首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The role of the movement protein (MP) and nuclear shuttle protein (NSP) in the pathogenicity of Tomato leaf curl New Delhi virus (ToLCNDV), a bipartite begomovirus, was studied. Both genes were expressed in Nicotiana benthamiana, Nicotiana tabacum, and Lycopersicon esculentum plants with the Potato virus X (PVX) expression vector or by stable transformation of gene constructs under the control of the 35S promoter in N. tabacum. No phenotypic changes were observed in any of the three species when the MP was expressed from the PVX vector or constitutively expressed in transgenic plants. Expression of the ToLCNDV NSP from the PVX vector in N. benthamiana resulted in leaf curling that is typical of the disease symptoms caused by ToLCNDV in this species. Expression of NSP from PVX in N. tabacum and L. esculentum resulted in a hypersensitive response (HR), demonstrating that the ToLCVDV NSP is a target of host defense responses in these hosts. The NSP, when expressed as a transgene under the control of the 35S promoter, resulted in necrotic lesions in expanded leaves that initiated from a point and then spread across the leaf. The necrotic response was systemic in all the transgenic plants. Deletion of 100 amino acids from the C terminus did not compromise the HR response, suggesting that this region has no role in HR. Deletion of 60 or 100 amino acids from the N terminus of NSP abolished the HR response, suggesting that these sequences are required for the HR response. These findings demonstrate that the ToLCNDV NSP is a pathogenicity determinant as well as a target of host defense responses.  相似文献   

3.
Tobacco plants transformed with the RNA polymerase (RdRp) gene of potato virus X (PVX) that are extremely resistant to infection by potato virus X have previously been described. The PVX-resistant plants accumulated the RdRp protein at a lower level than fully susceptible plants transformed with the same RdRp construct. In this paper the difference between the PVX-resistant and susceptible transformed plants is investigated and it is demonstrated that there are three associated phenotypes of the RdRp transgene that vary in parallel between transformed lines. These phenotypes are: accumulation of the transgenic RdRp RNA at a low level; strain-specific resistance to PVX; and the ability of the transgene to trans -inactivate homologous transgenes. This gene-silencing potential of the transgenes conferring PVX resistance was illustrated by analysis of progeny from a cross between a transformant that was extremely resistant to PVX and a second PVX-susceptible transformant. In other transformants, in which the resistance was less extreme, the same three phenotypes were associated but in a transgene dosage-dependent manner. The same association of strain-specific resistance and low-level accumulation of the transgenic RdRp RNA was observed with plants that were transformed with mutant or wild-type versions of the RdRp gene. Strain-specific resistance was also produced in plants transformed with untranslatable versions of the RdRp transgene. Based on these data it is proposed that homology-dependent gene silencing and transgenic resistance to PVX may be due to the same RNA-based mechanism. An undefined genomic feature is proposed to account for the variation in the resistance and trans -inactivation phenotypes of different transformants. It is further proposed that this genome feature influences a cytoplasmic mechanism that degrades RNA with sequence homology to the silencing transgene.  相似文献   

4.
Recombination is a frequent phenomenon in RNA viruses whose net result is largely influenced by selective pressures. RNA silencing in plants acts as a defense mechanism against viruses and can be used to engineer virus resistance. Here, we have investigated the influence of RNA silencing as a selective pressure to favor recombinants of PVX-HCT, a chimeric Potato virus X (PVX) vector carrying the helper-component proteinase (HC-Pro) gene from Plum pox virus (PPV). All the plants from two lines expressing a silenced HC-Pro transgene were completely resistant to PPV. However a significant proportion became infected with PVX-HCT. Analysis of viral RNAs accumulating in silenced plants revealed that PVX-HCT escaped silencing-based resistance by removal of the HC-Pro sequences that represented preferential targets for transgene-promoted silencing. The virus vector also tended to lose the HC-Pro insert when infecting transgenic plants containing a nonsilenced HC-Pro transgene or wild-type (wt) Nicotiana benthamiana plants. Nevertheless, loss of HC-Pro sequences was faster in nonsilenced transgenic plants than in wt plants, suggesting the transgene plays a role in promoting a higher selective pressure in favor of recombinant virus versions. These results indicate that the outcome of recombination processes depends on the strength of selection pressures applied to the virus.  相似文献   

