首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
A protein-protein association of cytochrome P-450 LM2 with NADPH-cytochrome P-450 reductase, with cytochrome b5, and with both proteins was demonstrated in reconstituted phospholipid vesicles by magnetic circular dichroism difference spectra. A 23% decrease in the absolute intensity of the Soret band of the magnetic CD spectrum of cytochrome P-450 was observed when it was reconstituted with reductase. A difference spectrum corresponding to a 7% decrease in absolute intensity was obtained when cytochrome b5 was incorporated into vesicles that already contained cytochrome P-450 and cytochrome P-450 reductase compared to a decrease of 13% in absolute intensity when cytochrome b5 was incorporated into vesicles that contained only cytochrome P-450. The use of the magnetic circular dichroism confirmed that protein-protein associations that have been detected by absorption spectroscopy between purified and detergent-solubilized proteins also exist in membranes. High ionic strength was shown to interrupt direct electron flow from cytochrome P-450 reductase to cytochrome P-450 but not the electron flow from reductase through cytochrome b5 to cytochrome P-450. Upon incorporation of cytochrome b5 into cytochrome P-450- and cytochrome P-450 reductase-containing vesicles, an increase of benzphetamine N-demethylation activity was observed. The magnitude of this increase was numerically identical to the residual activity of the reconstituted vesicles measured in the presence of 0.3 M KCl. It is concluded that there is a requirement for at least one charge pairing for electron transfer from reductase to cytochrome P-450. These observations are combined in a proposed mechanism of coupled reversible association reactions in the membrane.  相似文献   

2.
T Shimizu  T Nozawa  M Hatano  Y Imai  R Sato 《Biochemistry》1975,14(19):4172-4178
Magnetic circular dichroism (MCD) spectra have been measured for cytochrome P-450 (P-450) purified from phenobarbital-induced rabbit liver microsomes. The temperature dependence of some of the MCD spectra has also been determined. The MCD spectrum of oxidized P-450 seems to suggest that it is in a state intermediate between the ferric low-spin states. Model experiments suggest that this anomaly arises from the coordination of a thiolate anion to the heme. Reduced P-450 shows a very peculiar MCD spectrum; the spectrum as well as its temperature dependence suggest that the heme in reduced P-450 is a "mixture" in terms of redox and/or spin states. The MCD spectrum of the CO complex of reduced P-450 exhibits an apparent Faraday A term around 450 nm which consists of about 50% C term and 50% the other terms, indicating that it is not in a purely ferrous low-spin state. The CO complex of reduced cytochrome P-420 (P-420), on the other hand, shows an MCD spectrum characteristic of a ferrous low-spin heme. It is suggested from model experiments that the thiolate anion coordinates to the heme trans to CO in the P-450-CO complex. The Soret region of the MCD spectrum of the EtNC complex of reduced P-450 is characterized by two apparent A terms around 430 and 455 nm, whereas that of the corresponding complex of P-420 has only one apparent A term around 434 nm.  相似文献   

3.
Two forms of cytochrome P-450 (P-450 human-1 and P-450 human-2) have been purified from human liver microsomes to electrophoretic homogeneity. P-450 human-1 and P-450 human-2 differ in their apparent molecular weights (52,000 and 56,000, respectively) and Soret peak maxima in the CO-binding reduced difference spectrum (447.6 and 450.3 nm, respectively). In the reconstituted system using rat liver NADPH-cytochrome c (P-450) reductase, P-450 human-2 more effectively oxidized benzo(a)pyrene (80-fold), ethylmorphine (2-fold), and 7-ethoxycoumarin (2-fold) than did P-450 human-1. However, P-450 human-1 showed higher testosterone 6 beta-hydroxylase activity, and the activity was markedly increased by the inclusion of cytochrome b5 or spermine in the reconstituted system. Antibodies raised against P-450 human-1 inhibited more than 80% of microsomal testosterone 6 beta-hydroxylase activity in human liver. Immunoblotting analysis using anti-P-450 human-1 IgG revealed a single immuno-staining band near Mr 52,000 in all human liver samples examined. The amount of immunochemically determined P-450 human-1 varied in parallel with the testosterone 6 beta-hydroxylase activity in human liver. These results indicate that P-450 human-1 is a major form of cytochrome P-450 responsible for microsomal testosterone 6 beta-hydroxylation. Thus, this paper is the first report on human cytochrome P-450 responsible for testosterone 6 beta-hydroxylation, which is the major hydroxylation pathway in human liver microsomes.  相似文献   

