首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Skp1 is a ubiquitous eukaryotic protein found in several cytoplasmic and nuclear protein complexes, including the SCF-type E3 ubiquitin ligase. In Dictyostelium, Skp1 is hydroxylated at proline 143, which is then modified by a pentasaccharide chain. The enzyme activity that attaches the first sugar, GlcNAc, was previously shown to copurify with the GnT51 polypeptide whose gene has now been cloned using a proteomics approach based on a quadrupole/time-of-flight hybrid mass spectrometer. When expressed in Escherichia coli, recombinant GnT51 exhibits UDP-GlcNAc:hydroxyproline Skp1 GlcNAc-transferase activity. Based on amino acid sequence alignments, GnT51 defines a new family of microbial polypeptide glycosyltransferases that appear to be distantly related to the catalytic domain of mucin-type UDP-GalNAc:Ser/Thr polypeptide alpha-GalNAc-transferases expressed in the Golgi compartment of animal cells. This relationship is supported by the effects of site-directed mutagenesis of GnT51 amino acids associated with its predicted DXD-like motif, DAH. In contrast, GnT51 lacks the N-terminal signal anchor sequence present in the Golgi enzymes, consistent with the cytoplasmic localization of the Skp1 acceptor substrate and the biochemical properties of the enzyme. The first glycosylation step of Dictyostelium Skp1 is concluded to be mechanistically similar to that of animal mucin type O-linked glycosylation, except that it occurs in the cytoplasm rather than the Golgi compartment of the cell.  相似文献   

2.
3.
4.
Sorting of proteins to the vacuoles of plant cells.   总被引:3,自引:0,他引:3  
The secretory system of plant cells sorts a large number of soluble proteins that either are secreted or accumulate in vacuoles. Secretion is a bulk-flow process that requires no information beyond the presence of a signal peptide necessary to enter the endoplasmic reticulum. Many vacuolar proteins are glycoproteins and the glycans are often modified as the proteins pass through the Golgi complex. Vacuolar targeting information is not contained in glycans as it is in animal cells; rather, targeting information is in polypeptide domains as it is in yeast cells. Several such domains have now been identified, but these show little or no amino acid sequence homology. We discuss the possibilities that targeting of protein to plant vacuoles may involve receptors as well as aggregation of protein at low pH.  相似文献   

5.
Skp1 is a cytoplasmic and nuclear protein of eukaryotes best known as an adaptor in SCF ubiquitin-protein isopeptide ligases. In Dictyostelium, Skp1 is subject to 4-hydroxylation at Pro(143) and subsequent O-glycosylation by alpha-linked GlcNAc and other sugars. Soluble cytosolic extracts have Skp1 prolyl 4-hydroxylase (P4H) activity, which can be measured based on hydroxylation-dependent transfer of [(3)H]GlcNAc to recombinant Skp1 by recombinant (Skp1-protein)-hydroxyproline alpha-N-acetyl-d-glucosaminyltransferase. The Dictyostelium Skp1 P4H gene (phyA) was predicted using a bioinformatics approach, and the expected enzyme activity was confirmed by expression of phyA cDNA in Escherichia coli. The purified recombinant enzyme (P4H1) was dependent on physiological concentrations of O(2), alpha-ketoglutarate, and ascorbate and was inhibited by CoCl(2), 3,4-dihydroxybenzoate, and 3,4-dihydroxyphenyl acetate, as observed for known animal cytoplasmic P4Hs of the hypoxia-inducible factor-alpha (HIFalpha) class. Overexpression of phyA cDNA in Dictyostelium yielded increased enzyme activity in a soluble cytosolic extract. Disruption of the phyA locus by homologous recombination resulted in loss of detectable activity in extracts and blocked hydroxylation-dependent glycosylation of Skp1 based on molecular weight analysis by SDS-PAGE, demonstrating a requirement for P4H1 in vivo. The sequence and functional similarities of P4H1 to animal HIFalpha-type P4Hs suggest that hydroxylation of Skp1 may, like that of animal HIFalpha, be regulated by availability of O(2), alpha-ketoglutarate, and ascorbate, which might exert novel control over Skp1 glycosylation.  相似文献   

