首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
风对黄花蒿水力学性状和生长的影响   总被引:1,自引:0,他引:1  
王林  代永欣  樊兴路  张芸香  黄平  万贤崇 《生态学报》2015,35(13):4454-4461
吹风会影响到植物的水力学结构、光合作用、生物量分配以及植物的力学性状,研究风对植物的综合影响有助于深入了解植物应对风胁迫的响应机制。以黄花蒿为研究对象,每天吹风4h,风速为5m/s,吹风处理60d,测定了风吹条件下黄花蒿的水力学特征、光合作用、生物量分配和茎干力学特性。结果表明:在风吹条件下,黄花蒿正午水势显著低于对照,茎干导水损失率(PLC)增加了16%,最大光合速率仅为对照的62%,气孔导度为对照的55%。在试验结束时风吹植株株高仅为对照的68%,但基茎显著高于对照,同时风吹显著降低了黄花蒿的总生物量,但根冠比显著高于对照,风吹显著减小了茎导管直径和导管密度,风吹植物导管直径和导管密度分别为对照的77%和55%,同时,风吹植物茎干导水率显著低于对照,但茎干的抗弯刚度显著高于对照。以上结果表明风吹抑制了植物的水分输导能力,导致叶片水分匮缺,限制了植物的光合作用。风吹增加了茎干的力学稳定性,但同时降低了茎干的水分输导能力,这是植物茎在力学性状和水分输导之间的权衡。这种改变有利于在有风条件下维持植物的力学稳定性,但同时降低了水分输导能力。  相似文献   

2.
Cherry tomato plants (Lycopersicon esculentum Mill.) were grownwith or without stem flexure similar to that caused by windin order to determine whether stem flexure affects whole-plantbiomass allocation and increases the ability of a plant to withstandwind- induced forces. After 6 weeks of flexing (1 mm, 6 days/week),whole plants were harvested. The main differences found betweentreatments were in the primary shoot/root axis. The stem wassignificantly shorter and wider near the shoot/root junctionin flexed than control plants, both above- and below- ground.Flexed plants had significantly higher root/shoot dry weightratios than controls, but flexed plants and controls did notdiffer significantly in total leaf area, root length, or totalbiomass. Lateral roots from the top 2 cm of the taproot werenot affected by the flexing treatment for any of the factorsstudied: number of laterals, proximal diameter, elastic modulus,stress at failure, or work to failure. Lastly, the force requiredto uproot flexed plants did not differ significantly from thatfor controls. However, because their stems were shorter, flexedplants would have been subjected to smaller stem bending momentsand thus less stress near their root crowns than would controls.Moreover, flexed plants have wider stem bases, and should thusbe better able to resist the forces that affect stems. Thissuggests that in a windy situation, plants that have previouslybeen subjected to flexing could potentially withstand more forcethan unflexed controls. Key words: Anchorage, root, wind, mechanical stimulation, tomato  相似文献   

3.
Two Phaseolus vulgaris L. cultivars were exposed to reduced water and stem mechanical perturbation treatments (flexing) to determine if acclimation to these treatments induced hydraulic changes, altered cavitation resistance and changed stem mechanical properties. Additionally, this study sought to determine if changes in cavitation resistance would support the pit area or conduit reinforcement hypotheses. Flexing reduced biomass, leaf area, xylem vessel area and hydraulic conductivity. One cultivar had greater measures of stem strength and cavitation resistance. Flexing increased cavitation resistance (P50) but did not increase Young's modulus, rigidity or flexural strength on dried stems. Stem rigidity and basal diameter were correlated with leaf mass. The ratio of conduit wall thickness to span [(t/b)h2] increased under high water and flexing treatments while rigidity decreased for one cultivar exposed to both flexing and lower water suggesting an inability to compensate for two simultaneous stresses. Although P50 was not correlated with measures of mechanical strength, P50 was correlated with vessel diameter, consistent with the pit area hypothesis. This study confirmed that mechanical perturbation can impact xylem structural properties and result in altered plant water flow characteristics and cavitation resistance. Long‐term hydraulic acclimation in these herbaceous annuals was constrained by similar tradeoffs that constrain hydraulic properties across species.  相似文献   

