首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The p30 movement protein (MP) is essential for cell-to-cell spread of tobacco mosaic virus in planta. We used anion-exchange chromatography and preparative sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) to obtain highly purified 30-kDa MP, which migrated as a single band in native PAGE. Analytical ultracentrifugation suggested that the protein was monodisperse and dimeric in the nonionic detergent n-octyl-beta-D-glucopyranoside. Circular dichroism (CD) spectroscopy showed that the detergent-solubilized protein contained significant alpha-helical secondary structure. Proteolysis of the C-tail generated a trypsin-resistant core that was a mixture of primarily monomers and some dimers. We propose that MP dimers are stabilized by electrostatic interactions in the C terminus as well as hydrophobic interactions between putative transmembrane alpha-helical coiled coils.  相似文献   

2.
3.
The antigenic structure ofEscherichia coli ribosomal protein S3 has been investigated by use of monoclonal antibodies. Six S3-specific monoclonal antibodies secreted by mouse hybridomas have been identified by immunoblotting of two-dimensional ribosomal protein separation gels. By using a competitive enzyme-linked immunosorbent assay, we have divided these monoclonal antibodies into three mutual inhibition groups, members of which are directed to three distinct regions of the S3 molecule. The independence of these monoclonal antibody-defined regions was confirmed by the failure of pairs of monoclonal antibodies from two inhibition groups to block the binding of biotinylated monoclonal antibodies of the third group. To determine the regions recognized by these monoclonal antibodies, chemically cleaved S3 peptides were fractionated by gel filtration and reverse-phase high-performance liquid chromatography. The fractionated peptides were coated on plates and examined for specific interaction with monoclonal antibody by enzyme immunoassay. In this manner, two epitopes have been mapped at the ends of the S3 molecule: one, in the last 22 residues, is recognized by three monoclonal antibodies; and the second, in the first 21 residues, is defined by two monoclonal antibodies. The third S3 epitope, recognized by a single monoclonal antibody, has been localized in a central segment of about 90 residues by gel electrophoresis and immunoblotting. These epitope-mapped monoclonal antibodies are valuable probes for studying S3 structurein situ.  相似文献   

4.
Six monoclonal antibodies specific to human protein C were characterized. Epitopes of these antibodies were determined on isolated proteolytic peptides of protein C by immunological methods. Three antibodies bound light chain of protein C: PC01 bound the γ-carboxyglutamic acid domain calcium-dependently, while PC02 and PC08 bound the first epidermal growth factor-like domain in calcium-dependent and independent manners, respectively. The other three antibodies bound the heavy chain of protein C: PC13 bound activation peptide, PC04 recognized the activation site and PC09 bound the region close to a disulfide bond connecting light and heavy chains. Activation of protein C with thrombin-thrombomodulin complex was inhibited strongly by PC04 and moderately by PC08, PC09 and PC13. PC04 and PC13 may directly block the activation site. On the other hand, epitopes of PC08 and PC09 may be involved in interaction between protein C and thrombin-thrombomodulin complex, or locate close to activation site on the tertiary structure of protein C. Anticlotting activity of protein C was inhibited strongly by PC01 and moderately by PC02, PC08 and PC09, while amidolytic activity was inhibited only by PC09. The epitopes described here may constitute part of protein-C-specific sites, which are important for the function of protein C.  相似文献   

5.
In this article we report the first topological mapping of neutralizing epitopes of a hepadnavirus. Duck hepatitis B virus is the only hepadnavirus that can replicate and spread from cell to cell in tissue culture. As a result, it is possible to study hepadnaviral neutralization in vitro with this system. To accomplish this goal, we produced a library of monoclonal antibodies against duck hepatitis B virus and identified 12 neutralizing monoclonal antibodies by using an in vitro neutralization assay. The characteristics of six of the neutralizing monoclonal antibodies were further studied by epitope mapping. From the results of competitive binding studies, three distinct neutralizing epitopes were identified on the pre-S polypeptides and one was identified on the S polypeptide. Our findings suggest that antibodies to both the pre-S and S gene products of duck hepatitis B virus can neutralize viral infection in vitro. The pre-S gene product is at least as important as the S gene product in eliciting neutralizing antibodies.  相似文献   