6.
Jing W  DeAngelis PL 《Glycobiology》2000,10(9):883-889
Type A Pasteurella multocida, an animal pathogen, employs a hyaluronan [HA] capsule to avoid host defenses. PmHAS, the 972-residue membrane-associated hyaluronan synthase, catalyzes the transfer of both GlcNAc and GlcUA to form the HA polymer. To define the catalytic and membrane-associated domains, pmHAS mutants were analyzed. PmHAS1-703 is a soluble, active HA synthase suggesting that the carboxyl-terminus is involved in membrane association of the native enzyme. PmHAS1-650 is inactive as a HA synthase, but retains GlcNAc-transferase activity. Within the pmHAS sequence, there is a duplicated domain containing a short motif, Asp-Gly-Ser, that is conserved among many beta-glycosyltransferases. Changing this aspartate in either domain to asparagine, glutamate, or lysine reduced the HA synthase activity to low levels. The mutants substituted at residue 196 possessed GlcUA-transferase activity while those substituted at residue 477 possessed GlcNAc-transferase activity. The Michaelis constants of the functional transferase activity of the various mutants, a measure of the apparent affinity of the enzymes for the precursors, were similar to wild-type values. Furthermore, mixing D196N and D477K mutant proteins in the same reaction allowed HA polymerization at levels similar to the wild-type enzyme. These results provide the first direct evidence that the synthase polypeptide utilizes two separate glycosyltransferase sites.  相似文献   

7.
8.
Malignant transformation of rodent cell lines by polyoma virus and by activated ras genes is associated with increased UDP-GlcNAc:Man alpha-R beta-1,6-N-acetylglucosaminyltransferase V (GlcNAc-transferase V) activity and it product -GlcNAc beta 1-6Man alpha 1-6Man beta 1-branched Asn-linked oligosaccharides. In this report, we have compared beta 1-6GlcNAc branching of core O- and N-linked oligosaccharides in three experimental models of malignancy, namely (a) rat2 fibroblasts and their malignant T24H-ras-transfected counterpart; (b) benign SP1 mammary carcinoma cells and two metastic sublines of SP1; and (c) the metastatic MDAY-D2 lymphoma cell line and its poorly metastatic glycosylation mutant KBL-1. In addition to the previously reported increase in GlcNAc-transferase V activity, UDP-GlcNAc:Gal beta 1-3GalNAc alpha-R (GlcNAc to GalNAc) beta-1,6-N-acetylglucosaminyltransferase (core 2 GlcNAc-transferase, EC 2.4.1.102) activity was found to be elevated by 70% in the malignant rat2 and SP1 cell lines while several other glycosyltransferase activities were not significantly different. The action of core 2 GlcNAc-transferase followed by beta 1-4Gal-transferase provides an N-acetyllactosamine antenna that can be extended with polylactosamine (i.e. repeating Gal beta 1-4GlcNAc beta 1-3) provided UDP-GlcNAc:Gal beta-R beta 1-3GlcNAc-transferase (GlcNAc-transferase) (i)) activity is present. Polylactosamine content in microsomal membrane glycoproteins was quantitated by labeling the GlcNAc termini resulting from the action of Escherichia freundii endo-beta-galactosidase with bovine galactosyltransferase/UDP-[3H] Gal. Glycopeptidase F- sensitive and -insensitive fractions were measured to assess the N- and O-linked components. In the SP1 tumor model, the metastatic sublines showed increased core 2 GlcNAc-transferase and GlcNAc-transferase V activities but no change in GlcNAc-transferase (i) activity, yet polylactosamine was increased in both O- and N-linked oligosaccharides. In rat2 cells, down-regulation of GlcNAc-transferase (i) following transformation was associated with decreased polyactosamine even though core 2 GlcNAc-transferase and GlcNAc-transferase V were elevated in the cells. Finally, a 3-fold decrease in GlcNAc-transferase V in KBL-1, the glycosylation mutant of MDAY-D2 cells, resulted in complete loss of polylactosamine in N-linked but no change in O-linked polylactosamine content. These results suggest that, provided GlcNAc-transferase (i) is not limiting, the beta 1-6-branching enzymes core 2 GlcNAc-transferase and GlcNAc-transferase V regulate the levels of polyactosamine in O- and N-linked oligosaccharides, respectively.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

9.
Recently, complex O-glycosylation of the cytoplasmic/nuclear protein Skp1 has been characterized in the eukaryotic microorganism Dictyostelium. Skp1's glycosylation is mediated by the sequential action of a prolyl hydroxylase and five conventional sugar nucleotide-dependent glycosyltransferase activities that reside in the cytoplasm rather than the secretory compartment. The Skp1-HyPro GlcNAcTransferase, which adds the first sugar, appears to be related to a lineage of enzymes that originated in the prokaryotic cytoplasm and initiates mucin-type O-linked glycosylation in the lumen of the eukaryotic Golgi apparatus. GlcNAc is extended by a bifunctional glycosyltransferase that mediates the ordered addition of beta1,3-linked Gal and alpha1,2-linked Fuc. The architecture of this enzyme resembles that of certain two-domain prokaryotic glycosyltransferases. The catalytic domains are related to those of a large family of prokaryotic and eukaryotic, cytoplasmic, membrane-bound, inverting glycosyltransferases that modify glycolipids and polysaccharides prior to their translocation across membranes toward the secretory pathway or the cell exterior. The existence of these enzymes in the eukaryotic cytoplasm away from membranes and their ability to modify protein acceptors expose a new set of cytoplasmic and nuclear proteins to potential prolyl hydroxylation and complex O-linked glycosylation.  相似文献   