4.
The aim of the present study was to examine a recent proposal that inhibitory isozyme:isozyme interactions explain why membrane-bound isozymes of rat liver microsomal cytochrome P-450 exert only a fraction of the catalytic activity they express when purified and reconstituted with saturating amounts of NADPH-cytochrome P-450 reductase and optimal amounts of dilauroylphosphatidylcholine. The different pathways of testosterone hydroxylation catalyzed by cytochromes P-450a (7 alpha-hydroxylation), P-450b (16 beta-hydroxylation), and P-450c (6 beta-hydroxylation) enabled possible inhibitory interactions between these isozymes to be investigated simultaneously with a single substrate. No loss of catalytic activity was observed when purified cytochromes P-450a, P-450b, or P-450c were reconstituted in binary or ternary mixtures under a variety of incubation conditions. When purified cytochromes P-450a, P-450b, and P-450c were reconstituted under conditions that mimicked a microsomal system (with respect to the absolute concentration of both the individual cytochrome P-450 isozyme and NADPH-cytochrome P-450 reductase), their catalytic activity was actually less (69-81%) than that of the microsomal isozymes. These results established that cytochromes P-450a, P-450b, and P-450c were not inhibited by each other, nor by any of the other isozymes in the liver microsomal preparation. Incorporation of purified NADPH-cytochrome P-450 reductase into liver microsomes from Aroclor 1254-induced rats stimulated the catalytic activity of cytochromes P-450a, P-450b, and P-450c. Similarly, purified cytochromes P-450a, P-450b, and P-450c expressed increased catalytic activity in a reconstituted system only when the ratio of NADPH-cytochrome P-450 reductase to cytochrome P-450 exceeded that normally found in liver microsomes. These results indicate that the inhibitory cytochrome P-450 isozyme:isozyme interactions described for warfarin hydroxylation were not observed when testosterone was the substrate. In addition to establishing that inhibitory interactions between different cytochrome P-450 isozymes is not a general phenomenon, the results of the present study support a simple mass action model for the interaction between membrane-bound or purified cytochrome P-450 and NADPH-cytochrome P-450 reductase during the hydroxylation of testosterone.  相似文献   

5.
Cytochrome P-450 which catalyzes the 7 alpha-hydroxylation of cholesterol was purified from liver microsomes of untreated rabbits. The minimum molecular weight of the cytochrome P-450 was estimated to be 48,000 by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The preparation contained 7 nmol of cytochrome per mg of protein. The oxidized form of the P-450 showed absorption maxima at 568, 535, and 417 nm, which are characteristic of a low spin hemoprotein, while the reduced form showed maxima at 545 and 413 nm. The carbon monoxide complex of the reduced form showed maxima at 550 and 447 nm. The cholesterol 7 alpha-hydroxylase system of untreated rabbit liver microsomes was reconstituted with the purified P-450, NADPH-cytochrome P-450 reductase, and cytochrome b5. The P-450 catalyzed the 7 alpha-hydroxylation of cholesterol 500 times more efficiently than the starting microsomes. The reconstituted hydroxylase system showed a substantial salt dependency. In the presence of cytochrome b5 the activity was maximum at 0.4 M KCl (4.55 nmol product formed/mg of protein per min), whereas in the absence of cytochrome b5 the activity was marginal (0.65 nmol product formed/mg of protein per min) and inhibited by KCl. Thus, cytochrome b5 stimulated the hydroxylase activity by one order of magnitude. These results indicate that cytochrome b5 is an essential component of the cholesterol 7 alpha-hydroxylase system of untreated rabbit liver microsomes.  相似文献   

