首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Endoplasmic Reticulum (ER)-associated degradation (ERAD) discards abnormal proteins synthesized in the ER. Through coordinated actions of ERAD components, misfolded/anomalous proteins are recognized, ubiquitinated, extracted from the ER and ultimately delivered to the proteasome for degradation. It is not well understood how ubiquitination of ERAD substrates is regulated. Here, we present evidence that the deubiquitinating enzyme Ubiquitin-Specific Protease 25 (USP25) is involved in ERAD. Our data support a model where USP25 counteracts ubiquitination of ERAD substrates by the ubiquitin ligase HRD1, rescuing them from degradation by the proteasome.  相似文献   

2.
The ubiquitin system plays an important role in endoplasmic reticulum (ER)-associated degradation of proteins that are misfolded, that fail to associate with their oligomerization partners, or whose levels are metabolically regulated. E3 ubiquitin ligases are key enzymes in the ubiquitination process as they recognize the substrate and facilitate coupling of multiple ubiquitin units to the protein that is to be degraded. The Saccharomyces cerevisiae ER-resident E3 ligase Hrd1p/Der3p functions in the metabolically regulated degradation of 3-hydroxy-3-methylglutaryl-coenzyme A reductase and additionally facilitates the degradation of a number of misfolded proteins from the ER. In this study we characterized the structure and function of the putative human orthologue of yeast Hrd1p/Der3p, designated human HRD1. We show that human HRD1 is a non-glycosylated, stable ER protein with a cytosolic RING-H2 finger domain. In the presence of the ubiquitin-conjugating enzyme UBC7, the RING-H2 finger has in vitro ubiquitination activity for Lys(48)-specific polyubiquitin linkage, suggesting that human HRD1 is an E3 ubiquitin ligase involved in protein degradation. Human HRD1 appears to be involved in the basal degradation of 3-hydroxy-3-methylglutaryl-coenzyme A reductase but not in the degradation that is regulated by sterols. Additionally we show that human HRD1 is involved in the elimination of two model ER-associated degradation substrates, TCR-alpha and CD3-delta.  相似文献   

3.
In eukaryotes, endoplasmic reticulum-associated degradation (ERAD) functions in cellular quality control and regulation of normal ER-resident proteins. ERAD proceeds by the ubiquitin-proteasome pathway, in which the covalent attachment of ubiquitin to proteins targets them for proteasomal degradation. Ubiquitin-protein ligases (E3s) play a crucial role in this process by recognizing target proteins and initiating their ubiquitination. Here we show that Hrd1p, which is identical to Der3p, is an E3 for ERAD. Hrd1p is required for the degradation and ubiquitination of several ERAD substrates and physically associates with relevant ubiquitin-conjugating enzymes (E2s). A soluble Hrd1 fusion protein shows E3 activity in vitro - catalysing the ubiquitination of itself and test proteins. In this capacity, Hrd1p has an apparent preference for misfolded proteins. We also show that Hrd1p functions as an E3 in vivo, using only Ubc7p or Ubc1p to specifically program the ubiquitination of ERAD substrates.  相似文献   

4.
To eliminate misfolded proteins that accumulate in the endoplasmic reticulum (ER) the cell mainly relies on ubiquitin-proteasome dependent ER-associated protein degradation (ERAD). Proteolysis of ERAD substrates by the proteasome requires their ubiquitylation and retro-translocation from the ER to the cytoplasm. Here we describe a high molecular mass protein complex associated with the ER membrane, which facilitates ERAD. It contains the ubiquitin domain protein (UDP) HERP, the ubiquitin protein ligase HRD1, as well as the retro-translocation factors p97, Derlin-1 and VIMP. Our data on the structural arrangement of these ERAD proteins suggest that p97 interacts directly with membrane-resident components of the complex including Derlin-1 and HRD1, while HERP binds directly to HRD1. We propose that ubiquitylation, as well as retro-translocation of proteins from the ER are performed by this modular protein complex, which permits the close coordination of these consecutive steps within ERAD.  相似文献   

