首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
黄花菜组织培养研究简报   总被引:1,自引:0,他引:1  
植物名称:黄花菜(Hemerocallis fullva)。材料类别:心叶。培养条件:诱导愈伤组织培养基(培养基-1):N_6+2,4-D2毫克/升+6BA_1毫克/升;分化培养基(培养基-2):N_6+2,4-D0.25毫克/升+6BA2毫克/升+肌醇100毫克/升。将芽及愈伤组织转移至N_6+2,4-D0.1毫克/升+IAA_1毫克/升+6BA0.2毫克/升+肌醇  相似文献   

2.
本文报道激素对调节单倍体幼穗组织去分化与分化的方向以及器官形成的影响。发现在试验浓度内(2毫克/升),2,4-D诱导组织去分化,NAA诱导根的大量形成,KT抑制愈伤组织形成和器官分化。KT2毫克/升 NAA2毫克/升使外植体不经过愈伤组织阶段就直接分化大量的苗。当KT/NAA=2:2时,直接分化苗的频率较高,达76%,不同浓度的2,4-D试验表明,2,4-D2毫克/升或4毫克/升时,愈伤组织诱导率高达94%以上。固体和液体继代培养中,低浓度的2,4-D(0.5—0.1毫克/升)加0.1毫克/升的KT,对愈伤组织保持旺盛的生长和后来的分化有良好的作用。发现单倍体体细胞组织再生的植株,白苗很少。讨论了单倍体体细胞愈伤组织无性系用于诱发突变和体细胞遗传研究的可能性。对于愈伤组织的再分化,不仅需要细胞分裂素,而且诱导培养基中生长素浓度的影响也是显著的。  相似文献   

3.
芥菜型油菜原生质体再生成植株的研究   总被引:8,自引:1,他引:7  
芥菜型油菜子叶和下胚轴原生质体在含0.5毫克/升NAA、0.5毫克/升2,4-D和1毫克/升BA的Nitsch培养基中发育成愈伤组织。“黄辣芥”子叶原生质体来源的愈伤组织在无生长素而含有3毫克/升BA或2毫克/升KIN的MS固体培养基上分化了芽;即使是低水平的生长素(0.05毫克/升NAA)也不利于芽的分化。当芽长到2—3厘米高时,将其从愈伤组织上切下,转移到不含细胞分裂素而有0.01—0.05毫克/升IAA的MS培养基上,很快长出根,从而得到完整的再生植株。  相似文献   

4.
用自制的纤维素酶(EA3-867)从花烟草(Nicotiana alata)叶肉细胞制备大量有活力的原生质体。在NT培养基(内含2,4-D2,KT0.25毫克/升)上观察到原生质体长大,分裂,形成愈伤组织。愈伤组织悬浮在含有2,4-D2mg/升的MS培养基上诱导出球形胚,移入MS(BA2,IAA 0.2 mg/l)培养基上出苗。小苗移植土壤中正常生长、开花、结实。  相似文献   

5.
植物激素对驳骨丹茎愈伤组织生长和器官再生的作用   总被引:3,自引:0,他引:3  
在驳骨丹离体茎切段培养中,用MS基本培养基,分别附加2毫克/升BA和0.2毫克/升NAA诱导愈伤组织,附加1毫克/升BA诱导芽分化;以2/1MS基本培养基分别附加0.5毫克/升NAA、IBA、IAA和2,4-D进行诱导发根试验,除2,4-D无效外,均能生根形成再生植株。根据上述试验结果,设计不同浓度的BA和NAA组合,进行愈伤组织继代培养,讨论这两种激素对愈伤组织生长和器官再生的调节作用。主要结果为:1.低浓度的BA和NAA组合比较有利促进愈伤组织的生长,且以中等浓度的BA和低浓度NAA的效果最佳;2.单独附加BA,其浓度在0.25—4.0毫克/升范围内,都能促进芽分化,而完全抑制了根的发生。当单加NAA,在0.5—6.0毫克/升的浓度范围内,能促进根的形成,而随其浓度的升高抑制芽的分化;3.细胞分裂素与生长素的比值>0.5时,有利芽分化而抑制根的发生,当比值<0.6时,有利根形成而抑制或减弱细胞分裂素促进芽分化的作用。在这里讨论了生长素和细胞分裂素之间对报、芽形成的拮抗作用。  相似文献   