6.
Purification of a new cytochrome P-450 from human liver microsomes   总被引:3,自引:0,他引:3  
Using a classical methodology of purification consisting of three chromatographic steps (Octyl-Sepharose, DEAE-cellulose, CM-cellulose) we have purified a new cytochrome P-450 from human liver microsomes. It was called cytochrome P-450(9). It has been proven to be different from all precedingly purified human liver microsomal cytochrome P-450 isozymes by its immunological and electrophoretical properties. It does not cross-react with any rat liver cytochrome P-450 and anti-cytochrome P-450(9) does not recognize rat liver microsomes; thus this cytochrome P-450(9) is specific to humans. This cytochrome P-450 isozyme exists in low amounts in human liver microsomes and exhibits an important quantitative polymorphism. In reconstituted system, cytochrome P-450(9) is able to hydroxylate all substrates tested but is not specific of any; its exact role in xenobiotic metabolism in man remains to be elucidated.  相似文献   

7.
The major phenobarbital-inducible form of cytochrome P-450 (cytochrome P-450 PB) was purified to homogeneity from rat liver microsomes and rabbit antibodies prepared against the purified enzyme. Using these antibodies, an enzyme-linked immunosorbent assay (ELISA) was developed for the detection of cytochrome P-450 PB in microsomes which was sensitive at the nanogram level. The content of cytochrome P-450 PB was determined in hepatic microsomes from rats treated with various xenobiotics. Phenobarbital and Aroclor 1254 pretreatments resulted in several-fold increases in immunoreactive cytochrome P-450 PB over control levels. ELISA measurements of cytochrome P-450 PB were also carried out over a 48-h time course of phenobarbital induction in liver microsomes. Significant increases over control levels were seen at 16 h and beyond. Measurements of ELISA-detectable cytochrome P-450 PB were made in microsomes following the administration of CCl4 to phenobarbital-pretreated rats. Immunoreactive cytochrome P-450 PB was observed to decrease less rapidly than the spectrally detectable enzyme in the microsomal membranes. Inhibition of heme synthesis was carried out by the administration of 3-amino-1,2,4-triazole (AT) to rats. Concomitant pretreatment with phenobarbital and AT resulted in levels of ELISA-detectable cytochrome P-450 PB which were significantly increased over control levels, while spectrally detectable levels of total holoenzyme remained unchanged. These results support the idea that this cytochrome P-450 may exist, at least partly, in the microsomal membrane in an inactive or apoprotein form.  相似文献   

8.
Two forms of cytochrome P-450 (P-450) from liver microsomes of hamsters treated with 2,3,4,7,8-pentachlorodibenzofuran (PenCDF), which possesses the potent acute toxicity and 3-methylcholanthrene (MC)-type inducing ability of liver microsomal monooxygenases in animals, were purified and characterized. These P-450 forms, designated as hamster P-450H and hamster P-450L, had the molecular masses of 52 and 50 kDa, respectively, and showed the absorption maximum of CO-reduced difference spectra at 446 nm. The absolute spectra of their oxidized forms indicated that hamster P-450H was in high-spin state and hamster P-450L was in low-spin state. A part of PenCDF injected into hamster was tightly bound to purified hamster P-450H at a ratio of 0.107 nmol PenCDF/nmol P-450. In a reconstituted system, both hamster P-450H and hamster P-450L showed relatively low catalytic activities for 3-hydroxylation of benzo[a]pyrene and O-deethylations of both 7-ethoxyresorufin and 7-ethoxycoumarin, while they both catalyzed 7 alpha- and 2 alpha-hydroxylations of testosterone effectively to a similar extent. Addition of cytochrome b5-to a reconstituted system accelerated the formation of 7 alpha-hydroxytestosterone 5.3-fold with hamster P-450L and 2.2-fold with hamster P-450H. In addition, hamster P-450H catalyzed estradiol 2-hydroxylation at a high rate but hamster P-450L did not.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
Procedures are described for the isolation of two forms of rabbit liver microsomal liver microsomal cytochrome P-450 (P-450LM) in homogeneous state. They are designated by their relative electrophoretic mobilities on polyacrylamide gel in the presence of sodium dodecyl sulfate as P-450LM2 and P-450LM4. P-450LM2, which was isolated from phenobarbital-induced animals, has a subunit molecular weight of 48,700. The best preparations contain 20 nmol of the cytochrome per mg of protein and 1 molecule of heme per polypeptide chain. P-450LM4, which is induced by beta-naphthoflavone but is also present in phenobarbital-induced and untreated animals, was isolated from all three sources and found to have a subunit molecular weight of 55,300. The best preparations contain 17nmol of the cytochrome per mg of protein and 1 molecule of heme per polypeptide chain. Some of the purified preparations of the cytochromes, although electrophoretically homogeneous, contain apoenzyme due to heme loss during purification. The purified proteins contain no detectable NADPH-cytochrome P-450 reductase, cytochrome b5, or NADH-cytochrome b5 reductase, and only low levels of phospholipid (about 1 molecule per subunit). Amino acid analysis indicated that P-450LM2 and P-450LM4 are similar in composition, but the latter protein has about 60 additional residues. The COOH-terminal amino acid of P-450LM2 is arginine, as shown by carboxypeptidase treatment, whereas that of P-450LM4 is lysine. NH2-terminal amino acid residues could not be detected. Carbohydrate analysis indicated that both cytochromes contain 1 residue of glucosamine and 2 of mannose per polypeptide subunit. The optical spectra of the oxidized and reduced cytochromes and carbon monoxide complexes were determined. Oxidized P-450LM2 has maxima at 568, 535, and 418 nm characteristic of a low spin hemeprotein, and P450LM4 from beta-naphthoflavone-induced, phenobarbital-induced, or control microsomes has maxima at 645 and 394 nm, characteristic of the high spin state. The spectrum of -450lm4 becomes similar to that of P-450LM2 at high protein concentrations or upon the addition of detergent (Renex), whereas the spectrum of P-450LM2 is unaffected by the protein concentration or the presence of detergent. Electron paramagnetic resonance spectrometry of the purified cytochromes indicated that oxidized -450lm2 is in the low spin state, whereas P-450LM4 is largely, but not entirely, in the high spin state.  相似文献   