10.
Lectin-based structural glycomics requires a search for useful lectins and their biochemical characterization to profile complex features of glycans. In this paper, two GlcNAc-binding lectins are reported with their detailed oligosaccharide specificity. One is a classic plant lectin, Griffonia simplicifolia lectin-II (GSL-II), and the other is a novel fungal lectin, Boletopsis leucomelas lectin (BLL). Their sugar-binding specificity was analyzed by frontal affinity chromatography using 146 glycans (125 pyridylaminated and 21 p-nitrophenyl saccharides). As a result, it was found that both GSL-II and BLL showed significant affinity toward complex-type N-glycans, which are either partially or completely agalactosylated. However, their branch-specific features differed significantly: GSL-II strongly bound to agalacto-type, tri- or tetra-antennary N-glycans with its primary recognition of a GlcNAc residue transferred by GlcNAc-transferase IV, while BLL preferred N-glycans with fewer branches. In fact, the presence of a GlcNAc residue transferred by GlcNAc-transferase V abolishes the binding of BLL. Thus, GSL-II and BLL forms a pair of complementally probes to profile a series of agalacto-type N-glycans.  相似文献   

11.
Twenty-eight enzymes, encoded by different genes and secreted by different mutant strains of Chrysosporium lucknowense, were subjected to MALDI-TOF MS peptide fingerprinting followed by analysis of the MS data using the GlycoMod tool from the ExPASy proteomic site. Various N-linked glycan structures were discriminated in the C. lucknowense proteins as a result of the analysis. N-Glycosylated peptides with modifications matching the oligosaccharide compositions contained in the GlycoSuiteDB were found in 12 proteins. The most frequently encountered N-linked glycan, found in 9 peptides from 7 proteins, was (Man)(3)(GlcNAc)(2), that is, the core pentasaccharide structure forming mammalian-type high-mannose and hybrid/complex glycans in glycoproteins from different organisms. Nine out of 12 enzymes represented variably N-glycosylated proteins carrying common (Hex)(0-4)(HexNAc)(0-6)+(Man)(3)(GlcNAc)(2) structures, most of them being hybrid/complex glycans. Various glycan structures were likely formed as a result of the enzymatic trimming of a 'parent' oligosaccharide with different glycosidases. The N-glycosylation patterns found in C. lucknowense proteins differ from those reported for the extensively studied enzymes from Aspergilli and Trichoderma species, where high-mannose glycans of variable structure have been detected.  相似文献   

12.
Hen oviduct membranes were shown to contain high activity of a novel enzyme, UDP-GlcNac:GlcNAc beta 1-6(GlcNAc beta 1-2) Man alpha-R (GlcNAc to Man) beta 4-GlcNAc-transferase VI. The enzyme was shown to transfer GlcNAc in beta 1-4 linkage to the D-mannose residue of GlcNAc beta 1-6 (GlcNAc beta 1-2) Man alpha-R where R is either 1-6Man beta-(CH2)8COOCH3 or methyl. Radioactive enzyme products were purified by several chromatographic steps, including high performance liquid chromatography, and structures were determined by proton nmr, fast atom bombardment-mass spectrometry, and methylation analysis to be GlcNAc beta 1-6 ([14C]GlcNAc beta 1-4) (GlcNAc beta 1-2) Man alpha-R. The enzyme is stimulated by Triton X-100 and has optimum activity at a relatively high MnCl2 concentration of about 100 mM; Co2+, Mg2+, and Ca2+ could partially substitute for Mn2+. A tissue survey demonstrated high GlcNAc-transferase VI activity in hen oviduct and lower activity in chicken liver and colon, duck colon, and turkey intestine. No activity was found in mammalian tissues. Hen oviduct membranes cannot act on GlcNAc beta 1-6Man alpha-R but have a beta 4-GlcNAc-transferase activity that converts GlcNAc beta 1-2Man alpha-R to GlcNAc beta 1-4(GlcNAc beta 1-2) Man alpha-R where R is either 1-6Man beta-(CH2)8COOCH3 or 1-6Man beta methyl. The latter activity is probably due to GlcNAc-transferase IV which preferentially adds GlcNAc in beta 1-4 linkage to the Man alpha 1-3 arm of the GlcNAc beta 1-2Man alpha 1-6(GlcNAc beta 1-2Man alpha 1-3)Man beta 1-4GlcNAc beta 1-4GlcNAc-Asn core structure of asparagine-linked glycans. The minimum structural requirement for a substrate of beta 4-GlcNAc-transferase VI is therefore the trisaccharide GlcNAc beta 1-6(GlcNAc beta 1-2) Man alpha-; this trisaccharide is found on the Man alpha 6 arm of many branched complex asparagine-linked oligosaccharides. The data suggest that GlcNAc-transferase VI acts after the synthesis of the GlcNAc beta 1-2Man alpha 1-3-, GlcNAc beta 1-2Man alpha 1-6-, and GlcNAc beta 1-6 Man alpha 1-6-branches by GlcNAc-transferases I, II, and V, respectively, and is responsible for the synthesis of branched oligosaccharides containing the GlcNAc beta 1-6(GlcNAc beta 1-4)(GlcNAc beta 1-2)Man alpha 1-6Man beta moiety.  相似文献   

