首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Morphological correlations of the functional regulation of oxygen consumption have been studied on single isolated crayfish mechanoreceptor neurons. An enhancement of oxygen consumption is promoted by the following: (1) redistribution of mitochondria and an increase in cytochrome oxidase (CO) activity in mitochondria near the plasmatic membrane, (2) coordination of mitochondria aggregation rhythms with pO2 rhythms in the medium external for a cell, (3) a decrease in the area of high CO activity and mitochondria and a shortening of the oxygen diffusion pathway, (4) an increase of the CO activity gradient from the neuron body periphery to its center, (5) a transfer of oxygen with the water flow during neuron body hydration and cytoplasm dilution during the transfer of a portion of the gel into sol, (6) cyclic changes in the ratio of the neuron body and hillock sizes at which there is a transfer of oxygen with the water flow into the neuron body, its mitochondrial uptake in the neuron body, and transfer of the oxygen-free water from the neuron body into the axonal hillock and further into the external medium.  相似文献   

2.
To study possible factors in the pathogenesis of the ethanol-induced fatty liver, we investigated the effect of chronic ethanol consumption on the metabolism of fatty acids by isolated hepatic mitochondria. Chronic ethanol consumption resulted in decreased fatty acid oxidation, as evidenced by a reduction in oxygen uptake and CO2 production associated with the oxidation of fatty acids. The State 3 rate of oxygen uptake was depressed to a greater extent than the State 4 or the uncoupler-stimulated rate; the respiratory control ratio was also decreased. Therefore, one site of action of chronic ethanol feeding is on oxidative phosphorylation. The reduction in fatty acid oxidation, in general, is not due to an effect on the activation or translocation of fatty acids into the mitochondria. There was no effect by ethanol feeding on the activity of palmitoyl coenzyme A synthetase, whereas carnitine palmitoyltransferase activity was increased. The use of an artificial system (formazan production) to study beta oxidation in the absence of the electron transport chain is described. In the presence of fluorocitrate, which inhibits citric acid cycle activity, ketogenesis and formazan production were increased by chronic ethanol consumption. Thus beta oxidation to the level of acetyl-CoA is not impaired by chronic ethanol consumption. Total oxidation of fatty acids to CO2 is depressed by chronic ethanol intoxication because of effects on oxidative phosphorylation or the citric acid cycle (or both). Neither nutritional deficiency, cofactor depletion, nor the presence of ethanol in vitro explains these effects. Several of the effects of chronic ethanol consumption on fatty acid oxidation are mimicked by acetaldehyde and acetate, products of ethanol oxidation. Chronic ethanol consumption leads to persistent impairment of mitochondrial oxidation of fatty acids to CO2. However, oxidation of fatty acids to acetyl-CoA is not decreased by chronic ethanol consumption.  相似文献   

3.
We measured the rate of consumption of oxygen by alligators in a dry metabolic chamber and in a tank of water where they were free to dive and surface at will at 10-35 degrees C, a range spanning most of the body temperatures experienced by alligators in nature. Neither the standard metabolic rate nor the rate of oxygen consumption during one hour of sustained, voluntary activity varied with body mass, month of the year, duration of fasting before measurement, or experimental condition (terrestrial vs aquatic). Voluntary diving is not accompanied by any reduction in standard metabolic rate; these results and those of others suggest that the "diving reflex" of alligators is probably employed only in emergencies. Spontaneous activity for one hour is accompanied by a 1.9-4.4 fold rise in oxygen consumption; this factorial increase is less than that for other reptiles induced to maximal activity for brief intervals. Both standard and active oxygen consumption rise significantly with body temperature.  相似文献   

