首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Trans-epithelial migration describes the ability of migrating cells to cross epithelial tissues and occurs during development, infection, inflammation, immune surveillance, wound healing and cancer metastasis. Here we investigate Drosophila primordial germ cells (PGCs), which migrate through the endodermal epithelium. Through live imaging and genetic experimentation we demonstrate that PGCs take advantage of endodermal tissue remodeling to gain access to the gonadal mesoderm and are unable to migrate through intact epithelial tissues. These results are in contrast to the behavior of leukocytes, which actively loosen epithelial junctions to migrate, and raise the possibility that in other contexts in which migrating cells appear to breach tissue barriers, they are actually exploiting existing tissue permeability. Therefore, the use of active invasive programs is not the sole mechanism to infiltrate tissues.  相似文献   

2.
Helicobacter pylori infection induces chronic inflammation in the gastric mucosa with a marked increase in the number of lymphoid follicles consisting of infiltrating B and T cells, neutrophils, dendritic cells (DC) and macrophages. It has been suggested that an accumulation of mature DC in the tissue, resulting from a failure of DC to migrate to lymph nodes, may contribute to this chronic inflammation. Migration of DC to lymph nodes is regulated by chemokine receptor CCR7, expressed on mature DC, and the CCR7 ligands CCL19 and CCL21. In this study we analysed the maturation, in vitro migration and cytokine production of human DC after stimulation with live H. pylori. For comparison, DC responses to non-pathogenic Escherichia coli bacteria were also evaluated. Stimulation with H. pylori induced maturation of DC, i.e. up-regulation of the chemokine receptors CCR7 and CXCR4 and the maturation markers HLA-DR, CD80 and CD86. The H. pylori-stimulated DC also induced CD4(+) T-cell proliferation. DC stimulated with H. pylori secreted significantly more interleukin (IL)-12 compared to DC stimulated with E. coli, while E. coli-stimulated DC secreted more IL-10. Despite low surface expression of CCR7 protein following stimulation with H. pylori compared to E. coli, the DC migrated equally well towards CCL19 after stimulation with both bacteria. Thus, we could not detect any failure in the migration of H. pylori stimulated DC in vitro that may contribute to chronic gastritis in vivo, and our results suggest that H. pylori induces maturation and migration of DC to lymph nodes where they promote T cell responses.  相似文献   

3.
Attachment of leukocytes to the blood vessel wall initiates leukocyte extravasation. This enables leukocytes to migrate to and accumulate at sites of tissue injury or infection where they execute host-defense mechanisms. A series of vascular cell adhesion molecules on leukocytes and on endothelial cells mediate leukocyte attachment to the endothelium in a stepwise process. A large panel of about 40 known human chemokines is able to specifically activate certain leukocytes and attract them to migrate across the endothelial barrier and within tissue. The specific combination of molecular signals provided by the diversity of cytokines, adhesion molecules, and chemokines regulates the specificity and selectivity of the recruitment of certain subpopulations of leukocytes in vivo. This review will focus on selectins and chemokines which initiate the cell contact and regulate activation and chemoattraction of leukocytes. Accepted: 20 May 1999  相似文献   

4.
Dendritic cells (DC) serve an essential function in linking the innate and acquired immune responses to antigen. Peripheral DC acquire antigen and migrate to draining lymph nodes, where they localize to the T cell-rich paracortex and function as potent antigen presenting cells. We examined the effects of human immunodeficiency virus (HIV) infection on DC function in vivo using the rhesus macaque/simian immunodeficiency virus (SIV) model. Our data show that during acute SIV infection, Langerhans cell density is reduced in skin and activated DC are increased in proportion in lymph nodes, whereas during AIDS, DC migration from skin and activation within lymph nodes are suppressed. These findings suggest that changes in DC function at different times during the course of infection may serve to promote virus dissemination and persistence: early during infection, DC mobilization may facilitate virus spread to susceptible lymph node T cell populations, whereas depressed DC function during advanced infection could promote generalized immunosuppression.  相似文献   