10.
3,4,5,3',4'-Pentachlorobiphenyl (PenCB), one of the most potent 3-methylcholanthrene (MC)-type inducers of hepatic enzymes in animals, caused a remarkable induction of liver microsomal monooxygenases, particularly 7-ethoxyresorufin (7-ER) O-deethylase, benzo(a)pyrene (BP) 3-hydroxylase, and testosterone 16 alpha-hydroxylase in chickens, but not NADPH-cytochrome c(P-450) reductase and cytochrome b5. Two forms of cytochrome P-450 (P-450) in liver microsomes of PenCB-treated chickens were purified and characterized. The absorption maxima of the CO-reduced difference spectra of both enzymes (chicken P-448 L and chicken P-448 H) were at 448 nm. From the oxidized form of their absolute spectra, chicken P-448 L was a low-spin form and chicken P-448 H was a high-spin form. They had molecular masses of 56 and 54 kDa, respectively. In a reconstituted system, 7-ER O-deethylation, BP 3-hydroxylation, and testosterone 16 alpha-hydroxylation were catalyzed at high rates by chicken P-448 L but not by chicken P-448 H. Chicken P-448 L also catalyzed N-demethylation of aminopyrine, benzphetamine, and ethylmorphine with relatively low activity. On the other hand, chicken P-448 H functioned only in catalyzing estradiol 2-hydroxylation. These results were supported by an inhibition study of microsomal monooxygenases using an antibody against each enzyme. Immunochemical studies revealed that the enzymes differ from each other but are both inducible by PenCB-treatment. Chicken P-448 L and chicken P-448 H respectively comprise about 82 and 7% of the total P-450 content in chicken liver microsomes.  相似文献   

11.
The effect of substrate on the spin state of oxidized cytochrome P-450 in liver microsomes prepared from phenobarbital-pretreated rats has been examined. Formation of the substrate-induced Type I difference spectrum was found to correlate quantitatively with the disappearance of the ferric low-spin esr signal of cytochrome P-450. The dissociation constant of substrate for oxidized cytochrome P-450 obtained by optical methods was found to be the same as that obtained from esr methods provided that the same high microsomal protein concentration was used. However, a decrease in microsomal protein concentration leads to an apparent increase in the affinity of substrate for oxidized cytochrome P-450, indicating a dependence of lipophilic substrate dissociation constants on the membrane concentration.  相似文献   