6.
本文报道利用粳型杂交水稻苗端诱导形成的愈伤组织进行悬液培养试验,获得了初步成功。试验系采用MS 和N_6基本培养液,另加2,4-D 1—2毫克/升,IAA0.5毫克/升,水解乳蛋白500毫克/升,蔗糖3%。结果均能生长。当愈伤组织生长至直径2—3毫米大小时,将其转移到固体再分化培养基上,使其再生形成绿苗。再分化培养基为MS 或N_6基本培养基另加激动素2毫克/升,6-BA 1毫克/升,水解乳蛋白800毫克/升,蔗糖3%以及琼脂1%。经过了多次悬液继代培养以后,发现在各个“愈伤无性系”之间,于细胞形态和器官分化方面,均发生了各种各样的变异。本试验的目的,在于探索能否为利用悬液培养方法保持杂交水稻的杂种优势以及进行工厂化生产秧苗开辟道路。  相似文献   

7.
新疆天山雪莲体胚诱导与分化研究   总被引:5,自引:0,他引:5  
以新疆天山雪莲的叶片为外植体,分别用不同配方培养基诱导愈伤组织,后进行体胚诱导和分化培养形成再生雪莲植株.结果表明,诱导愈伤组织的最适培养基为MS 2,4-D 0.5 mg/L BA 1.5 mg/L,诱导率可达到100%;愈伤组织转移至MS 2,4-D 0.5 mg/L BA 1.5 mg/L培养基进行继代培养,增殖后的愈伤组织转移到MS 2,4-D 0.2 mg/L的液体培养基后成功诱导出雪莲体胚,出胚率达40%;将体胚接至MS ABA 0.5 mg/L培养基后,结果分化生长出大量的再生雪莲幼苗.  相似文献   

8.
采用离体培养小麦(Triticum vulgare)花药的方法成功地诱导小麦花粉形成了单倍体植株。在附加2—20毫克/升的2,4-D 和各种有机附加物的 MS 培养基上,属于27个杂种或品种的21094个花药中有103个花药产生了愈伤组织,这些愈伤组织均着生在裂开的药室内,显微观察证明它们是由花粉经过多次细胞分裂形成的。花粉愈伤组织转移到含有0.2—2毫克/升的萘乙酸和0.2—2毫克/升的激动素或含有0.5毫克/升的吲(口朶)乙酸和15%椰乳的 MS培养基上培养5天以后,即陆续分化出幼苗。此外还发现接种在含有20%椰乳或吲(口朶)乙酸及激动素各2毫克/升的 MS 培养基上的花药直接从药室内产生出幼苗。已检查的6株幼苗的根尖细胞的染色体数均为21,表明它们是单倍体。单倍体植株能够抽穗而不结实。  相似文献   

9.
用本所栽培的甜菊的幼嫩茎叶,或由种子形成的无菌幼苗作为材料。诱发愈伤组织培养基为MS培养基(2,4-D0.8~1.0;KT或6-BA0.2~0.5;或KT及6-BA各加0.2毫克/升)和kT培养基(KT1.0;2,4-D1~3;NAA0.2毫克/升)。10天左右,渐形成生长旺盛的、淡黄或淡绿色的愈伤组织(图1,2),诱导率60%以上。愈伤组织可长期继代培养而不失其旺盛的生长能力。分化培养基成  相似文献   

10.
本工作研究了豆科植物紫云英的叶片及叶肉原生质体的培养。叶片培养实验表明,诱导愈伤组织的最适培养基为MS加1.0-2.0毫克/升2,4-D和0.25毫克/升KT;诱导根分化需加1.0—5.0毫克/升NAA和0.5毫克/升BA;而苗分化则以0—0.5毫克/升IAA和0.5毫克/升BA为好。高浓度的NAA有利于根分化而抑制茎芽形成;高浓度的IAA对根和芽分化都有抑制作用。叶肉原生质体分离和培养试验表明,紫云英叶肉原生质体的释放及其培养活力受叶龄、植株生理状态和酶浓度的影响。叶肉原生质体在改良的KM8P培养基中能分裂。用改良KM8细胞培养基定期稀释,可使分裂持续进行而得到细胞团。BA和2,4-D为诱导紫云英叶肉原生质体分裂所必需。其最佳组合激素为BA 0.21毫克/升和2,4-D 1.13毫克/升。葡萄糖作为渗透压稳定剂时,其浓度明显影响原生质体的存活率。弱光条件下培养比黑暗培养有利于叶肉原生质体分裂。由叶肉原生质体形成的愈伤组织能形成瘤状结构和根。  相似文献   