5.
The protein kindlin 3 is mutated in the leukocyte adhesion deficiency III (LAD-III) disorder, leading to widespread infection due to the failure of leukocytes to migrate into infected tissue sites. To gain understanding of how kindlin 3 controls leukocyte function, we have focused on its pleckstrin homology (PH) domain and find that deletion of this domain eliminates the ability of kindlin 3 to participate in adhesion and migration of B cells mediated by the leukocyte integrin lymphocyte function-associated antigen 1 (LFA-1). PH domains are often involved in membrane localization of proteins through binding to phosphoinositides. We show that the kindlin 3 PH domain has binding affinity for phosphoinositide PI(3,4,5)P3 over PI(4,5)P2. It has a major role in membrane association of kindlin 3 that is enhanced by the binding of LFA-1 to intercellular adhesion molecule 1 (ICAM-1). A splice variant, kindlin 3-IPRR, has a four-residue insert in the PH domain at a critical site that influences phosphoinositide binding by enhancing binding to PI(4,5)P2 as well as by binding to PI(3,4,5)P3. However kindlin 3-IPRR is unable to restore the ability of LAD-III B cells to adhere to and migrate on LFA-1 ligand ICAM-1, potentially by altering the dynamics or PI specificity of binding to the membrane. Thus, the correct functioning of the kindlin 3 PH domain is central to the role that kindlin 3 performs in guiding lymphocyte adhesion and motility behavior, which in turn is required for a successful immune response.  相似文献   

6.
Toxoplasma gondii is an obligate intracellular parasite, able to disseminate into deep tissues and cross biological barriers, reaching immunoprivileged sites such as the brain and retina. In order to investigate whether the parasite uses leukocyte trafficking to disseminate throughout the host, the adhesive potential to extracellular matrix components, the expression of adhesion molecules and the in vivo migration of murine macrophages infected with RH strain of T. gondii were investigated. Cellular adhesion to fibronectin, laminin and collagen IV decreased after 24 h of T. gondii infection. However, the decrease in adhesion of infected macrophages observed at early infection was reversed after 48 h. Moreover, decreased adhesion was dependent on active penetration, since heat-killed parasites were unable to reproduce it. Expression of integrins alphaL, alpha4 and alpha5 chains was downmodulated early postinfection, but a progressive regain of expression was observed after 12 h of infection. Expression of beta2, alphav and alpha4 integrins by peritoneal macrophages at late infection was also gradually reestablished. The assessment of in vivo migration of infected macrophages labeled with the fluorescent dye 5-chloromethylfluorescein diacetate showed a 48-h delay in migration to cervical lymph nodes when compared to LPS pre-stimulated macrophages. Furthermore, cells that migrate to distal lymph nodes were loaded with live parasites. Taken together, these results provide insights about T. gondii escape from the host immune response, placing the macrophage as a "Trojan horse", contributing to parasite dissemination and access to immunoprivileged sites.  相似文献   

7.
Dendritic cells (DCs) migrate from sites of inflammation to secondary lymphoid organs where they initiate the adaptive immune response. Although motility is essential to DC function, the mechanisms by which they migrate are not fully understood. We incorporated micropost array detectors into a microfluidic gradient generator to develop what we consider to be a novel method for probing low magnitude traction forces during directional migration. We found migration of primary murine DCs is driven by short-lived traction stresses at the leading edge or filopodia. The traction forces generated by DCs are smaller in magnitude than found in neutrophils, and of similar magnitude during chemotaxis and chemokinesis, at 18 ± 1.4 and 16 ± 1.3 nN/cell, respectively. The characteristic duration of local DC traction forces was 3 min. The maximum principal stress in the cell occurred in the plane perpendicular to the axis of motion, forward of the centroid. We illustrate that the spatiotemporal pattern of traction stresses can be used to predict the direction of future DC motion. Overall, DCs show a mode of migration distinct from both mesenchymal cells and neutrophils, characterized by rapid turnover of traction forces in leading filopodia.  相似文献   

8.
Paracoccidioidomycosis is a mycotic disease caused by a dimorphic fungus, Paracoccidioides brasiliensis (Pb), that starts with inhalation of the fungus; thus, lung cells such as DC are part of the first line of defense against this microorganism. Migration of DC to the lymph nodes is the first step in initiating T cell responses. The mechanisms involved in resistance to Pb infection are poorly understood, but it is likely that DC play a pivotal role in the induction of effector T cells that control Pb infection. In this study, we showed that after Pb Infection, an important modification of lung DC receptor expression occurred. We observed an increased expression of CCR7 and CD103 on lung DC after infection, as well as MHC-II. After Pb infection, bone marrow-derived DC as well lung DC, migrate to lymph nodes. Migration of lung DC could represent an important mechanism of pathogenesis during PCM infection. In resume our data showed that Pb induced DC migration. Furthermore, we demonstrated that bone marrow-derived DC stimulated by Pb migrate to the lymph nodes and activate a T helper (Th) response. To the best of our knowledge, this is the first reported data showing that Pb induces migration of DC and activate a T helper (Th) response.  相似文献   