4.
Plastic increases in stem elongation in dense vegetation are generally believed to be induced by canopy shading, but because plants protect each other from wind, shielding (reduced mechanical stress) could also play a role. To address this issue, tobacco Nicotiana tabacum plants were subjected to two levels of mechanical stress, 0 (control) or 40 (flexed) daily flexures, and grown solitarily, in a dense monostand (with plants of only one mechanical treatment), or in a mixed stand (flexed and control plants grown together). Flexed plants produced shorter and thicker stems with a lower Young's modulus than control plants, while dense-stand plants had relatively taller and thinner stems than solitary ones. Flexing effects on stem characteristics were independent of stand density. Growth, reproduction, and survival of solitary plants were not affected by flexing, while in the monostand growth was slightly reduced. But in the mixed stand, flexed plants were readily shaded by controls and had considerably lower growth, survival, and reproduction rates. These results suggest that wind shielding indeed plays a role in the plastic increase in stem elongation of plants in dense vegetation and that this response can have important consequences for competitive ability and lifetime seed production.  相似文献   

5.
The degree of plant iso/anisohydry, a widely used framework for classifying species‐specific hydraulic strategies, integrates multiple components of the whole‐plant hydraulic pathway. However, little is known about how it associates with coordination of functional and structural traits within and across different organs. We examined stem and leaf hydraulic capacitance and conductivity/conductance, stem xylem anatomical features, stomatal regulation of daily minimum leaf and stem water potential (Ψ), and the kinetics of stomatal responses to vapour pressure deficit (VPD) in six diverse woody species differing markedly in their degree of iso/anisohydry. At the stem level, more anisohydric species had higher wood density and lower native capacitance and conductivity. Like stems, leaves of more anisohydric species had lower hydraulic conductance; however, unlike stems, their leaves had higher native capacitance at their daily minimum values of leaf Ψ. Moreover, rates of VPD‐induced stomatal closure were related to intrinsic rather than native leaf capacitance and were not associated with species' degree of iso/anisohydry. Our results suggest a trade‐off between hydraulic storage and efficiency in the leaf, but a coordination between hydraulic storage and efficiency in the stem along a spectrum of plant iso/anisohydry.  相似文献   

6.
Understanding how abiotic factors influence organisms at present is the necessary first step to predict how species assemblages could be affected by climate change in the future. We examined how wind, a poorly studied abiotic factor, affects the distribution and abundance of two aphid species, Uroleucon aeneum and Brachycaudus cardui (hereafter black and green aphids, respectively), that live on the thistle Carduus thoermeri (Asteraceae) in a windy region of Patagonia, Argentina. First, considering the prevailing wind direction, we described the distribution of both aphid species around plant stems. Then, we performed a bi‐factorial experiment in which we cut stems with aphids to manipulate their position respect to wind (exposed/unexposed) and to control wind incidence (protected/unprotected). Finally, using the species most affected by wind, we examined possible mechanisms through which wind could affect aphids. Both aphid species were less abundant on the side of the stem exposed to wind respect to the unexposed side; and this pattern was stronger for the black aphid. When black aphids were positioned exposed to wind and without protection, their proportion changed towards the unexposed side of the stem; while green aphids showed a weaker response to wind. Laboratory experiments demonstrated that wind triggered both the detachment of black aphids and their movement towards the unexposed side of the stem. Our results showed that wind can explain the asymmetric distribution of aphids around plants and that stems can act as windbreaks. In a less windy future scenario, aphids could expand their foraging area, reaching higher infestation rates, which could affect their role in structuring ant assemblages and their status as crop pests. This work highlights the importance of testing the effects of less studied abiotic factors to fully understand how climate change could impact on the abundance and distribution of animals in the future.  相似文献   