4.
Modulation of cerebral cell metabolism for improving the outcome of hypoxia-ischemia and reperfusion is a strategy yet to be explored. Because carbon monoxide (CO) is known to prevent cerebral cell death; herein the role of CO in the modulation of astrocytic metabolism, in particular, at the level of mitochondria was investigated. Low concentrations of CO partially inhibited oxidative stress-induced apoptosis in astrocytes, by preventing caspase-3 activation, mitochondrial potential depolarization, and plasmatic membrane permeability. CO exposure enhanced intracellular ATP generation, which was accompanied by an increase on specific oxygen consumption, a decrease on lactate production, and a reduction of glucose use, indicating an improvement of oxidative phosphorylation. Accordingly, CO increased cytochrome c oxidase (COX) enzymatic specific activity and stimulated mitochondrial biogenesis. In astrocytes, COX interacts with Bcl-2, which was verified by immunoprecipitation; this interaction is superior after 24 h of CO treatment. Furthermore, CO enhanced Bcl-2 expression in astrocytes. By silencing Bcl-2 expression with siRNA transfection, CO effects in astrocytes were prevented, namely: (i) inhibition of apoptosis, (ii) increase on ATP generation, (iii) stimulation of COX activity, and (iv) mitochondrial biogenesis. Thus, Bcl-2 expression is crucial for CO modulation of oxidative metabolism and for conferring cytoprotection. In conclusion, CO protects astrocytes against oxidative stress-induced apoptosis by improving metabolism functioning, particularly mitochondrial oxidative phosphorylation.  相似文献   

5.
In rabbit reticulocytes there exists an Antimycin A-resistent oxygen consumption. It amounts to about 20% of the total oxygen consumption, independently of the degree of maturation of the cells and of the presence of external substrates. The main substrate of the Antimycin A-resistent oxygen consumption is glucose, which is metabolized by the pentose phosphate pathway. NADP-dependent substrates provide more CO2 in the presence of Antimycin A. The 14CO2-formation from metabolites of the citric acid cycle and of metabolites directly connected with this cycle is decreased in the presence of Antimycin A, whereas no 14CO2 is formed from long-chain fatty acids. A H2O2-formation by a NADPH-oxygenase is postulated. The mitochondria contribute reducing equivalents to the cytosolic oxygen consumption. The postulated interactions include hydrogen transfer and the malate-shuttle.  相似文献   

6.
The oxygen consumption rate, proliferative activity, and morphology of EMT6/Ro mouse mammary sarcoma cells in monolayer and multicellular spheroid culture have been investigated in a comparative study. During the transition of monolayer cells from the exponential into the plateau growth phase, there is a distinct decrease in the cellular volume that is associated with a corresponding decrease in the proliferative and respiratory activity of the cells. The decline in cell volume is mainly due to a decrease in the content of cytoplasm, whereas the size of the nucleus is only slightly reduced. A concomitant decrease in the number of mitochondria per cell obviously accounts for the reduction in cellular oxygen uptake. Despite a continuous decrease of cell proliferation from the surface to interior regions of EMT6 spheroids reflected by a gradient in tritiated thymidine labeling, volume-related oxygen consumption is rather uniform in viable regions of these aggregates. The finding can be explained by the results of the morphometric evaluation showing a uniform volume density of mitochondria, i.e., of oxygen-consuming sites within these spheroids.  相似文献   

7.
Voltage-dependent sodium channels are distributed nonuniformly over the surface of nerve cells and are localized to morphologically distinct regions. Fluorescent neurotoxin probes specific for the voltage-dependent sodium channel stain the axon hillock 5-10 times more intensely than the cell body and show punctate fluorescence confined to the axon hillock which can be compared with the more diffuse and uniform labeling in the cell body. Using fluorescence photobleaching recovery (FPR) we measured the lateral mobility of voltage-dependent sodium channels over specific regions of the neuron. Nearly all sodium channels labeled with specific neurotoxins are free to diffuse within the cell body with lateral diffusion coefficients on the order of 10(-9) cm2/s. In contrast, lateral diffusion of sodium channels in the axon hillock is restricted, apparently in two different ways. Not only do sodium channels in these regions diffuse more slowly (10(-10)-10(-11) cm2/s), but also they are prevented from diffusing between axon hillock and cell body. No regionalization or differential mobilities were observed, however, for either tetramethylrhodamine-phosphatidylethanolamine, a probe of lipid diffusion, or FITC-succinyl concanavalin A, a probe for glycoproteins. During the maturation of the neuron, the plasma membrane differentiates and segregates voltage-dependent sodium channels into local compartments and maintains this localization perhaps either by direct cytoskeletal attachments or by a selective barrier to channel diffusion.  相似文献   