9.
Dendritic cells (DCs) capture and process antigens in peripheral tissues, migrate to lymphoid tissues, and present the antigens to T cells. PTPN12, also known as PTP-PEST, is an intracellular protein tyrosine phosphatase (PTP) involved in cell-cell and cell-substratum interactions. Herein, we examined the role of PTPN12 in DCs, using a genetically engineered mouse lacking PTPN12 in DCs. Our data indicated that PTPN12 was not necessary for DC differentiation, DC maturation, or cytokine production in response to inflammatory stimuli. However, it was needed for full induction of T cell-dependent immune responses in vivo. This function largely correlated with the need of PTPN12 for DC migration from peripheral sites to secondary lymphoid tissues. Loss of PTPN12 in DCs resulted in hyperphosphorylation of the protein tyrosine kinase Pyk2 and its substrate, the adaptor paxillin. Pharmacological inhibition of Pyk2 or downregulation of Pyk2 expression also compromised DC migration, suggesting that Pyk2 deregulation played a pivotal role in the migration defect caused by PTPN12 deficiency. Together, these findings identified PTPN12 as a key regulator in the ability of DCs to induce antigen-induced T cell responses. This is due primarily to the role of PTPN12 in DC migration from peripheral sites to secondary lymphoid organs through regulation of Pyk2.  相似文献   

10.
11.
At the time of organ transplantation, a variety of non-parenchymal cells are transplanted simultaneously with the allograft. Recognition of the importance of these cells as potential immunostimulatory cells lead to the concept of 'passenger leukocytes' as the principal instigators of rejection. Passenger leukocytes include interstitial dendritic cells (DCs) and blood-derived monocytes/macrophages. As investigators have discovered the significance of DCs in influencing graft outcome, so have they begun to determine the best ways to influence DCs themselves. This review discusses the role of DCs in transplantation and then focuses on three different approaches for manipulating DCs to improve allograft survival: (1) targeting of chemokines involved in DC migration, (2) pharmacological arrest of DC maturation, and (3) genetic engineering of DCs.  相似文献   

12.
Langerhans cells (LC) are a subset of skin-resident dendritic cells (DC) that reside in the epidermis as immature DC, where they acquire Ag. A key step in the life cycle of LC is their activation into mature DC in response to various stimuli, including epicutaneous sensitization with hapten and skin infection with Candida albicans. Mature LC migrate to the skin-draining LN, where they present Ag to CD4 T cells and modulate the adaptive immune response. LC migration is thought to require the direct action of IL-1β and IL-18 on LC. In addition, TLR ligands are present in C. albicans, and hapten sensitization produces endogenous TLR ligands. Both could contribute to LC activation. We generated Langerin-Cre MyD88(fl) mice in which LC are insensitive to IL-1 family members and most TLR ligands. LC migration in the steady state, after hapten sensitization and postinfection with C. albicans, was unaffected. Contact hypersensitivity in Langerin-Cre MyD88(fl) mice was similarly unaffected. Interestingly, in response to C. albicans infection, these mice displayed reduced proliferation of Ag-specific CD4 T cells and defective Th17 subset differentiation. Surface expression of costimulatory molecules was intact on LC, but expression of IL-1β, IL-6, and IL-23 was reduced. Thus, sensitivity to MyD88-dependent signals is not required for LC migration, but is required for the full activation and function of LC in the setting of fungal infection.  相似文献   

13.
During infection and inflammation, circulating monocytes leave the bloodstream and migrate into tissues, where they differentiate into macrophages. Macrophages express surface Toll-like receptors (TLRs), which recognize molecular patterns conserved through evolution in a wide range of microorganisms. TLRs play a central role in macrophage activation which is usually associated with gene expression alteration. Macrophages are critical in many diseases and have emerged as attractive targets for therapy. In the following protocol, we describe a procedure to isolate murine peritoneal macrophages using Brewer’s thioglycollate medium. The latter will boost monocyte migration into the peritoneum, accordingly this will raise macrophage yield by 10-fold. Several studies have been carried out using bone marrow, spleen or peritoneal derived macrophages. However, peritoneal macrophages were shown to be more mature upon isolation and are more stable in their functionality and phenotype. Thus, macrophages isolated from murine peritoneal cavity present an important cell population that can serve in different immunological and metabolic studies. Once isolated, macrophages were stimulated with different TLR ligands and consequently gene expression was evaluated.  相似文献   