11.
通过未授粉子房的离体培养技术,在Ms无机盐十甘氨酸(7.7毫克/升)十天门冬素(1480毫克/升)十烟酸(0.15毫克/升) VB_1(0.25毫克/升)十VB_6(0.25毫克/升)十泛酸钙(0.25毫克/升) 2%蔗糖的固体培养基上,由小黑麦1号未授粉的幼嫩子房中诱导出愈伤组织,诱导率为53.4—66.8%。将愈伤组织转移到N_6 2.4-D(0.5毫克/升) 动力精(2毫克/升) 2%蔗糖 1%琼脂的培养基上,或在愈伤组织转移到N_6 2.4-D(2毫克/升) 6-BA(2毫克/升) 2%蔗糖 1%琼脂培养基前后,分别注入2毫升的N_6 IAA(1毫克/升) 6-BA(2毫克/升) 2%蔗糖的培养液,均可由愈伤组织分化出小植株,但幼苗移栽时多数未成活,仅一株抽穗开花,然而不育。本文还讨论了外源激素对植株分化的作用问题。  相似文献   

12.
柑桔茎尖培养的初步研究   总被引:7,自引:0,他引:7  
截取1~2毫米高的甜橙(Citrus sinensis)茎尖,培养子经消毒的基本培养基中。比较试验了几种植物生长调节物质、蔗糖的不同浓度和培养基的物理性状对愈伤组织发生的效应。分别观察了不同天数的离体茎尖愈伤组织发生情况。发现对愈伤组织形成较好的处理有:2,4-D0.1毫克/升+Kinetin 0.25毫克/升+NAA 2.5毫克/升,单独使用2,4-D为1.5毫克/升;蔗糖浓度为5%;以及液体培养基。将具有愈伤组织的离体茎尖,转移至激素类物质为BA 0.25毫克/升+NAA 0.1毫克/升的基本培养基中,则能促使茎芽及愈伤组织的进一步生长。但不容易形成根。然后再移入只含NAA 2毫克/升的的基本培养基中,才能分化出根,形成完整的小植株。我们已经获得暗柳、雪柑和柚子等三个柑桔品种的离体茎尖培养的植株,并揭示出在同一块离体茎尖愈伤组织生长出许多小植株的可能前景。茎尖嫁接植株是用全黑暗条件培养13~14天的枳壳(Ponciruo trifoliata)等实生苗作砧木,甜橙(Citrus sinensis)茎尖长为0.2~0.4毫米、并带叶原基2~3个作接穗,在无菌条件的实体显微解剖镜下,嫁接于砧木倒T字型的缺口上,能获得嫁接绿苗18.5%的成活率。嫁接植株培养在MS液体培养基,蔗糖浓度提高到7.5%,放置于800米烛光的荧光灯、每天光照16小时的条件下。嫁接植株生长到2~4片  相似文献   

13.
对6个籼稻(oryza sativa Subsp.Shien)品种和39个籼×籼杂种的花药在离体条件下进行培养,有5个品种及35个杂种得到了愈伤组织,平均诱导率为2.18%。在3个品种及11个籼×籼杂种中得到了绿苗或绿芽。本文着重报道基本培养基及其附加成分在诱导籼稻花药产生愈伤组织及根芽分化中的作用。 1.试验了几种诱导愈伤组织的培养基,以Miller培养基 2,4—D2毫克/升 酵母浸出液1,000毫克/升 激动素1毫克/升 吲哚乙酸2毫克/升 椰乳15%为最好。诱导率高者可达11—15%,平均诱导率在3%以上。 2.Ms、Nitsch及Miller培养基均可诱导籼稻花药愈伤组织分化出绿色的花粉植株。 3.籼稻花药愈伤组织的分化,随着激动素/生长素比值的增高,绿苗分化率及总分化率均有提高的趋势。而粳稻的这种关系不甚明显。 4.Miller培养基附加2毫克/升的吲哚乙酸对促进具茎、叶而无根的籼稻花粉小植株产生根有很好的作用。在这种培养基上,不仅可以诱导根的发生,而且根系发达,生长较弱的苗转移到这种培养基后,因根系健壮,生势好,转入盆栽,基本可以全部成活。  相似文献   