8.
Mitochondria recently have emerged as important sites in controlling NO levels within the cell. In this study, the synthesis of nitric oxide (NO) from nitrite and its degradation by mitochondria isolated from Arabidopsis thaliana were examined. Oxygen and NO concentrations in the reaction medium were measured with specific electrodes. Nitrite inhibited the respiration of isolated A. thaliana mitochondria, in competition with oxygen, an effect that was abolished or potentiated when electron flow occurred via alternative oxidase (AOX) or cytochrome c oxidase (COX), respectively. The production of NO from nitrite was detected electrochemically only under anaerobiosis because of a superoxide-dependent process of NO degradation. Electron leakage from external NAD(P)H dehydrogenases contributed the most to NO degradation as higher rates of Amplex Red-detected H2O2 production and NO consumption were observed in NAD(P)H-energized mitochondria. Conversely, the NO-insensitive AOX diminished electron leakage from the respiratory chain, allowing the increase of NO half-life without interrupting oxygen consumption. These results show that the accumulation of nitric oxide derived from nitrite reduction and the superoxide-dependent mechanism of NO degradation in isolated A. thaliana mitochondria are influenced by the external NAD(P)H dehydrogenases and AOX, revealing a role for these alternative proteins of the mitochondrial respiratory chain in the control of NO levels in plant cells.  相似文献   

9.
An analytical model is developed that describes oxygen transport and oxygen consumption for small biological structures without a circulatory system. Oxygen inside the organism is transported by diffusion alone. Oxygen transfer towards the organism is retarded by a thin static fluid film at the surface of the organism. The thickness of this film models the outward water conditions, which may range from completely stagnant water conditions to so-called well-stirred water conditions. Oxygen consumption is concentration-independent above a specified threshold concentration (regulator behaviour) and is proportional to the oxygen concentration below this threshold (conformer behaviour). The model takes into account shape and size of the organism and predicts the transition from (pure) regulator behaviour to (pure) conformer behaviour, as well as the mean oxygen consumption rate. Thereby the model facilitates a proper analysis of the physical constraints set on shape and size of organisms without an active internal oxygen transport mechanism. This analysis is carried out in some detail for six characteristic shapes (infinite sheet, cylinder and beam; finite cylinder, sphere and block). In a well-stirred external medium, a flattened shape appears to be the most favourable for oxygen supply, while a compact shape (cube) is more favourable if the external medium is nearly stagnant. The theoretical framework is applied to oxygen consumption data of eight teleost embryos. This reveals relative insensitivity to external flow conditions in some species (e.g., winter flounder, herring), while others appear to rely on external stirring for a proper oxygen supply (e.g., largemouth bass). Interestingly, largemouth bass is the only species in our analysis that exhibits ‘fin-fanning’.  相似文献   

10.
1. The effect of low oxygen concentration on the oxidation-reduction states of cytochrome c and of pyridine nucleotide, on Ca2+ uptake, on the energy-linked reduction of pyridine nucleotide by succinate, and on the rate of oxygen consumption have been examined under various metabolic conditions, using pigeon heart mitochondria.

2. The oxygen concentration required to provide half-maximal reduction of cytochrome c (p50c) ranges from 0.27 to 0.03 μM (0.2-0.02 Torr) depending upon the metabolic activity. There is a linear increase of the p50c value with increasing respiratory rate.

3. The fraction of the normoxic respiration that is observed at p50c is 70–90% under State 4 conditions, but is 30% under State 3 conditions.

4. The oxygen requirement for half-maximal reduction of pyridine nucleotide (p50PN) varies less than p50c, being 0.08 μM in State 3 and 0.06 μM in the uncoupled state.