14.
The liver is constantly exposed to gut-derived antigens that enter via the portal vein, and it must modulate immune responses so that harmful pathogens are cleared but necessary food antigens are ignored. The liver contains a large resident and migratory population of lymphocytes and macrophages that provide immune surveillance against foreign antigen. This population of cells can be rapidly expanded in response to infection or injury by recruiting leukocytes from the circulation, a process that is dependent on the ability of lymphocytes to recognise, bind to and migrate across the endothelial cells that line the vasculature. Lymphocytes can enter the liver at several sites: the vascular endothelium in the portal tracts (comprising the hepatic artery, portal vein and bile ductule), the sinusoids (through which the blood percolates past the hepatocytes) or the central hepatic veins (through which the blood exits). The requirements and physical conditions at each site vary and there is evidence that different combinations of adhesion proteins are involved at these different sites. This article discusses the expression and function of adhesion molecules within the liver and demonstrates how specific populations of effector lymphocytes can be selectively recruited to the liver.  相似文献   

15.
For an effective adaptive immune response to occur, dendritic cells (DC), which are the most efficient antigen-presenting cells, must be able to sample the peripheral microenvironment and migrate towards secondary lymphoid organs (SLO) where they activate naive lymphocytes. Upon activation, lymphocytes proliferate and acquire the capacity to migrate to extralymphoid compartments. Although the molecular mechanisms controlling lymphocyte homing to lymphoid and to some extralymphoid tissues have been described in significant detail, it is much less clear how DC migration is controlled. Do DC obey similar adhesion cues that lymphocytes do, or do they have their own "zip codes"? This is relevant from a therapeutic standpoint because effective DC-based vaccines should be able to reach the appropriate tissues in order to generate protective immune responses. Here, we discuss some of the mechanisms used by DC to reach their target tissues. Once DC arrive at their destination, they are exposed to the tissue microenvironment, which likely modulates their functional properties in a tissue-specific fashion. This local DC "education" is probably responsible among other things; for the acquisition of tissue-specific homing imprinting capacity by which DC instruct lymphocytes to migrate to specific tissues. Finally, we discuss how dysregulation of these signals may play a key role in disease.  相似文献   

16.
Recruitment of monocytes into tissues and their differentiation into macrophages or dendritic cells (DCs) depend on the microenvironment of the inflammatory site. Although many factors affecting this process have been identified, the intracellular signaling pathways implicated are poorly understood. We found that cyclic nucleotides regulate certain steps of monocyte differentiation into DCs. Increased levels of the cyclic nucleotides, cAMP or cGMP, inhibit differentiation of CD14(+)/CD1a(low) monocytes into CD14(-)/CD1a(high) DCs. However, DC-specific ICAM-3-grabbing nonintegrin (CD209) up-regulation was not affected by cyclic nucleotides, indicating that DC development was not blocked at the monocyte stage. Interestingly, Ag-presenting function was increased by cyclic nucleotides, as measured by the higher expression of MHC class II, CD86, and an increased ability to stimulate CD4(+) T cell proliferation in allogeneic MLRs. Although cyclic nucleotides do not completely block DC differentiation, they do block the ability of DCs to be induced to mature by LPS. Treatment during DC differentiation with either cAMP or cGMP analogues hampered LPS-induced expression of CD83, DC-LAMP, and CCR7 and the ability of DCs to migrate toward CCL19/macrophage-inflammatory protein 3beta. Interestingly, the induction of a CD16(+) subpopulation of cells was also observed. Thus, signals causing an increase in either cAMP or cGMP levels during monocyte recruitment to inflammatory sites may restrain the activation of acquired immunity by blocking DC development and migration to lymph nodes. At the same time, these signals promote development of an active intermediate cell type having properties between those of macrophages and DCs, which might contribute to the innate immune response in the periphery.  相似文献   