6.
R B Scheele  M A Lauffer 《Biochemistry》1967,6(10):3076-3081
  相似文献   

7.
Murine monoclonal antibodies directed against the structural proteins p17 and p24 of human immunodeficiency virus type 1 were investigated in an epitope mapping system. Overlapping peptides consisting of 15 amino acids of the p17 and p24 protein, respectively, were used as competitors in an enzyme-linked immunosorbent assay. Three different immunogenic regions (A, B, and C) could be defined, one on p17 and two on p24. Twenty monoclonal antibodies reacted with the human immunodeficiency virus type 1 peptides of region B, although differences in the reactivity of these antibodies with human immunodeficiency virus type 2 and simian immunodeficiency virus strain mac were detectable. Recognized epitopes were characterized by computer analysis as described by T.P. Hopp and K.R. Woods (Proc. Natl. Acad. Sci. USA 78:3824-3828, 1981) and P.Y. Chou and G.D. Fasman (Biochemistry 13:222-245, 1974).  相似文献   

8.
Cell-to-cell spread of tobacco mosaic virus is facilitated by the virus-encoded 30-kDa movement protein (MP). This process involves interaction of viral proteins with host components, including the cytoskeleton and the endoplasmic reticulum (ER). During virus infection, high-molecular-weight forms of MP were detected in tobacco BY-2 protoplasts. Inhibition of the 26S proteasome by MG115 and clasto-lactacystin-beta-lactone enhanced the accumulation of high-molecular-weight forms of MP and led to increased stability of the MP. Such treatment also increased the apparent accumulation of polyubiquitinated host proteins. By fusion of MP with the jellyfish green fluorescent protein (GFP), we demonstrated that inhibition of the 26S proteasome led to accumulation of the MP-GFP fusion preferentially on the ER, particularly the perinuclear ER. We suggest that polyubiquitination of MP and subsequent degradation by the 26S proteasome may play a substantial role in regulation of virus spread by reducing the damage caused by the MP on the structure of cortical ER.  相似文献   

9.
Interaction of tomato mosaic virus movement protein with tobacco RIO kinase   总被引:4,自引:0,他引:4  
Tomato mosaic virus (ToMV) has a regulatory gene encoding a movement protein (MP) that is involved in the cell-to-cell movement of viral RNA through plasmodesmata. To identify the host cell factors interacting with ToMV MP, we used a recombinant MP probe to isolate cDNA clones from a phage expression library of Nicotiana tabacum by a far-Western screening method. One of the cDNA clones encoded an MP-interacting protein, MIP-T7, homologous to the yeast novel protein kinase, Rio1p. We isolated a full-length cDNA by RT-PCR. The putative gene product was designated NtRIO, and shared 33 and 73% amino acid identity with yeast and Arabidopsis RIO kinases, respectively. In vitro analyses using recombinant proteins showed that NtRIO also interacted with a different MP derived from Cucumber mosaic virus. NtRIO had autophosphorylation activity and phosphorylated ToMV MP. Addition of recombinant tobacco casein kinase 2 resulted in a marked increase in the phosphorylation of NtRIO. The interaction between NtRIO and ToMV MP was inhibited by phosphorylation of NtRIO.  相似文献   