5.
Studies of misfolded protein targeting to endoplasmic reticulum-associated degradation (ERAD) have largely focused on glycoproteins, which include the bulk of the secretory proteins. Mechanisms of targeting of nonglycosylated proteins are less clear. Here, we studied three nonglycosylated proteins and analyzed their use of known glycoprotein quality control and ERAD components. Similar to an established glycosylated ERAD substrate, the uncleaved precursor of asialoglycoprotein receptor H2a, its nonglycosylated mutant, makes use of calnexin, EDEM1, and HRD1, but only glycosylated H2a is a substrate for the cytosolic SCFFbs2 E3 ubiquitin ligase with lectin activity. Two nonglycosylated BiP substrates, NS-1κ light chain and truncated Igγ heavy chain, interact with the ERAD complex lectins OS-9 and XTP3-B and require EDEM1 for degradation. EDEM1 associates through a region outside of its mannosidase-like domain with the nonglycosylated proteins. Similar to glycosylated substrates, proteasomal inhibition induced accumulation of the nonglycosylated proteins and ERAD machinery in the endoplasmic reticulum-derived quality control compartment. Our results suggest a shared ERAD pathway for glycosylated and nonglycosylated proteins composed of luminal lectin machinery components also capable of protein-protein interactions.  相似文献   

6.
Endoplasmic reticulum-associated degradation (ERAD) is an important system that eliminates misfolded proteins from the ER. Three derlins have been implicated in this process, but their precise function remains unknown. In this study, we report that although both derlin1 and derlin2 are capable of binding the ERAD-specific ubiquitin ligase HRD1, they associate with the HRD1-containing complex with different affinities. Accordingly, these derlins have nonredundant functions in ERAD with derlin2 being an essential functional partner for HRD1-mediated ERAD of SHH and NHK. We show that derlin2, but not derlin1 or derlin3, is required for ERAD of both glycosylated and nonglycosylated SHH, as well as NHK. Derlin2 appears to act at a post-targeting step for HRD1-dependent retro-translocation. Without derlin2, the assembly of HRD1 into a functional retro-translocation homo-oligomer proceeds normally, and substrate targeting to the HRD1 complex also occurs. However, the ERAD substrate SHH-C is largely trapped inside the ER lumen. These observations raise the possibility that derlin2 may regulate the movement of substrates through the HRD1-containing retro-translocon. Our study is the first to report that derlin2 functions with HRD1 in ERAD of certain substrates independent of their glycosylation status. The mammalian ERAD system may require multiple derlins that each functions with a distinct E3 partner to eliminate a specific subset of substrates. This is different from the model in Saccharomyces cerevisiae, in which Hrd1p alone is sufficient for retro-translocation.  相似文献   

7.
Nakatsukasa K  Huyer G  Michaelis S  Brodsky JL 《Cell》2008,132(1):101-112
It remains unclear how misfolded membrane proteins are selected and destroyed during endoplasmic reticulum-associated degradation (ERAD). For example, chaperones are thought to solubilize aggregation-prone motifs, and some data suggest that these proteins are degraded at the ER. To better define how membrane proteins are destroyed, the ERAD of Ste6p(*), a 12 transmembrane protein, was reconstituted. We found that specific Hsp70/40s act before ubiquitination and facilitate Ste6p(*) association with an E3 ubiquitin ligase, suggesting an active role for chaperones. Furthermore, polyubiquitination was a prerequisite for retrotranslocation, which required the Cdc48 complex and ATP. Surprisingly, the substrate was soluble, and extraction was independent of a ubiquitin chain extension enzyme (Ufd2p). However, Ufd2p increased the degree of ubiquitination and facilitated degradation. These data indicate that polytopic membrane proteins can be extracted from the ER, and define the point of action of chaperones and the requirement for Ufd2p during membrane protein quality control.  相似文献   