7.
Leaf gas exchange and stem xylem hydraulic and mechanical properties were studied for unburned adults and resprouting burned Juglans californica (southern California black walnut) trees 1 year after a fire to explore possible trade-offs between mechanical and hydraulic properties of plants. The CO2 uptake rates and stomatal conductance were 2–3 times greater for resprouting trees than for unburned adults. Both predawn and midday water potentials were more negative for unburned adult trees, indicating that the stems were experiencing greater water stress than the stems of resprouting trees. In addition, the xylem specific conductivity was similar in the two growth forms, even though the stems of resprouting trees were less vulnerable to water-stress-induced embolism than similar diameter, but older, stems of adult trees. The reduced vulnerability may have been due to less cavitation fatigue in stems of resprouts. The modulus of elasticity, modulus of rupture and xylem density were all greater for resprouts, indicating that resprouts have greater mechanical strength than do adult trees. The data suggest that there is no trade-off between stem mechanical strength and shoot hydraulic and photosynthetic efficiency in resprouts, which may have implications for the success of this species in the fire-prone plant communities of southern California.  相似文献   

8.
On the Strength of Herbaceous Vascular Plant Stems   总被引:8,自引:0,他引:8  
During the past 120 years researchers have tried to providean understanding of the relationship between the arrangementof stiffening tissue in the cross-section of plant stems andtheir mechanical integrity. The mechanical analysis of verticalstems of self-supporting plants has traditionally been concernedwith issues involving global and local stability of the stem,and with stresses developed due to wind loads. Plant stem tissue,considered as a material, is both heterogeneous and highly anisotropic,and this must be reflected in any characterization of its mechanicalbehaviour. This fact strongly influences the type of failurecriterion which should be applied for compressive failure ofthe stem subjected to loads causing bending. It is shown, here,that applying modern ideas as to the appropriate criteria forcompressive failure of fibre-reinforced composite materialscan influence how we assess the efficacy of various stelar arrangementsconcerning their ability to fulfill their mechanical function.Specifically, it is demonstrated that peripheral arrangementsof supporting tissue are, in some circumstances, less advantageousthan more uniform distributions of this tissue. Plant stems; stem bending; compressive strength; stelar types  相似文献   

9.
The theory of tree bole and branch form   总被引:1,自引:0,他引:1  
Summary Working from the general postulate that natural selection of plant form operates so as to maximize the survival potential of a species, this paper examines the hypothesis that the mechanical support of tree foliage must approach optimality in the use of wood, i.e., that tree stems and branches will have optimal form with respect to the amount of support tissue. Mathematical models of bole and branch form are presented, based on the proposition that either wind or gravity are the primary limiting factors for tree size and shape. Predictions of trunk and branch diameter as a function of tree size were tested with dimensional measurements ofPopulus tremuloides. The individual stems were selected from close-grown stands of differing ages. For small and intermediate trees, trunk diameter is such that stems have only 1.6 times as much wood as the minimum required to keep the tree from buckling under its own weight due to elastic instability. Branch diameters are shown to be close to the minimum required to maintain the spatial position of growing branches, as well as withstand wind forces. This minimal branch cost not only reduces the load which the stem must support against elastic instability, but allows the crown to flex in high winds. The flexing, in turn, reduces the drag force exerted by the wind on the trunk. Thus, the hypothesis that the observed tree form is an optimal design cannot be rejected on the basis of these results. Additional studies are planned with respect to optimal foliage distribution.  相似文献   

10.
Both woody and herbaceous plant species are known to respond to wind loading, with consequences for growth and morphology. Wind has usually been classified as a mechanical stress which is detrimental to plant growth. Few experiments exist whereby plants and, in particular, woody species are exposed to wind, as opposed to mechanical perturbation by touching, flexing or shaking. Such experiments have always been short term and often carried out in wind tunnels in a controlled greenhouse environment. This study introduces an experiment to test the responses of Maritime pine (Pinus pinaster A?t.) seedlings to recurrent and short wind loading in the field, over two growing seasons. These experiments provide evidence that periodic short-term exposure to wind can induce phototropic responses in the early stage of pine seedlings' development. An interpretation is proposed in terms of efficiency to light tracking and hypotheses are discussed concerning the underlying physiological process.  相似文献   