10.
A fusion between lacZ and ftsZ of Escherichia coli was constructed to obtain a beta-galactosidase-FtsZ fusion protein. This fusion protein was used to raise antibodies against cell division protein FtsZ. Six monoclonal antibodies were obtained, and they reacted with FtsZ from cytoplasm and membrane fractions. The epitopes in FtsZ were localized by studying the reactions of the monoclonal antibodies with fusion proteins truncated at the carboxy terminus and with fragments that were obtained by CNBr cleavage of purified FtsZ. Five different epitopes were defined. Epitopes I and III reacted with the same monoclonal antibody, without showing apparent amino acid homology. Epitope II was defined by monoclonal antibodies that cross-reacted with an unknown cytoplasmic 50-kDa protein not related to FtsZ. Epitopes IV and V were recognized by different monoclonal antibodies. All monoclonal antibodies reacted strongly under native conditions, so it is likely that the five epitopes are situated on the surface of native FtsZ. By using these data and computer analysis, a provisional model of FtsZ is proposed. The FtsZ protein is considered to be globular, with a hydrophobic pocket containing GTP-binding elements. Epitopes I and II are situated on each side of the hydrophobic pocket. Because the carboxy terminus contains epitope V, the carboxy terminus of FtsZ is likely oriented toward the protein's surface.  相似文献   

11.
Bacteriophytochromes (BphP) are phytochrome‐like light sensing proteins in bacteria, which use biliverdin as a chromophore. In order to study the biochemical properties of the DrBphP protein, five (2B8, 2C11, 3B2, 3D2, and 3H7) anti‐DrBphP monoclonal antibodies were produced through the immunization of mice with purified full‐length DrBphP and DrBphN (1–321 amino acid) proteins, and epitope mapping was then carried out. Among the five antibodies, 2B8 and 2C11 preferentially recognized the N‐terminal region of BphP whereas 3B2, 3D2, and 3H7 showed preference for the C‐terminal region. We performed further epitope mapping using recombinant truncated BphP proteins to narrow down their target sequences. The results demonstrated that each of the five monoclonal antibodies recognized different regions on the DrBphP protein. Additionally, epitopes of 2B8 and 3H7 antibodies were discovered to be shorter than 10 amino acids (2B8: RDPLPFFPP, 3H7: PGEIEEA). These two antibodies with such specific recognition epitopes could be especially valuable for developing new peptide tags for protein detection and purification.  相似文献   

12.
The antigenic structure ofEscherichia coli ribosomal protein S3 has been investigated by use of monoclonal antibodies. Six S3-specific monoclonal antibodies secreted by mouse hybridomas have been identified by immunoblotting of two-dimensional ribosomal protein separation gels. By using a competitive enzyme-linked immunosorbent assay, we have divided these monoclonal antibodies into three mutual inhibition groups, members of which are directed to three distinct regions of the S3 molecule. The independence of these monoclonal antibody-defined regions was confirmed by the failure of pairs of monoclonal antibodies from two inhibition groups to block the binding of biotinylated monoclonal antibodies of the third group. To determine the regions recognized by these monoclonal antibodies, chemically cleaved S3 peptides were fractionated by gel filtration and reverse-phase high-performance liquid chromatography. The fractionated peptides were coated on plates and examined for specific interaction with monoclonal antibody by enzyme immunoassay. In this manner, two epitopes have been mapped at the ends of the S3 molecule: one, in the last 22 residues, is recognized by three monoclonal antibodies; and the second, in the first 21 residues, is defined by two monoclonal antibodies. The third S3 epitope, recognized by a single monoclonal antibody, has been localized in a central segment of about 90 residues by gel electrophoresis and immunoblotting. These epitope-mapped monoclonal antibodies are valuable probes for studying S3 structurein situ.  相似文献   