17.
Wang H  Sun J  Goldstein H 《Journal of virology》2008,82(15):7591-7600
Human immunodeficiency virus type 1 (HIV-1), introduced into the brain by HIV-1-infected monocytes which migrate across the blood-brain barrier (BBB), infects resident macrophages and microglia and initiates a process that causes HIV-1-associated neurocognitive disorders. The mechanism by which HIV-1 infection circumvents the BBB-restricted passage of systemic leukocytes into the brain and disrupts the integrity of the BBB is not known. Circulating lipopolysaccharide (LPS), which can compromise the integrity of the BBB, is significantly increased in HIV-1-infected individuals. We hypothesized that HIV-1 infection increases monocyte capacity to migrate across the BBB, which is further facilitated by a compromise of BBB integrity mediated by the increased systemic LPS levels present in HIV-1-infected individuals. To investigate this possibility, we examined the in vivo BBB migration of monocytes derived from our novel mouse model, JR-CSF/EYFP mice, which are transgenic for both a long terminal repeat-regulated full-length infectious HIV-1 provirus and ROSA-26-regulated enhanced yellow fluorescent protein. We demonstrated that JR-CSF/EYFP mouse monocytes displayed an increased capacity to enter the brain by crossing either an intact BBB or a BBB whose integrity was partially compromised by systemic LPS. We also demonstrated that the JR-CSF mouse BBB was more susceptible to disruption by systemic LPS than the control wild-type mouse BBB. These results demonstrated that HIV-1 infection increased the ability of monocytes to enter the brain and increased the sensitivity of the BBB to disruption by systemic LPS, which is elevated in HIV-1-infected individuals. These mice represent a new in vivo system for studying the mechanism by which HIV-1-infected monocytes migrate into the brain.  相似文献   

18.
Dendritic cell (DC) migration from the site of infection to the site of T-cell priming is a crucial event in the generation of antiviral T-cell responses. Here we present to our knowledge the first functional evidence that human cytomegalovirus (HCMV) blocks the migration of infected monocyte-derived DCs toward lymphoid chemokines CCL19 and CCL21. DC migration is blocked by viral impairment of the chemokine receptor switch at the level of the expression of CCR7 molecules. The inhibition occurs with immediate-early-early kinetics, and viral interference with NF-kappaB signaling is likely to be at least partially responsible for the lack of CCR7 expression. DCs which migrate from the infected cultures are HCMV antigen negative, and consequently they do not stimulate HCMV-specific CD8(+) T cells, while CD4(+)-T-cell activation is not impaired. Although CD8(+) T cells can also be activated by alternative antigen presentation mechanisms, the spatial segregation of naive T cells and infected DCs seems a potent mechanism of delaying the generation of primary CD8(+)-T-cell responses and aiding early viral spread.  相似文献   

19.
Malaria starts with the infection of the liver by Plasmodium sporozoites. This form of the parasite migrates through several host cells breaching their plasma membranes before infecting a final hepatocyte which they enter forming a parasitophorous vacuole. It is still controversial why Plasmodium sporozoites migrate through host cells. By reviewing the most recent literature, we hope to give an insight on the different steps of host invasion in which migration through cells is involved and on the possible role for this mechanism in infection.  相似文献   

20.
Chemotactic migration of macrophages is critical for the recruitment of leukocytes to inflamed tissues. Macrophages use a specialized adhesive structure called a podosome to migrate. Podosome formation requires the Wiskott-Aldrich syndrome protein (WASP), which is a product of the gene defective in an X-linked inherited immunodeficiency disorder, the Wiskott-Aldrich syndrome. Macrophages from WASP-deficient Wiskott-Aldrich syndrome patients lack podosomes, resulting in defective chemotactic migration. However, the molecular basis for podosome formation is not fully understood. I have shown that the WASP interacting protein (WIP), a binding partner of WASP, plays an important role in podosome formation in macrophages. I showed that WASP bound WIP to form a complex at podosomes and that the knockdown of WIP impairs podosome formation. When WASP binding to WIP was blocked, podosome formation was also impaired. When WASP expression was reduced by small interfering RNA transfection, the amount of the complex of WASP with WIP decreased, resulting in reduced podosome formation. Podosomes were restored by reconstitution of the WASP-WIP complex in WASP knockdown cells. These results indicate that the WASP-WIP complex is required for podosome formation in macrophages. When podosome formation was reduced by blocking WASP binding to WIP, transendothelial migration of macrophages, the most crucial process in macrophage trafficking, was impaired. These results suggest that a complex of WASP with WIP plays a critical role in podosome formation, thereby mediating efficient transendothelial migration of macrophages.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号