11.
BACKGROUND AND AIMS: Plant species frequently encounter multiple stresses under natural conditions, and the way they cope with these stresses is a major determinant of their ecological breadth. The way mechanical (e.g. wind, current) and resource stresses act simultaneously on plant morphological traits has been poorly addressed, even if both stresses often interact. This paper aims to assess whether hydraulic stress affects plant morphology in the same way at different nutrient levels. METHODS: An examination was made of morphological variations of an aquatic plant species growing under four hydraulic stress (flow velocity) gradients located in four habitats distributed along a nutrient gradient. Morphological traits covering plant size, dry mass allocation, organ water content and foliage architecture were measured. KEY RESULTS: Significant interactive effects of flow velocity and nutrient level were observed for all morphological traits. In particular, increased flow velocity resulted in size reductions under low nutrient conditions, suggesting an adaptive response to flow stress (escape strategy). On the other hand, moderate increases in flow velocity resulted in increased size under high nutrient conditions, possibly related to an inevitable growth response to a higher nutrient supply induced by water renewal at the plant surface. For some traits (e.g. dry mass allocation), a consistent sense of variation as a result of increasing flow velocity was observed, but the amount of variation was either reduced or amplified under nutrient-rich compared with nutrient-poor conditions, depending on the traits considered. CONCLUSIONS: These results suggest that, for a given species, a stress factor may result, in contrasting patterns and hence strategies, depending on a second stress factor. Such results emphasize the relevance of studies on plant responses to multiple stresses for understanding the actual ecological breadth of species.  相似文献   

12.
Recent soil pressurization experiments have shown that stomatal closure in response to high leaf–air humidity gradients can be explained by direct feedback from leaf water potential. The more complex temperature‐by‐humidity interactive effects on stomatal conductance have not yet been explained fully. Measurements of the change in shoot conductance with temperature were made on Phaseolus vulgaris (common bean) to test whether temperature‐induced changes in the liquid‐phase transport capacity could explain these temperature‐ by‐humidity effects. In addition, shoot hydraulic resistances were partitioned within the stem and leaves to determine whether or not leaves exhibit a greater resistance. Changes in hydraulic conductance were calculated based on an Ohm’s law analogy. Whole‐plant gas exchange was used to determine steady‐ state transpiration rates. A combination of in situ psychrometer measurements, Scholander pressure chamber measurements and psychrometric measurements of leaf punches was used to determine water potential differences within the shoot. Hydraulic conductance for each portion of the pathway was estimated as the total flow divided by the water potential difference. Temperature‐induced changes in stomatal conductance were correlated linearly with temperature‐induced changes in hydraulic conductance. The magnitude of the temperature‐induced changes in whole‐plant hydraulic conductance was sufficient to account for the interactive effects of temperature and humidity on stomatal conductance.  相似文献   

13.
The drag forces, bending moments and stresses acting on stems differing in size and location within the mechanical infrastructure of a large wild cherry (Prunus serotina Ehrh.) tree are estimated and used to calculate the factor of safety against wind-induced mechanical failure based on the mean breaking stress of intact stems and samples of wood drawn from this tree. The drag forces acting on stems are calculated based on stem projected areas and field measurements of wind speed taken within the canopy and along the length of the trunk. The bending moments and stresses resulting from these forces are shown to increase basipetally in a nearly log-log linear fashion toward the base of the tree. The factor of safety, however, varies in a sinusoidal manner such that the most distal stems have the highest factors of safety, whereas stems of intermediate location and portions of the trunk near ground level have equivalent and much lower factors of safety. This pattern of variation is interpreted to indicate that, as a course of normal growth and development, trees similar to the one examined in this study maintain a cadre of stems prone to wind-induced mechanical damage that can reduce the probability of catastrophic tree failure by reducing the drag forces acting on older portions of the tree. Comparisons among real and hypothetical stems with different taper experiencing different vertical wind speed profiles show that geometrically self-similar stems have larger factors of safety than stems tapering according to elastic or stress self-similarity, and that safety factors are less significantly influenced by the 'geometry' of the wind-profile.  相似文献   