8.
Terminally misfolded or unassembled proteins in the early secretory pathway are degraded by a ubiquitin- and proteasome-dependent process known as ER-associated degradation (ERAD). How substrates of this pathway are recognized within the ER and delivered to the cytoplasmic ubiquitin-conjugating machinery is unknown. We report here that OS-9 and XTP3-B/Erlectin are ER-resident glycoproteins that bind to ERAD substrates and, through the SEL1L adaptor, to the ER-membrane-embedded ubiquitin ligase Hrd1. Both proteins contain conserved mannose 6-phosphate receptor homology (MRH) domains, which are required for interaction with SEL1L, but not with substrate. OS-9 associates with the ER chaperone GRP94 which, together with Hrd1 and SEL1L, is required for the degradation of an ERAD substrate, mutant alpha(1)-antitrypsin. These data suggest that XTP3-B and OS-9 are components of distinct, partially redundant, quality control surveillance pathways that coordinate protein folding with membrane dislocation and ubiquitin conjugation in mammalian cells.  相似文献   

9.
A functional unfolded protein response (UPR) is essential for endoplasmic reticulum (ER)-associated degradation (ERAD) of misfolded secretory proteins, reflecting the fact that some level of UPR activation must exist under normal physiological conditions. A coordinator of the UPR and ERAD processes has long been sought. We previously showed that the PKR-like, ER-localized eukaryotic translation initiation factor 2α kinase branch of the UPR is required for the recruitment of misfolded proteins and the ubiquitin ligase HRD1 to the ER-derived quality control compartment (ERQC), a staging ground for ERAD. Here we show that homocysteine-induced ER protein (Herp), a protein highly upregulated by this UPR branch, is responsible for this compartmentalization. Herp localizes to the ERQC, and our results suggest that it recruits HRD1, which targets to ERAD the substrate presented by the OS-9 lectin at the ERQC. Predicted overall structural similarity of Herp to the ubiquitin-proteasome shuttle hHR23, but including a transmembrane hairpin, suggests that Herp may function as a hub for membrane association of ERAD machinery components, a key organizer of the ERAD complex.  相似文献   

10.
Denic V  Quan EM  Weissman JS 《Cell》2006,126(2):349-359
How the ER-associated degradation (ERAD) machinery accurately identifies terminally misfolded proteins is poorly understood. For luminal ERAD substrates, this recognition depends on their folding and glycosylation status as well as on the conserved ER lectin Yos9p. Here we show that Yos9p is part of a stable complex that organizes key components of ERAD machinery on both sides of the ER membrane, including the transmembrane ubiquitin ligase Hrd1p. We further demonstrate that Yos9p, together with Kar2p and Hrd3p, forms a luminal surveillance complex that both recruits nonnative proteins to the core ERAD machinery and assists a distinct sugar-dependent step necessary to commit substrates for degradation. When Hrd1p is uncoupled from the Yos9p surveillance complex, degradation can occur independently of the requirement for glycosylation. Thus, Yos9p/Kar2p/Hrd3p acts as a gatekeeper, ensuring correct identification of terminally misfolded proteins by recruiting misfolded forms to the ERAD machinery, contributing to the interrogation of substrate sugar status, and preventing glycosylation-independent degradation.  相似文献   

11.
ERAD is an important process of protein quality control that eliminates misfolded or unassembled proteins from ER. Before undergoing proteasome degradation, the misfolded proteins are dislocated from ER membrane into cytosol, which requires the AAA ATPase p97/VCP and its cofactor, the NPL4-UFD1 dimer. Here, we performed a CRISPR-based screen and identify many candidates for ERAD regulation. We further confirmed four proteins, FBOX2, TRIM6, UFL1 and WDR20, are novel regulators for ERAD. Then the molecular mechanism for WDR20 in ERAD is further characterized. Depletion of WDR20 inhibits the degradation of TCRα, a typical ERAD substrate, while WDR20 overexpression reduces TCRα protein level. WDR20 associates with TCRα and central regulators of the ERAD system, p97, GP78 and HRD1. A portion of WDR20 localizes to the ER-containing microsomal membrane. WDR20 expression increases TCRα ubiquitination, and HRD1 E3 ligase is essential for the process. WDR20 seems to serve as an adaptor protein to mediate the interaction between p97 and TCRα. Our study provides novel candidates and reveals an unexpected role of WDR20 in ERAD regulation.  相似文献   