13.
Summary Hydrolytic activities of leaf extracts from normal and transgenic plants, with (+ MP) and without (-MP) the movement protein of tobacco mosaic virus, were examined. In the + MP transgenic plants, as compared with non-transgenic and — MP plants, higher hydrolytic activities were found on the following substrates: bis-(nitrophenyl)-phosphate (BPNPP, phosphodiesterase), p-nitrophenyl-(phenyl)-phosphate (PNPPP, nucleotidephosphodiesterase) and thymidine-3-monophosphate p-nitrophenyl ester (T3MPP; 3nucleotide phosphodiesterase.) The + MP plant lines, as compared with other transgenic plants, exhibited higher nucleotide-phosphodiesterase activity in the soluble as well as in the membrane fraction. Substrate concentration kinetic studies revealed the presence of a nucleotide-phospho-diesterase with a high substrate affinity in the +MP extracts in addition to the enzyme with a relatively low substrate affinity present also in the — MP transgenic plants. This high affinity enzyme could be removed from the soluble fraction by precipitation with anti-MP serum, indicating its possible association with the movement protein.  相似文献   

14.
Summary Cell-to-cell communication in plants occurs through plasmodesmata, cytoplasmic channels that traverse the cell wall between neighboring cells. Plasmodesmata are also exploited by many viruses as an avenue for spread of viral progeny. In the case of tobacco mosaic virus (TMV), a virally-encoded movement protein (MP) enables the virus to move through plasmodesmata during infection. We have used thin section electron microscopy and immunocytochemistry to examine the structure of plasmodesmata in transgenic tobacco plants expressing the TMV MP. We observed a change in structure of the plasmodesmata as the leaves age, both in control and MP expressing [MP(+)] plants. In addition, the plasmodesmata of older cells of MP(+) plants accumulate a fibrous material in the central cavity. The presence of the fibers is correlated with the ability to label plasmodesmata with anti-MP antibodies. The developmental stage of leaf tissue at which this material is observed is the stage at which an increase in the size exclusion limit of the plasmodesmata can be measured in MP(+) plants. Using cell fractionation and aqueous phase partitioning studies, we identified the plasma membrane and cell wall as the compartments with which the MP stably associates. The nature of the interaction between the MP and the plasma membrane was studied using sodium carbonate and Triton X-100 washes. The MP behaves as an integral membrane protein. Identifying the mechanism by which the MP associates with plasma membrane and plasmodesmata will lead to a better understanding of how the MP alters the function of the plasmodesmata.Abbreviations MP movement protein - TMV tobacco mosaic virus  相似文献   

15.
A soluble form of recombinant gp120 of human immunodeficiency virus type 1 was used as an immunogen for production of murine monoclonal antibodies. These monoclonal antibodies were characterized for their ability to block the interaction between gp120 and the acquired immunodeficiency syndrome virus receptor, CD4. Three of the monoclonal antibodies were found to inhibit this interaction, whereas the other antibodies were found to be ineffective at blocking binding. The gp120 epitopes which are recognized by these monoclonal antibodies were mapped by using a combination of Western blot (immunoblot) analysis of gp120 proteolytic fragments, immunoaffinity purification of fragments of gp120, and antibody screening of a random gp120 gene fragment expression library produced in the lambda gt11 expression system. Two monoclonal antibodies which blocked gp120-CD4 interaction were found to map to adjacent sites in the carboxy-terminal region of the glycoprotein, suggesting that this area is important in the interaction between gp120 and CD4. One nonblocking antibody was found to map to a position that was C terminal to this CD4 blocking region. Interestingly, the other nonblocking monoclonal antibodies were found to map either to a highly conserved region in the central part of the gp120 polypeptide or to a highly conserved region near the N terminus of the glycoprotein. N-terminal deletion mutants of the soluble envelope glycoprotein which lack these highly conserved domains but maintain the C-terminal CD4 interaction sites were unable to bind tightly to the CD4 receptor. These results suggest that although the N-terminal and central conserved domains of intact gp120 do not appear to be directly required for CD4 binding, they may contain information that allows other parts of the molecule to form the appropriate structure for CD4 interaction.  相似文献   