5.
To determine the requirements for viral proteins exiting the phloem, transgenic plants expressing green fluorescent protein (GFP) fused to the Potato virus X (PVX) triple gene block (TGB)p1 and coat protein (CP) genes were prepared. The fused genes were transgenically expressed from the companion cell (CC)-specific Commelina yellow mottle virus (CoYMV) promoter. Transgenic plants were selected for evidence of GFP fluorescence in CC and sieve elements (SE) and proteins were determined to be phloem mobile based on their ability to translocate across a graft union into nontransgenic scions. Petioles and leaves were analyzed to determine the requirements for phloem unloading of the fluorescence proteins. In petioles, fluorescence spread throughout the photosynthetic vascular cells (chlorenchyma) but did not move into the cortex, indicating a specific barrier to proteins exiting the vasculature. In leaves, fluorescence was mainly restricted to the veins. However, in virus-infected plants or leaves treated with a cocktail of proteasome inhibitors, fluorescence spread into leaf mesophyll cells. These data indicate that PVX contributes factors which enable specific unloading of cognate viral proteins and that proteolysis may play a role in limiting proteins in the phloem and surrounding chlorenchyma.  相似文献   

6.
7.
The optimized expression of recombinant Potato virus A coat protein (ACP) carrying two different epitopes from Human papillomavirus type 16 (HPV16) was developed. Epitope derived from minor capsid protein L2 was expressed as N-terminal fusion with ACP while an epitope derived from E7 oncoprotein was fused to its C-terminus. The construct was cloned into Potato X potexvirus (PVX) based vector and transiently expressed in plants using Agrobacterium tumefaciens mediated inoculation. To increase the level of expressed protein the transgenic Nicotiana benthamiana plants expressing Potato virus A HC-Pro gene and transgenic Nicotiana tabacum, cv. Petit Havana SR1 carrying Potato virus A P3 protein gene were tested. Synergistic infection of host plants with PVX carrying the construct and Potato virus Y(O) (PVY(O)) increased the expression of L2ACPE7 in N. tabacum and in transgenic N. benthamiana carrying potyviral HC-Pro gene as compared to control plants infected with L2ACPE7 only.  相似文献   

8.
9.
The p24 protein, one of the three proteins implicated in local movement of potato virus X (PVX), was expressed in transgenic tobacco plants (Nicotiana tabacum Xanthi D8 NN). Plants with the highest level of p24 accumulation exhibited a stunted and slightly chlorotic phenotype. These transgenic plants facilitate the cell-to-cell movement of a mutant of PVX that contained a frameshift mutation in p24. Upon inoculation with tobacco mosaic virus (TMV), the size of necrotic local lesions was significantly smaller in p24+ plants than in nontransgenic, control plants. Systemic resistance to tobamoviruses was also evidenced after inoculation of p24+ plants with Ob, a virus that evades the hypersensitive response provided by the N gene. In the latter case, no systemic symptoms were observed, and virus accumulation remained low or undetectable by Western immunoblot analysis and back-inoculation assays. In contrast, no differences were observed in virus accumulation after inoculation with PVX, although more severe symptoms were evident on p24-expressing plants than on control plants. Similarly, infection assays conducted with potato virus Y showed no differences between control and transgenic plants. On the other hand, a considerable delay in virus accumulation and symptom development was observed when transgenic tobacco plants containing the movement protein (MP) of TMV were inoculated with PVX. Finally, a movement defective mutant of TMV was inoculated on p24+ plants or in mixed infections with PVX on nontransgenic plants. Both types of assays failed to produce TMV infections, implying that TMV MP is not interchangeable with the PVX MPs.  相似文献   