5. The ability of the mitochondria to exhibit an energy-linked reduction of pyridine nucleotide by succinate disappears at an oxygen concentration of 0.09 μM (0.06 Torr). Below this oxygen concentration, endogenous Ca2+ begins to be released from the mitochondria. Thus, the critical oxygen concentration for bioenergetic function of mitochondria corresponds approximately to 50% reduction of pyridine nucleotide (p50PN).  相似文献   


11.
The circadian rhythms of food and water consumption, the number of feeding and drinking episodes, oxygen consumption, carbon dioxide production, respiratory quotient, gross motor activity, and body temperature were measured in male B6C3F, mice that were fed ad libitum (AL) or fed a caloric-restricted diet (CR). The CR regimen (60% of the normal AL consumption) was fed to mice during the daytime (5 hr after lights on). CR animals exhibited fewer feeding episodes but consumed more food per feeding bout and spent more total time feeding than AL mice. It appears that CR caused mice to change from their normal “nibbling behavior” to meal feeding. Compared to AL animals, the mean body temperature was reduced in CR animals, while the amplitude of the body temperature rhythm was increased. Spans of reduced activity, metabolism, and body temperature (torpor) occurred in CR mice for several hours immediately before feeding, during times of high fatty acid metabolism (low RQ). The acute availability of exogenous substrates (energy supplies) seemed to modulate metabolism shifting metabolic pathways to promote energy efficiency. CR was also associated with lower DNA damage, higher DNA repair, and decreased proto-oncogene expression. Most of the circadian rhythms studied seemed to be synchronized primarily to the feeding rather than the photoperiod cycle. Night-time CR feeding was found to be better than daytime feeding because the circadian rhythms for AL and CR animals were highly synchronized when this regimen was used.  相似文献   

12.
The effect of increasing the intracellular calcium ion concentration by various methods (iontophoretic injection into the cytoplasm, generation of a burst of action potentials, addition of uncouplers of oxidative phosphorylation to the external solution, causing release of calcium from mitochondria) on the inward current induced by injection of cAMP into the neuron (the cAMP current) was investigated on the neuron membrane ofHelix pomatia under voltage clamp conditions. In all cases an increase in the intracellular calcium ion concentration was found to lead to an increase in amplitude, and in many cases duration, of the cAMP current. It is suggested that membrane structures responsible for appearance of the cAMP current have two phosphorylation centers: cAMP-dependent and calcium-calmodulin-dependent. The possible role of this process in signal integration at the intraneuronal level is discussed.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 17, No. 1, pp. 78–84, January–February, 1985.  相似文献   

13.
Oxygen consumption in the presence of cyanide was utilized as a measure of plasma membrane electron transport in Chinese hamster ovary (CHO) and human cervical carcinoma (HeLa) cell lines. Both intact cells and isolated plasma membranes carry cyanide-insensitive NADH(P)H oxidases at their external membrane surfaces (designated ECTO-NOX proteins). Regular oscillatory patterns of oxygen consumption with period lengths characteristic of those observed for rates of NADH oxidation by ECTO-NOX proteins were observed to provide evidence for transfer of protons and electrons to reduce oxygen to water. The oscillations plus the resistance to inhibition by cyanide identify the bulk of the oxygen consumption as due to ECTO-NOX proteins. With intact CHO cells, oxygen consumption was enhanced by but not dependent upon external NAD(P)H addition. With intact HeLa cells, oxygen consumption was inhibited by both NADH and NAD+ as was growth. The results suggest that plasma membrane electron transport from internal donors to oxygen as an external acceptor is mediated through ECTO-NOX proteins and that electron transport to molecular oxygen may be differentially affected by external pyridine nucleotides depending on cell type.  相似文献   

14.
Avicins are a class of natural saponins with selective pro-apoptotic activity in cancer cells. In this work, we studied the influence of avicins on metabolic state of rat liver mitochondria. Avicin-treated mitochondria underwent a significant decrease in oxygen consumption rate that was completely restored by addition of exogenous cytochrome c. On the other hand, avicins increased the rotenone-insensitive oxidation of external NADH in the presence of exogenous cytochrome c, long before high amplitude swelling of mitochondria was observed. The increase in external NADH oxidation was cyclosporin A-insensitive. Avicin G significantly accelerated hydroperoxide-induced oxidation of mitochondrial endogenous NAD(P)H, the drop of the inner membrane potential and the high amplitude swelling of mitochondria. The obtained data might explain selective induction of apoptosis in tumor cells by avicins. Based on other studies showing that tumor cells generate hydroperoxides with a very high rate, avicins could provide a new strategy of anticancer therapy by sensitizing cells with high levels of reactive oxygen species to apoptosis.  相似文献   