12.
Lipophilic thiol compounds interact spectrally with liver microsomes from phenobarbital-pretreated rats by formation of unusual optical difference spectra with peaks at 378, 471, 522 and 593 nm in the oxidized state. The binding kinetics were biphasic. The EPR spectrum of cytochrome P-450 was slightly modified but the magnitude of the low-spin signal was unchanged. n-Octanethiol competitively displaced metyrapone and n-octane from the active site of cytochrome P-450. Other thiols behaved similarly with variations in the magnitude and the affinity of the binding process. Tertiary thiols caused the formation of the high-spin cytochrome P-450 substrate complex, and model studies with myoglobin revealed that steric hindrance prevented the liganding of the tertiary thiol group to the ferric cytochrome P-450. Addition of thiols to dithionite reduced microsomes resulted in relatively small spectral changes with maxima at 449 nm typical for ligand complexes of the ferrous cytochrome. It was concluded that lipophilic thiols can be bound as ligands by at least two species of oxidized cytochrome P-450 which represent, however, not more than about one fifth of the total cytochrome P-450 content in liver microsomes from phenobarbital-pretreated rats.  相似文献   

13.
Aromatase cytochrome P-450, which catalyzes the conversion of androgens to estrogens, was purified from human placental microsomes. The enzyme was extracted with sodium cholate, fractionated by ammonium sulfate precipitation, and subjected to column chromatography in the presence of its substrate, androstenedione, and the nonionic detergent, Nonidet P-40. The preparation exhibits a single major band when analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and has a specific content of 11.5 nmol of P-450/mg of protein. The purified enzyme displays spectroscopic properties typical of the ferric and ferrous forms of cytochrome P-450. Full enzymatic activity can be reconstituted with rabbit liver microsomal cytochrome P-450 reductase and Nonidet P-40. Purified aromatase cytochrome P-450 displays catalytic characteristics similar to the enzyme in intact microsomes in the aromatization of androstenedione, 19-hydroxyandrostenedione and 19-oxoandrostenedione. Testosterone and 16 alpha-hydroxytestosterone are aromatized at maximal rates similar to androstenedione, and all substrates exhibit relative affinities corresponding to those observed in microsomes. We have raised rabbit antibodies to the purified enzyme which show considerable specificity and sensitivity on immunoblots.  相似文献   

14.
Hydrocarbons of different structures interact with microsomal and solubilized cytochrome P-450 from liver of phenobarbital-pretreated rats forming a high spin enzyme-substrate type complex. The affinity of cytochrome P-450 for hydrocarbons increases with increasing lipophilicity independently of the chemical structure. The binding capacity of microsomal P-450 for aliphatic hydrocarbons is generally higher than for aromates. Mutual influence in binding of two different hydrocarbons by microsomal P-450 is stronger among aromatic than among aliphatic hydrocarbons; in both cases it appears to be effected rather by specific interaction of both substances with the binding site than by a nonspecific influence on the microsomal membrane. Only one fraction of low spin form of solubilized cytochrome P-450 from rat liver interacts with hydrocarbons. The binding capacity for aromatic and aliphatic substances corresponds to that found in microsomes. The affinity for the most lipiphilic substrate, perhydrophenanthrene, is equal in microsomal and solubilized preparation; with decreasing lipophilicity the affinity of solubilized P-450 decreases faster than in microsomes. The LM2 fraction of cytochrome P-450 from phenobarbital-pretreated rabbits interacts only with aliphatic hydrocarbons with wide variation of the binding capacity. The affinity is generally one order of magnitude lower than in microsomes. Active fractions of solubilized P-450 from both species are rapidly converted to P-420 by dithionite. The extent of this conversion is strongly reduced by saturation with substrate.  相似文献   

15.
The role of cytochrome b5 in adrenal microsomal steroidogenesis was studied in guinea pig adrenal microsomes and also in the liposomal system containing purified cytochrome P-450s and NADPH-cytochrome P-450 reductase. Preincubation of the microsomes with anti-cytochrome b5 immunoglobulin decreased both 17 alpha- and 21-hydroxylase activity in the microsomes. In liposomes containing NADPH-cytochrome P-450 reductase and P-450C21 or P-450(17) alpha,lyase, addition of a small amount of cytochrome b5 stimulated the hydroxylase activity while a large amount of cytochrome b5 suppressed the hydroxylase activity. The effect of cytochrome b5 on the rates of the first electron transfer to P-450C21 in liposome membranes was determined from stopped flow measurements and that of the second electron transfer was estimated from the oxygenated difference spectra in the steady state. It was indicated that a small amount of cytochrome b5 activated the hydroxylase activity by supplying additional second electrons to oxygenated P-450C21 in the liposomes while a large amount of cytochrome b5 might suppress the activity through the interferences in the interaction between the reductase and P-450C21.  相似文献   