10.
A major commercial cultivar of tobacco was transformed via Agrobacterium mediated procedure. Tobacco leaves started to form shoots on shoot inducing medium containing kanamycin after infected by Agrobacterium containing the plasmid with PVX CP gene. Regenerated plants were obtained in two weeks on hormone-free MS medium containing kanamycin. The transgenic tobacco plants were identified with nopaline detection,enzyme-linked immunosorbent assay and western blot analysis, symptom appearance was significantly delayed and virus accumulation was either absent or reduced in PVX CP gene transformed plants. Progenies of transgenic tobacco plants also gained resistance to PVX infection to a certain degree. These experiments demonstrate that CP protection is effective against PVX.  相似文献   

11.
The 25K, 12K, and 8K proteins and coat protein (CP) of Potato virus X (PVX) are required for virus cell-to-cell movement. In this study, experiments were conducted to determine whether the PVX 25K protein moves cell to cell and to explore potential interactions between the PVX 25K, 12K, and 8K proteins and CP. The PVX 25K gene was fused to the green fluorescent protein (GFP) gene and inserted into plasmids adjacent to the cauliflower mosaic virus 35S promoter. These plasmids were introduced by biolistic bombardment to transgenic tobacco expressing the PVX 12K, 8K, and CP genes. The GFP:25K fused proteins moved cell to cell on nontransgenic tobacco and tobacco expressing either the 12K or 8K proteins. However, the GFP:25K proteins did not move on transgenic tobacco expressing the combined 12K/8K genes or the CP gene. Thus, movement of the PVX 25K protein through plasmodesmata may be regulated by interactions with other PVX proteins.  相似文献   

12.
The genes for the capsid protein (CP) and the 8K movement protein of PVX were introduced into potato (Solanum tuberosum L.) and expressed under the control of CaMV 35S promoter using a binary vector andAgrobacterium tumefaciens. Four commercial potato cultivars (Russet Burbank, Shepody, Desirée and Bintje) have been efficiently transformed. Eleven independent transgenic clones, with CP expression levels higher than 0.05% of the soluble leaf proteins, were analyzed for resistance to inoculation with PVX (5 and 50µg/ml). The resistance of the transgenic plants to PVX was observed with the lower titer of virus inoculation (5 µg/ml) but not with higher titer (50 µg/ml). A significant reduction in the accumulation of virus in the inoculated transgenic potato plants has been observed under greenhouse and field conditions. Furthermore, the CP gene is very stable and is transferred to new plants originated from stem cuttings or from tubers. The transgenic plants appeared to be phenotypically identical to the nontransformed controls.Abbreviations BAP benzyl-aminopurine - BCIP 5-bromo-4-chloro-3-indolylphosphate p-Toluidine salt - CaMV cauliflower mosaic virus - CP capsid protein - GA3 gibberellic acid - Kbp kilobase pair - NAA naphthalene acetic acid - NBT nitroblue tetrazolium chloride - NOS nopaline synthase - NPT II neomycin phosphotransferase II - PMSF phenyl methyl sulfonyl fluoride - PVX potato virus X - PVY potato virus Y  相似文献   

13.
The Potato virus X (PVX) triple gene block protein 3 (TGBp3), an 8‐kDa membrane binding protein, aids virus movement and induces the unfolded protein response (UPR) during PVX infection. TGBp3 was expressed from the Tobacco mosaic virus (TMV) genome (TMV‐p3), and we noted the up‐regulation of SKP1 and several endoplasmic reticulum (ER)‐resident chaperones, including the ER luminal binding protein (BiP), protein disulphide isomerase (PDI), calreticulin (CRT) and calmodulin (CAM). Local lesions were seen on leaves inoculated with TMV‐p3, but not TMV or PVX. Such lesions were the result of TGBp3‐elicited programmed cell death (PCD), as shown by an increase in reactive oxygen species, DNA fragmentation and induction of SKP1 expression. UPR‐related gene expression occurred within 8 h of TMV‐p3 inoculation and declined before the onset of PCD. TGBp3‐mediated cell death was suppressed in plants that overexpressed BiP, indicating that UPR induction by TGBp3 is a pro‐survival mechanism. Anti‐apoptotic genes Bcl‐xl, CED‐9 and Op‐IAP were expressed in transgenic plants and suppressed N gene‐mediated resistance to TMV, but failed to alleviate TGBp3‐induced PCD. However, TGBp3‐mediated cell death was reduced in SKP1‐silenced Nicotiana benthamiana plants. The combined data suggest that TGBp3 triggers the UPR and elicits PCD in plants.  相似文献   

