and tip‐weighted phylogenetic β diversity is higher in the tropics, but that basal‐weighted phylogenetic β diversity is highest in temperate regions. Supporting Janzen's ‘mountain passes’ hypothesis, tropical mountainous regions had higher β diversity than temperate regions for taxonomic and tip‐weighted metrics. The strongest climatic predictors of turnover were average temperature and temperature seasonality. Taken together, these results suggest β diversity is coupled to latitudinal richness gradients and that temperature is a major driver of plant community composition and change.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号