12.
13.
Sophisticated quality control mechanisms prolong retention of protein-folding intermediates in the endoplasmic reticulum (ER) until maturation while sorting out terminally misfolded polypeptides for ER-associated degradation (ERAD). The presence of structural lesions in the luminal, transmembrane, or cytosolic domains determines the classification of misfolded polypeptides as ERAD-L, -M, or -C substrates and results in selection of distinct degradation pathways. In this study, we show that disposal of soluble (nontransmembrane) polypeptides with luminal lesions (ERAD-LS substrates) is strictly dependent on the E3 ubiquitin ligase HRD1, the associated cargo receptor SEL1L, and two interchangeable ERAD lectins, OS-9 and XTP3-B. These ERAD factors become dispensable for degradation of the same polypeptides when membrane tethered (ERAD-LM substrates). Our data reveal that, in contrast to budding yeast, tethering of mammalian ERAD-L substrates to the membrane changes selection of the degradation pathway.  相似文献   

14.
During endoplasmic reticulum–associated degradation (ERAD), misfolded lumenal and membrane proteins in the ER are recognized by the transmembrane Hrd1 ubiquitin ligase complex and retrotranslocated to the cytosol for ubiquitination and degradation. Although substrates are believed to be delivered to the proteasome only after the ATPase Cdc48p/p97 acts, there is limited knowledge about how the Hrd1 complex coordinates with Cdc48p/p97 and the proteasome to orchestrate substrate recognition and degradation. Here we provide evidence that inactivation of Cdc48p/p97 stalls retrotranslocation and triggers formation of a complex that contains the 26S proteasome, Cdc48p/p97, ubiquitinated substrates, select components of the Hrd1 complex, and the lumenal recognition factor, Yos9p. We propose that the actions of Cdc48p/p97 and the proteasome are tightly coupled during ERAD. Our data also support a model in which the Hrd1 complex links substrate recognition and degradation on opposite sides of the ER membrane.  相似文献   

15.
Frederik Eisele 《FEBS letters》2008,582(30):4143-4146
Protein quality control and subsequent elimination of terminally misfolded proteins occurs via the ubiquitin-proteasome system. Tagging of misfolded proteins with ubiquitin for degradation depends on a cascade of reactions involving an ubiquitin activating enzyme (E1), ubiquitin conjugating enzymes (E2) and ubiquitin ligases (E3). While ubiquitin ligases responsible for targeting misfolded secretory proteins to proteasomal degradation (ERAD) have been uncovered, no such E3 enzymes have been found for elimination of misfolded cytoplasmic proteins in yeast. Here we report on the discovery of Ubr1, the E3 ligase of the N-end rule pathway, to be responsible for targeting misfolded cytosoplasmic protein to proteasomal degradation.  相似文献   

16.
Aberrantly or excessively expressed proteins in the endoplasmic reticulum are identified by quality control mechanisms and dislocated to the cytosol for proteasome-mediated, ubiquitin-dependent degradation by a process termed endoplasmic reticulum-associated degradation (ERAD). In addition to its role in degradation, ubiquitination has also been implicated in substrate dislocation, although whether direct ubiquitin conjugation of ERAD substrates is required for dislocation has been difficult to ascertain. An obstacle in probing the mechanism of quality control-induced ERAD is the paucity of ERAD substrates being dislocated and detected at any given time. To obviate this problem, we report here the use of a sensitive biotinylation system to probe the dislocation of major histocompatibility complex I (MHCI) heavy chain substrates in the absence of immune evasion proteins. Using this assay system the dislocation of MHCI heavy chains was found not to require potential ubiquitin conjugation sites in the cytoplasmic tail or Lys residues in the ectodomain. By contrast, dislocation of MHCI heavy chains did require deubiquitinating enzyme activity and rapid proteasome-mediated degradation required Lys residues in MHCI heavy chain ectodomain. These combined findings support the model that the endoplasmic reticulum quality control-induced dislocation of MHCI heavy chains may not require direct ubiquitination/deubiquitination as is required for proteasome-mediated degradation post dislocation.  相似文献   