15.
Chronic alcohol consumption induced liver injury in Cu,Zn-superoxide dismutase-deficient mice (Sod1-/-), with extensive centrilobular necrosis and inflammation and a reduction in hepatic ATP content. Mechanisms by which ethanol decreased ATP in these mice remain unclear. We investigated alterations in mitochondria of Sod1-/- mice produced by chronic ethanol treatment. These mitochondria had an increase in State 4 oxygen consumption with succinate and especially with glutamate plus malate compared to mitochondria from pair-fed Sod1-/- mice or mitochondria from wild-type mice fed dextrose or ethanol. This uncoupling was associated with a decrease in ADP/O and respiratory control ratios, a decline in mitochondrial membrane potential, enhanced mitochondrial permeability transition, and decreased aconitase activity. Total thiols and uncoupling protein 2 levels were elevated in the pair-fed Sod1-/- mitochondria, perhaps an adaptive response to oxidant stress. However, no such increases were found with the ethanol-fed Sod1-/- mitochondria, suggesting a failure to develop these adaptations. The mitochondria from the ethanol-fed Sod1-/- mice had elevated levels of cleaved Bax, Bak, Bcl-xl, and adenine nucleotide translocator. Immunoprecipitation studies revealed increased association of Bax and Bak with the adenine nucleotide translocator. ADP-ATP exchange was very low in the ethanol-fed Sod1-/- mitochondria. These results suggest that ethanol treatment of Sod1-/- mice produces uncoupling and a decline in Deltapsi, swelling, increased association of proapoptotic proteins involved in the permeability transition, and decreased adenine nucleotide translocator activity, which may be responsible for the decline in ATP levels and development of necrosis in this model of alcohol-induced liver injury.  相似文献   

16.
Combined action of rotenone and malonate, inhibitors of complexes I and II of the mitochondrial electron transport chain (ETC), on wheat cut-off root seedlings was studied after 6 h of incubation. Intensity of oxygen consumption and release of potassium ions into incubation medium were determined simultaneously with the study of changes in cell ultrastructure. Malonic acid was added 1 h after the root incubation in the rotenone solution and produced inhibition of respiration, as well as a greater release of K+ into the incubation solution as compared with effect of rotenone alone. After 2 h of the combined action of these inhibitors, many mitochondria acquired a toroidal shape, thereby increasing the outer surface. For the ensuing hours, stimulation of oxygen consumption by the roots and a decrease of K+ content in the incubation medium were observed. Mitochondria once again acquired a round or oval shape and compensation-reparation processes took place. Contacts of endoplasmic reticulum channels with mitochondria were observed, which seems to be due to the synthesis of the enzyme splitting malonate to acetyl-CoA, which in turn can be included both into the Krebs cycle and into lipogenesis. It is suggested that the toroidal form of mitochondria is associated with the activation of the external NAD(P)H-dehydrogenase of the inner mitochondrial membrane, as under these conditions, at the inhibition of the ETC complexes I and II, the activity of other dehydrogenises is blocked. Thus, the use of the external NAD(P)H allows the activity of the ETC mitochondria to be restored, which facilitates the course of the reparation processes and allows cells to be adapted to this action.  相似文献   

17.
African mole-rats (family: Bathyergidae) are strictly subterranean mammals that reside in extensive networks of underground tunnels. They are rarely, if ever, exposed to light and experience muted temperature ranges. Despite these constant conditions, the presence of a functional circadian clock capable of entraining to external light cues has been reported for a number of species. In this study, we examine a social mole-rat species, Cryptomys hottentotus mahali, to determine if it possesses a functional circadian clock that is capable of perceiving light and ambient temperature cycles, and can integrate these cues into circadian rhythms of locomotor activity and core body temperature. Eight male and eight female, non-reproductive individuals were subjected to six cycles of varying light and temperature regimes. The majority of the individuals displayed daily rhythms of locomotor activity and body temperature that are synchronised to the external light and temperature cycles. Furthermore, endogenous rhythms of both locomotor activity and core body temperature were displayed under constant conditions. Thus, we can conclude that C. h. mahali possesses a functional circadian clock that can integrate external light and temperature cues into circadian rhythms of locomotor activity and core-body temperature.  相似文献   