14.
This study tested how wind in daytime and nighttime affects hydraulic properties and thigmomorphogenic response of poplar saplings. It shows that wind in daytime interrupted water balance of poplar plants by aggravating cavitation in the stem xylem under high xylem tension in the daytime, reducing water potential in midday and hence reducing gas exchange, including stomatal conductance and CO2 assimilation. The wind blowing in daytime significantly reduced plant growth, including height, diameter, leaf size, leaf area, root and whole biomass, whereas wind blowing in nighttime only caused a reduction in radial and height growth at the early stage compared with the control but decreased height:diameter ratios. In summary, the interaction between wind loading and xylem tension exerted a negative impact on water balance, gas exchanges and growth of poplar plants, and wind in nighttime caused only a small thigmomorphogenic response.  相似文献   

15.
Thigmomorphogenesis includes the effects of mechanical perturbation on plant growth. To test whether thigmomorphogenesis is evident at different scales within plants, we investigated the effect of wind on allometric relationships between specific plant parts. We chose two species from the elfin cloud forest of Puerto Rico that have contrasting growth habits, the shrub Clibadiun erosum (Asteraceae) and the palm Prestoea acuminata var. montana (Arecaceae), and subjected them to barrier-protected and wind-exposed treatments. For C. erosum , we compared the allometry of stems and branches against three allometric models that predict that plant height or branch length increases at the 1, 2/3, and 1/2 power of stem diameter. Only the geometric similarity model (scaling exponent of 1) seemed to hold when plants were exposed to the wind. We found relatively fewer leaves per number of branches produced and fewer leaves per increment of branch diameter in the plants of C. erosum exposed to the wind. Mean petiole length ratios (petiole length/basal radius) of P. acuminata were higher on leaves of barrier-protected plants for both simple and compound leaves, indicating that petioles were stouter and mechanically safer in the wind-exposed plants. We suggest that alteration of the allometric relationships of plant parts, organs, or plant modules (stems and branches of C. erosum and leaves of P. acuminata ) and alteration of the number of plant parts (leaves and branches of C. erosum ) are adaptive responses resulting from the mechanical perturbation induced by wind in the elfin forest.  相似文献   

16.
High water availability and mechanical stress can induce opposite responses in plants. In arid areas of Northern China the occurrence of high wind and high water availability tend to be negatively correlated. Since turgor pressure is a determinant of the mechanical stability of annuals, it is hypothesised that the effects of mechanical perturbation (MP) on annuals may depend on soil water availability. To test this proposal, we conducted an experiment in which a pioneering annual Corispermum mongolicum was subjected to two levels of MP and water supply, and then determined its growth and mechanical traits. Brushing had no effect on plant height and total biomass, but stimulated leaf and branch production. Water supply affected plant height, basal diameter, total biomass and stem rigidity, but not leaf and branch number, root/shoot ratio or flexibility. With high water availability, brushing stimulated the production of stiffer stems (thicker and with a higher Young's modulus) and more roots relative to shoot mass, but with low water availability MP induced the opposite response. This shows that both the degree and direction of plant responses to MP depend on the presence of other factors. We discuss how the interactive effects of MP and water availability on growth and mechanical properties may help C. mongolicum to establish in windy and arid environments.  相似文献   