17.
The mechanism by which misfolded proteins in the endoplasmic reticulum (ER) are retrotranslocated to the cytosol for proteasomal degradation is still poorly understood. Here, we show that importin β, a well established nucleocytoplasmic transport protein, interacts with components of the retrotranslocation complex and promotes ER-associated degradation (ERAD). Knockdown of importin β specifically inhibited the degradation of misfolded ERAD substrates but did not affect turnover of non-ERAD proteasome substrates. Genetic studies and in vitro reconstitution assays demonstrate that importin β is critically required for ubiquitination of mutant α1-antitrypsin, a luminal ERAD substrate. Furthermore, we show that importin β cooperates with Ran GTPase to promote ubiquitination and proteasomal degradation of mutant α1-antitrypsin. These results establish an unanticipated role for importin β in ER protein quality control.  相似文献   

18.
Usa1p is a recently discovered member of the HRD ubiquitin ligase complex. The HRD pathway is a conserved route of ubiquitin-dependent, endoplasmic reticulum (ER)-associated degradation (ERAD) of numerous lumenal (ERAD-L) and membrane-anchored (ERAD-M) substrates. We have investigated Usa1p to understand its importance in HRD complex action. Usa1p was required for the optimal function of the Hrd1p E3 ubiquitin ligase; its loss caused deficient degradation of both membrane-associated and lumenal proteins. Furthermore, Usa1p functioned in regulation of Hrd1p by two mechanisms. First, Hrd1p self-degradation, which serves to limit the levels of uncomplexed E3, is absolutely dependent on Usa1p and the ubiquitin-like (Ubl) domain of Usa1p. We found that Usa1p allows Hrd1p degradation by promoting trans interactions between Hrd1p molecules. The Ubl domain of Usa1p was required specifically for Hrd1p self-ubiquitination but not for degradation of either ERAD-L or ERAD-M substrates. In addition, Usa1p was able to attenuate the activity-dependent toxicity of Hrd1p without compromising substrate degradation, indicating a separate role in ligase regulation that operates in parallel to stability control. Many of the described actions of Usa1p are distinct from those of Der1p, which is recruited to the HRD complex by Usa1p. Thus, this novel, conserved factor is broadly involved in the function and regulation of the HRD pathway of ERAD.  相似文献   

19.
The endoplasmic reticulum (ER)-associated degradation (ERAD) pathway in the yeast Saccharomyces cerevisiae is mediated by two membrane-bound ubiquitin ligases, Doa10 and Hrd1. These enzymes are found in distinct multiprotein complexes that allow them to recognize and target a variety of substrates for proteasomal degradation. Although multiprotein complexes containing mammalian ERAD ubiquitin ligases likely exist, they have yet to be identified and characterized in detail. Here, we identify two ER membrane proteins, SPFH2 and TMUB1, as associated proteins of mammalian gp78, a membrane-bound ubiquitin ligase that bears significant sequence homology with mammalian Hrd1 and mediates sterol-accelerated ERAD of the cholesterol biosynthetic enzyme HMG-CoA reductase. Co-immunoprecipitation studies indicate that TMUB1 bridges SPFH2 to gp78 in ER membranes. The functional significance of these interactions is revealed by the observation that RNA interference (RNAi)-mediated knockdown of SPFH2 and TMUB1 blunts both the sterol-induced ubiquitination and degradation of endogenous reductase in HEK-293 cells. These studies mark the initial steps in the characterization of the mammalian gp78 ubiquitin ligase complex, the further elucidation of which may yield important insights into mechanisms underlying gp78-mediated ERAD.  相似文献   

20.
Sterol-regulated ubiquitination is an obligatory step in ER-associated degradation (ERAD) of HMG CoA reductase, a rate-limiting enzyme in cholesterol synthesis. Accelerated degradation of reductase, one of several strategies animal cells use to limit production of cholesterol, requires sterol-induced binding of the enzyme to ER membrane proteins called Insigs. Once formed, the reductase-Insig complex is recognized by a putative membrane-associated ubiquitin ligase (E3) that mediates the reductase ubiquitination reaction. Here, we show that gp78, a membrane bound E3, binds to Insig-1 and is required for sterol-regulated ubiquitination of reductase. In addition, gp78 couples regulated ubiquitination to degradation of reductase by binding to VCP, an ATPase that plays a key role in recognition and degradation of ERAD substrates. The current results identify gp78 as the E3 that initiates sterol-accelerated degradation of reductase, and Insig-1 as a bridge between gp78/VCP and the reductase substrate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号