14.
供试材料为野生种(Elaeagnus angu-stifolia L.)的子房、茎和叶。在附加0.5毫克/升NAA和1毫克/升玉米素或再加2毫克/升2,4-D的MS培养基中均能诱导出愈伤组织。愈伤组织转入MS+KT(2毫克/升)或KT(2毫克/升)+IBA(0.2毫克/升)的分化培养基上可分化出大量的绿苗。苗分正常苗和异常苗两种类型,目前为止,沙枣愈伤组织无性系已继代培养了22代,将近两年的时间仍具有较强的分化能力。外源激素对正常苗的分化有直接的影响,高浓度的KT水平可促进正常苗的分化,其最佳浓度为4毫克/升,正常苗诱导频率可高达83—86%,基本上解决了分化的问题;高浓度的6-BA虽也能提高分化率,但异常苗占优势。试管苗形成的途径有二,一是通过不定芽的方式产生,一是通过胚状体的方式产生。沙枣胚状体原始细胞的来源有三种情况:(一)由紧邻表皮细胞的单个薄壁细胞产生,这种方式占优势;(二)由表皮细胞横裂产生;(三)由表皮细胞及其下面相邻的薄壁细胞同时分裂共同参与胚状体的形成,即二者的嵌合体。胚状体的发生与合子胚的发生过程基本相似,但在其发育的早期阶段无典型的基细胞与顶细胞之分,故也缺乏典型的胚柄结构,随着胚状体的长大,表皮细胞被撑破,其周围的薄壁细胞内含物被吸收而解体,最后胚状体脱离开愈伤组织的表面,孤立出来成一个完整的个体。  相似文献   

15.
川芎的组织培养及植株再生   总被引:1,自引:0,他引:1  
植物名称:川芎(Ligusticum wallichii Franch)材料类别:长有1—2片真叶的幼嫩茎段和叶片培养条件:基本培养基采用MS。诱导愈伤组织培养基为MS,每升补加2,4-D2.0毫克,6BA0.4毫克;诱导芽分化培养基为MS,每升补加6BA0.4毫克、IAA0.5毫克;诱导根分化培养基为1/2MS,每升补加6BA0.2毫克,IAA1.0毫克。培养温度  相似文献   

16.
研究了水稻(Oryza sativa)花药的离体培养及其花粉植株后代的表现,得到如下结果: 1.用加有2,4-D 1—5毫克/升的Blaydes培养基培养水稻花药,诱导出水稻花粉愈伤组织。采用花粉处于单核期的花药进行培养比较合适。 2.诱导愈伤组织成苗,以二次诱导法效果较好。即将愈伤组织种植在低浓度激素的培养基上(IAA 0.05—0.5毫克/升,激动素1—2毫克/升),在此培养基上分化快,芽点多,但芽不易伸长;芽点出现后再移到激素浓度较高的培养基上(IAA 2毫克/升,激动素4毫克/升),很快出现幼苗。 3.水稻花粉植株二代,田间表现和室内分析结果表明基本整齐一致,没有分离。杂种F_1花粉植株后代在许多性状上超过双亲,有选种价值。说明水稻花药培养用于育种是可能的。  相似文献   

17.
从三分三种子萌发的根、茎、叶和花药、种皮诱导的愈伤组织,均含有莨菪碱、东莨菪碱。其含量和生长速度均以茎、叶愈伤组织为最高。根、茎、叶愈伤组织,在培养基中分别加入各种植物激素,培养时表明:BA(6-苄基嘌呤)促进芽的分化,NAA促进根的分化,2,4-D则抑制根的分化,GA_3(赤霉酸)影响很小。获得了三种愈伤组织只分化根不分化芽(加NAA 1毫克/升)和只分化芽不分化根(每升中加BA0.2毫克和2,4-D 0.2毫克)的良好结果。分化的这些芽或根的诱导频率,以茎、叶愈伤组织为高。分化的芽或根中均含有莨菪碱及东莨菪碱,但其含量相应地比它们的未分化的愈伤组织约低1~4倍。薄层层析结果表明,愈伤组织中有6种生物碱,茎、叶愈伤组织中,还有一种在紫外光下显蓝色荧光的物质,而分化的根或芽及花药愈伤组织中只有4种生物碱。看来,在离体培养下的三分三愈伤组织是有莨菪碱和东莨菪碱合成的全能性。这两种生物碱似乎并非最终的代谢产物,它们可能参与了器官建成中的代谢过程。文中还讨论了莨菪碱和东莨菪碱的合成部位问题。  相似文献   