17.
Water flowing through the xylem from the roots to the leaves of most plants must pass through junctions where branches have developed from the main stem. These junctions have been studied as both flow constrictions and components of a hydraulic segmentation mechanism to protect the main axes of the plant. The hydraulic nature of the branch junction also affects the degree to which branches interact and can respond to changes in flow to other branches. The junctions from shoots of two conifer species were studied, with particular emphasis on the coupling between the downstream branches. Flow was observed qualitatively by forcing stain through the junctions and the resulting patterns showed that flow into a branch was confined to just part of the subtending xylem until a considerable distance below the junction. Junctions were studied quantitatively by measuring flow rates in a branch before and after flow was stopped in an adjacent branch and by measuring the hydraulic resistance of the components of the junction. Following flow stoppage in the adjacent branch, flow into the remaining branch increased, but considerably less than predicted based on a simple resistance analogue for the branch junction that assumes the two branches are fully coupled. The branches downstream from a junction, therefore, appear to be limited in their interconnectedness and hence in their ability to interact.  相似文献   

18.
Elevated tropospheric ozone (O3) concentration has been shown to affect many aspects of plant performance including detrimental effects on leaf photosynthesis and plant growth. However, it is not known whether such changes are accompanied by concomitant responses in plant hydraulic architecture and water relations, which would have great implications for plant growth and survival in face of unfavorable water conditions. A soybean (Glycine max (L.) Merr.) cultivar commonly used in Northeast China was exposed to non‐filtered air (NF, averaged 24.0 nl l?1) and elevated O3 concentrations (eO3, 40 nl l?1 supplied with NF air) in six open‐top chambers for 50 days. The eO3 treatment resulted in a significant decrease in whole‐plant hydraulic conductance that is mainly attributable to the reduced hydraulic conductance of the root system and the leaflets, while stem and leaf petiole hydraulic conductance showed no significant response to eO3. Stomatal conductance of plants grown under eO3 was lower during mid‐morning but significantly higher at midday, which resulted in substantially more negative daily minimum water potentials. Moreover, excised leaves from the eO3 treated plants showed significantly higher rates of water loss, suggesting a lower ability to withhold water when water supply is impeded. Our results indicate that, besides the direct detrimental effects of eO3 on photosynthetic carbon assimilation, its influences on hydraulic architecture and water relations may also negatively affect O3‐sensitive crops by deteriorating the detrimental effects of unfavorable water conditions.  相似文献   

19.
Field- and greenhouse-grown Abies fraseri (Pursh) Poir. (Fraser fir) were analyzed for wind- or mechanically-induced flexure changes. These changes included inhibition of stem and needle elongation, reinforcement of branch bases around the stem, and increased radial growth in the direction of the mechanical perturbation (MP). Mature trees exposed to high wind conditions were severely flag-formed. These modified tree crowns had a lower drag than crowns of non-flag formed trees in wind-tunnel tests. In both field-grown and greenhouse-grown A. fraseri , MP induced a decrease in flexibility and increased elasticity of the stems. The increased radial growth of the stems overrode the increase in elasticity, resulting in the overall decrease in flexibility. The increase in radial growth caused by wind or mechanical flexure was due to greater cell divisions of the vascular cambium, resulting in increased numbers of tracheids. The decrease in stem elongation in these trees was due, at least in part, to a decrease in tracheid length. The potential biological and mechanical significance of these induced growth changes in trees are addressed. The data support the thigmomorphogenetic theory, which states that plants respond to wind and other mechanical perturbations in a way that is favorable to the plant for continued survival in windy environments.  相似文献   

20.
We seek the ideal wheat stalk, which minimizes the structural mass required to support a fixed grain load in the presence of gravity and wind. The optimization search is restricted to stepped cylindrical stems of known moduli and density but unknown dimension. Stem buckling and root anchorage strength are assumed to place restrictions on the permissible stalk resonant frequency in the presence of a specified wind forcing frequency. These effects are described mathematically, and the penalty parameter method is used to find stem mass minima for various stalk heights. In general, there are two alternative solution branches. The lower solution is the global minimum but it is probably impractical for field crops exposed to natural wind. The upper minimum is more conservative and therefore requires more stem mass. Due to the competing requirements of buckling versus anchorage strength, the parameter study shows that optimal wheat stem geometry has a nonlinear dependence on the intensity of gravity and the frequency spectra of the wind.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号