14.
Plant viruses must interact with host cellular components to replicate and move from cell to cell. In the case of Potato virus X (PVX), it carries stem-loop 1 (SL1) RNA essential for viral replication and movement. Using two-dimensional electrophoresis northwestern blot analysis, we previously identified several host proteins that bind to SL1 RNA. Of those, we further characterized a DnaJ-like protein from Nicotiana benthamiana named NbDnaJ. An electrophoretic mobility shift assay confirmed that NbDnaJ binds only to SL1 minus-strand RNA, and bimolecular fluorescence complementation (BiFC) indicated that NbDnaJ interacts with PVX capsid protein (CP). Using a series of deletion mutants, the C-terminal region of NbDnaJ was found to be essential for the interaction with PVX CP. The expression of NbDnaJ significantly changed upon infection with different plant viruses such as PVX, Tobacco mosaic virus, and Cucumber mosaic virus, but varied depending on the viral species. In transient experiments, both PVX replication and movement were inhibited in plants that over-expressed NbDnaJ but accelerated in plants in which NbDnaJ was silenced. In summary, we suggest that the newly identified NbDnaJ plays a role in PVX replication and movement by interacting with SL1(-) RNA and PVX CP.  相似文献   

15.
16.
17.
M Price 《Journal of virology》1992,66(9):5658-5661
Nucleotide sequence analysis of potato virus X (PVX) genomic RNA predicts five open reading frames (ORFs). Previous analysis of total RNAs from PVX-infected leaf tissue suggested that six subgenomic RNAs are synthesized during infection. However, the proteins encoded by the genomic RNA, the subgenomic RNAs, or the predicted ORFs have not been identified in vivo. To characterize the coding properties of the viral RNA, particularly to determine whether the five predicted ORFs function in vivo, total protein extracts prepared from PVX-infected leaf tissue were analyzed by using antibodies raised against virus-specific synthetic peptides and against the virus capsid protein. Dot blot analyses showed that these antibodies reacted to PVX-infected extracts, indicating in vivo expression of the five predicted ORFs. In addition, Western blot (immunoblot) analysis of the extracts showed that ORF 1, 2, 3, and 4 peptide antisera and coat protein antiserum detect predominantly a single protein.  相似文献   

18.
19.
Although Solanum brevidens could be infected with potato virus X (PVX), potato virus Y0 (PVY0) and PVYN, no symptoms of infection were apparent and tests by double antibody sandwich ELISA, electron microscopy and sap transmission to local lesion test plants indicated that the titres of PVX were less than a tenth of those of PVY0 and PVYN were less than a hundredth of those in infected plants of PDH40, a susceptible dihaploid clone of S. tuberosum cv. Pentland Crown. Furthermore, PVY0- and PVYN- infected leaves of S. brevidens were a poor source of inoculum in aphid transmission tests. The possibility of a common mechanism and genetic basis of resistance to PVY, PVX and potato leaf roll virus in S. brevidens is discussed.  相似文献   

20.
The Potato virus X (PVX)-based vector was used for the construction of N- and C-terminally modified PVX coat protein (XCP) chimeras. N-terminal XCP modifications do not influence the viral life cycle, whereas the simple XCP C-terminal fusion impedes the viral replication. We designed several C-terminally modified XCP chimeras and tested their viabilities in various Nicotiana benthamiana genotypes. Our results showed the negative impact of 3′-terminal modification of XCP on the chimera’s life cycle. To ensure chimeric constructs stability, the second copy of the last 60 nucleotides of XCP followed by the 3′-untranslated region (UTR) was added downstream of the recombinant sequence. Simultaneously, the first copy of the last 60 nucleotides of XCP was mutated in order to prevent recombination between the two identical sequences. The movement protein of Tobacco mosaic virus expressed in transgenic N. benthamiana plants positively affected the cell-to-cell spread of C-terminally modified XCP chimeras.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号