18.
植物名称:扁豆(Dolichos lablab),品种紫花扁豆。材料类别:花粉发育处于四分体至双核初期的花药。培养条件:诱导愈伤组织培养基是B_5培养基,每升附加2,4-D2毫克,BA 0.5毫克,蔗糖为6%。分化培养基为MS,每升附加IAA 0.2—0.5毫克,BA1—2毫克,蔗糖为3%。诱导生根的培养基为MS,每升附加IAA 0.2—0.5毫克,蔗糖浓度降低为2%。培养室温度为26—28℃,诱导愈伤组织时为暗培养,分化和诱导生根时,荧光灯人工光照,每天10小时,光强为1000lux左右。  相似文献   

19.
枸杞体细胞胚发生中Ca^2+和ATPase的超微结构定位研究   总被引:6,自引:0,他引:6  
研究2,4-D诱导枸杞体细胞胚发生中的作用及其与Ca^2 含量和ATPase活性时空分布动态之间的关系,以探讨2,4-D诱导植物体细胞胚发生的作用机理。采用超微细胞化学定位的方法,跟踪分析了体细胞胚发生与发育的不同时期,Ca^2 和ATPase活性的时空分布动态。结果表明:2,4-D是诱导离体培养的枸杞体细胞进入胚胎状态的关键激素。在含有2,4-D和不含2,4-D的培养条件下,分别诱导枸杞体细胞脱分化后,再转入除去2,4-D的MS培养基上,进行分化培养,结果前者可分化形成体细胞胚,因而称为胚性愈伤组织。后者在相同条件却不能分化形成胚,故称为非胚性愈伤组织。在2,4-D诱导枸杞的胚性愈伤组织中,胚性细胞分化早期的细胞间隙和细胞壁上均有Ca^2 沉淀。随着胚性细胞的分化、分裂和多细胞原胚形成,这时Ca^2 在细胞内的分布主要集中在细胞膜和液泡膜上;球形胚期在细胞核中Ca^2 呈弥散性分布。在此过程中,ATPase活性时空分布与Ca^2 的定位变化具有高度一致性,仅仅稍滞后于Ca^2 出现的时间。而在胚性细胞分化早期,ATPase活性同样位于质膜上,随后在液泡和细胞核都可见ATPase活性分布。而在非胚性愈伤组织中,则未见Ca^2 和ATPase活性呈时空动态分布,而且随着非胚性细胞的液泡化,无论是Ca^2 含量,还是ATPase活性都呈逐渐降低的趋势。表明Ca^2 和ATPase活性变化与2,4-D诱导的胚性细胞分化和发育密切相关。并由此推测,Ca^2 和ATPase的时空分布对胚性细胞分化中的信息传递和调控相关基因表达起着关键性作用。  相似文献   

20.
研究2,4-D诱导枸杞体细胞胚发生中的作用及其与Ca~(2+)含量和ATPase活性时空分布动态之间的关系,以探讨2,4-D诱导植物体细胞胚发生的作用机理。采用超微细胞化学定位的方法,跟踪分析了体细胞胚发生与发育的不同时期,Ca~(2+)和ATPase活性的时空分布动态。结果表明:2,4-D是诱导离体培养的枸杞体细胞进入胚胎状态的关键激素。在含有2,4-D和不含2,4-D的培养条件下,分别诱导枸杞体细胞脱分化后,再转入除去2,4-D的MS培养基上,进行分化培养,结果前者可分化形成体细胞胚,因而称为胚性愈伤组织。后者在相同条件却不能分化形成胚,故称为非胚性愈伤组织。在2,4-D诱导枸杞的胚性愈伤组织中,胚性细胞分化早期的细胞间隙和细胞壁上均有Ca~(2+)沉淀。随着胚性细胞的分化、分裂和多细胞原胚形成,这时Ca~(2+)在细胞内的分布主要集中在细胞膜和液泡膜上;球形胚期在细胞核中Ca~(2+)呈弥散性分布。在此过程中,ATPase活性时空分布与Ca~(2+)的定位变化具有高度一致性,仅仅稍滞后于Ca~(2+)出现的时间。而在胚性细胞分化早期,ATPase活性同样位于质膜上,随后在液泡和细胞核都可见ATPase活性分布。而在非胚性愈伤组织中,则未见Ca~(2+)和ATPase活性呈时空动态分布,而且随着非胚性细胞的液泡化,无论是Ca~(2+)含量,还是ATPase活性都呈逐渐降低的趋势。表明Ca~(2+)和ATPase活性变化与2,4-D诱导的胚性细胞分化和发育密切相关。并由此推测,Ca~(2+)和ATPase的时空分布对胚性细胞分化中的信息传递和调控相关基因表达起着关键性作用。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号