16.
Pneumococcal surface protein A (PspA) is an antigenic variable vaccine candidate of Streptococcus pneumoniae. Epitope similarities between PspA from the American vaccine candidate strain Rx1 and Norwegian clinical isolates were studied using PspA specific monoclonal antibodies (mAbs) made against clinical Norwegian strains. Using recombinant PspA/Rx1 fragments and immunoblotting the epitopes for mAbs were mapped to two regions of amino acids, 1-67 and 67-236. The discovered epitopes were visualized by modelling of the PspA:Fab part of mAb in three dimensions. Flow cytometric analysis showed that the epitopes for majority of mAbs were accessible for antibody binding on live pneumococci. Also, the epitopes for majority of the mAbs are widely expressed among clinical Norwegian isolates.  相似文献   

17.
Nicotiana benthamiana plants were transformed with the movement protein (MP) gene of tobacco mosaic virus (TMV), usingAgrobacterium-mediated transformation. Plants regenerated from the transformed cells accumulated 30-kDa MP and complemented the activity of TMV MP when infected with chimeric TMVs containing defective MR These transgenic plants displayed stunting, pale-green leaves, and starch accumulations, indicating that TMV MP altered the carbon partitioning for leaves involved in TMV cell-to-cell movement.  相似文献   

18.
We mapped the hemagglutinin (HA) antigenic epitopes of a highly pathogenic H5N1 influenza virus on the three-dimensional HA structure by characterizing escape mutants of a recombinant virus containing A/Vietnam/1203/04 (H5N1) ΔHA and neuraminidase genes in the genetic background of A/Puerto Rico/8/34 (H1N1) virus. The mutants were selected with a panel of eight anti-HA monoclonal antibodies (MAbs), seven to A/Vietnam/1203/04 (H5N1) virus and one to A/Chicken/Pennsylvania/8125/83 (H5N2) virus, and the mutants’ HA genes were sequenced. The amino acid changes suggested three MAb groups: four MAbs reacted with the complex epitope comprising parts of the antigenic site B of H3 HA and site Sa of H1 HA, two MAbs reacted with the epitope corresponding to the antigenic site A in H3 HA, and two MAbs displayed unusual behavior: each recognized amino acid changes at two widely separate antigenic sites. Five changes were detected in amino acid residues not previously reported as changed in H5 escape mutants, and four others had substitutions not previously described. The HA antigenic structure differs substantially between A/Vietnam/1203/04 (H5N1) virus and the low-pathogenic A/Mallard/Pennsylvania/10218/84 (H5N2) virus we previously characterized (N. V. Kaverin et al., J. Gen. Virol. 83:2497-2505, 2002). The hemagglutination inhibition reactions of the MAbs with recent highly pathogenic H5N1 viruses were consistent with the antigenic-site amino acid changes but not with clades and subclades based on H5 phylogenetic analysis. These results provide information on the recognition sites of the MAbs widely used to study H5N1 viruses and demonstrate the involvement of the HA antigenic sites in the evolution of highly pathogenic H5N1 viruses, findings that can be critical for characterizing pathogenesis and vaccine design.  相似文献   

19.
20.
B G McLean  J Zupan    P C Zambryski 《The Plant cell》1995,7(12):2101-2114
Tobacco mosaic virus movement protein P30 complexes with genomic viral RNA for transport through plasmodesmata, the plant intercellular connections. Although most research with P30 focuses on its targeting to and gating of plasmodesmata, the mechanisms of P30 intracellular movement to plasmodesmata have not been defined. To examine P30 intracellular localization, we used tobacco protoplasts, which lack plasmodesmata, for transfection with plasmids carrying P30 coding sequences under a constitutive promoter and for infection with tobacco mosaic virus particles. In both systems, P30 appears as filaments that colocalize primarily with microtubules. To a lesser extent, P30 filaments colocalize with actin filaments, and in vitro experiments suggested that P30 can bind directly to actin and tubulin. This association of P30 with cytoskeletal elements may play a critical role in intracellular transport of the P30-viral RNA complex through the cytoplasm to and possibly through plasmodesmata.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号