16.
The aerobic metabolism of benzphetamine by liver microsomes, during a cytochrome P-450-catalyzed mixed-function oxidation reaction, results in the formation of an easily detected spectral complex with an absorption band maximum at 456 nm. Electron paramagnetic resonance studies, as well as studies with the chemical reductant, sodium dithionite, or the oxidant, potassium ferricyanide, indicate that the spectral complex results from the formation of a product adduct with reduced cytochrome P-450. The spectral properties of this product complex of cytochrome P-450 have been compared to those observed with carbon monoxide, metyrapone, and ethylisocyanide. The reaction of these reagents to specific pools of microsomal cytochrome P-450 permits the identification of at least two major and two minor types of cytochrome P-450 in liver microsomes prepared from phenobarbital-treated rats.  相似文献   

17.
A form of cytochrome P-450 catalyzing lanosterol 14 alpha-demethylation (tentatively called "P-450(14)DM") was purified from microsomes of semi-anaerobically grown cells of Saccharomyces cerevisiae to gel electrophoretic homogeneity. An apparent monomeric Mr = 58,000 was estimated for the purified cytochrome by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Both optical and EPR spectra of oxidized P-450(14)DM are characteristic of low spin ferric heme proteins, and its reduced CO complex showed a Soret absorption peak at 447 nm. As in the case of hepatic microsomal cytochromes P-450, the ethyl isocyanide complex of reduced P-450(14)DM was in a pH-dependent equilibrium between two states having Soret peaks at 429 and 453 nm, the equilibrium being considerably shifted toward the 453-nm state. Oxidized P-450(14)DM was peculiar in that in its CD spectrum there was a negative shoulder at 425 nm and the 350- and 414-nm troughs possessed larger and relatively smaller [theta] values, respectively, than those reported for other low spin ferric cytochromes P-450. Lanosterol was the only compound which caused a Type I spectral change in oxidized P-450(14)DM. The lanosterol-induced low to high spin state change was, however, only slight even at saturating concentrations of the sterol, indicating that the lanosterol-P-450(14)DM adduct was in a spin state equilibrium.  相似文献   

18.
Cytochrome P-450, purified from liver microsomes of phenobarbital-treated rabbits, was incorporated into dimyristoylphosphatidylcholine liposomes. The binding of benzphetamine to the liposome-bound cytochrome P-450 was examined by measuring the benzphetamine-induced spectral change at various temperatures. The van't Hoff plot of the apparent spectral dissociation constant showed a distinct break at the temperature of phase transition of the synthetic lipid. On the other hand, no such break was observed for benzphetamine binding to microsomal bound cytochrome P-450. These results suggest that the substrate binding site of cytochrome P-450 is embedded in the apolar interior of phospholipid bilayer membranes.  相似文献   

19.
Purification and characterization of diabetes-inducible cytochrome P-450   总被引:1,自引:0,他引:1  
A diabetes-inducible form of cytochrome P-450, termed P-450DM, was purified to electrophoretical homogeneity (MW 51,000) by high-performance liquid chromatography from liver microsomes of diabetic rats induced with streptozotocin. The CO-reduced absorption maximum of P-450DM was at 452 nm and the oxidized heme iron appeared to be predominately in the high-spin state as deduced from the Soret maximum at 395 nm. P-450DM was active in aniline hydroxylation and N-nitrosodimethylamine demethylation. The dealkylation activity toward 7-ethoxycoumarin by P-450DM was much enhanced by the addition of cytochrome b5.  相似文献   

20.
A purified low-spin form of cytochrome P-450 was isolated from phenobarbital-induced rabbit liver microsomes. The preparation was functionally active and free from cytochromes b5 and P-420 and phospholipids. The specific content of the cytochrome was 18 nmoles per mg of protein. At the molecular weight of the hemoprotein of 50,000, it corresponds to 90% of purification. The purified hemoprotein binds substrates of type II and some substrates of type I. The complexes formed reveal spectral properties, similar to those for the complexes of these substrates with the microsomal form of cytochrome P-450.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号