18.
The axon of the pyramidal neuron in the cerebral cortex arises either directly from the perikaryon or as a branch from a basal dendrite. When it arises from the perikaryon, an axon hillock is present. The hillock is a region in which there is a transition between the cytological features of the perikaryon and those of the initial segment of the axon. Thus, in the hillock there is a diminution in the number of ribosomes and a beginning of the fasciculation of microtubules that characterize the initial segment. Not all of the microtubules entering the hillock from the perikaryon continue into the initial segment. Distally, the axon hillock ends where the dense undercoating of the plasma membrane of the initial segment commences. Dense material also appears in the extracellular space surrounding the initial segment. The initial segment of the pyramidal cell axon contains a cisternal organelle consisting of stacks of flattened cisternae alternating with plates of dense granular material. These cisternal organelles resemble the spine apparatuses that occur in the dendritic spines of this same neuron. Axo-axonal synapses are formed between the initial segment and surrounding axon terminals. The axon terminals contain clear synaptic vesicles and, at the synaptic junctions, both synaptic complexes and puncta adhaerentia are present.  相似文献   

19.
After 10 days of swimming (10 min per day, water temperature +20 degrees C) the oxygen consumption in rat liver mitochondria increased via the external pathway of NADH oxidation from 3.6 +/- 0.3 to 4.4 +/- 0,2 nmoles O2 x min-1 x mg-1 protein; when the rats were simultaneously injected with an endogenous immunomodulator T-activin (5 micrograms/100 g body weight) daily, this rate increased up to 6.5 +/- 0.6 nmoles O2 x min-1 x mg-1 protein. In the control group, the uncoupled respiration rate is also higher, while the ascorbate+ +TMPD oxidation rate is lower than in the cold- and cold + T-activin-treated groups. The metabolic states of lymphocyte mitochondria did not differ in the three experimental groups. The respiration rates and delta psi m (monitored by diS-C3-(5) fluorescence) of lymphocyte mitochondria in these three groups were also identical.  相似文献   

20.
The rate of TEMPONE reduction by electrons originating from ubiquinone in intact rabbit spermatozoa was observed for control, high ionic strength (HIS) medium-treated, and HIS-seminal plasma-treated (HIS-SP) samples. The presence of TEMPONE in the incubation medium had no effect on oxygen consumption, demonstrating the utility of TEMPONE as a nonperturbing probe of the ubiquinol redox state. The rate of TEMPONE reduction was significantly increased over control levels for sperm incubated in hypertonic medium and was correlated to a decrease in oxygen consumption and a relative increase in ATP in the total adenine nucleotide pool. This increase in TEMPONE reduction in HIS sperm was reversed by treatment of sperm with seminal plasma, but seminal plasma had no effect on oxygen consumption or relative amounts of ATP in the adenine nucleotide pool. These observations are consistent with state 3 respiration in control sperm and state 4 respiration in HIS- and HIS-SP-treated sperm. Arrhenius data were obtained for ejaculated and epididymal sperm subjected to a variety of treatments. Lines fitted to plots of Arrhenius data revealed that each treatment affected the activation energy and intercept relative to controls. Evidence is presented for a phase transition occurring at 13 degrees C based on changes in the rate of TEMPONE reduction by ubiquinol. It was noted that, above the phase transition, rate constants for the reaction were dependent upon both treatment and temperature, but below the transition the differential effects of treatment were no longer apparent. The present study has demonstrated that events taking place in the respiratory chain can be closely monitored by measuring oxygen uptake and TEMPONE reduction, and that these events are affected by alterations in the sperm environment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号