13.
Endoplasmic reticulum-associated degradation of newly synthesized glycoproteins has been demonstrated previously using various mammalian cell lines. Depending on the cell type, glycoproteins bearing Man9 glycans and glycoproteins bearing Man5 glycans can be efficiently degraded. A wide variety of variables can lead to defective synthesis of lipid-linked oligosaccharides and, therefore, in mammalian cells, species derived from Man9GlcNAc2 or Man5GlcNAc2 are often recovered on newly synthesized glycoproteins. The degradation of glycoproteins bearing these two species has not been studied. We used a Chinese hamster ovary cell line lacking Glc-P-Dol-dependent glucosyltransferase I to generate various proportions of Man5GlcNAc2 and Man9GlcNAc2 on newly synthesized glycoproteins. By studying the structure of the soluble oligomannosides produced by degradation of these glycoproteins, we demonstrated the presence of a higher proportion of soluble oligomannosides originating from truncated glycans, showing that glycoproteins bearing Man5GlcNAc2 glycans are degraded preferentially.  相似文献   

14.
Control of glycoprotein synthesis   总被引:6,自引:0,他引:6  
Hen oviduct membranes have been shown to catalyze the transfer of GlcNAc from UDP-GlcNAc to GlcNAc-beta 1-2Man alpha 1-6(GlcNAc beta 1-2 Man alpha 1-3) Man beta 1-4GlcNAc beta 1-4GlcNAc-Asn-X (GnGn) to form the triantennary structure GlcNAc beta 1-2Man alpha 1-6[GlcNAc beta 1-2(GlcNAc beta 1-4)Man alpha 1-3]Man beta 1-4GlcNAc beta 1-4GlcNAc-Asn-X. The enzyme has been named UDP-GlcNAc:GnGn (GlcNAc to Man alpha 1-3) beta 4-N-acetylglucosaminyltransferase IV (GlcNAc-transferase IV) to distinguish it from three other hen oviduct GlcNAc-transferases designated I, II, and III. Since GlcNAc-transferases III and IV both act on the same substrate, concanavalin A/Sepharose was used to separate the products of the two enzymes. At pH 7.0 and at a Triton X-100 concentration of 0.125% (v/v), GlcNAc-transferase IV activity in hen oviduct membranes is 7 nmol/mg of protein/h. The product was characterized by high resolution proton NMR spectroscopy at 360 MHz and by methylation analysis. In addition to triantennary oligosaccharide, hen oviduct membranes produced about 20% of bisected triantennary material, GlcNAc beta 1-2Man alpha 1-6[GlcNAc beta 1-2(GlcNAc beta 1-4)Man alpha 1-3] [GlcNAc beta 1-4]Man beta 1-4GlcNAc beta 1-4GlcNAc-Asn-X. Maximal GlcNAc-transferase IV activity requires the presence of both terminal beta 1-2-linked GlcNAc residues in the substrate. Removal of the GlcNAc residue on the Man alpha 1-6 arm or of both GlcNAc residues reduces activity by at least 80%. A Gal beta 1-4GlcNAc disaccharide on the Man alpha 1-6 arm reduces activity by 68% while the presence of this disaccharide on the Man alpha 1-3 arm reduces activity to negligible levels. A similar substrate specificity was found for GlcNAc-transferase III, the enzyme which adds a bisecting GlcNAc in beta 1-4 linkage to the beta-linked Man residue. Since a bisecting GlcNAc was found to prevent GlcNAc-transferase IV action, the bisected triantennary material found in the incubation must have been formed by the sequential action of GlcNAc-transferase IV followed by GlcNAc-transferase III. Activities similar to GlcNAc-transferase IV were also detected in rat liver Golgi-rich membranes (0.4 nmol/mg/h) and pig thyroid microsomes (0.1 nmol/mg/h).  相似文献   

15.
The transport and accumulation of phytohemagglutinin in developing bean (Phaseolus vulgaris L.) cotyledons is accompanied by the transient presence of N-acetylglucosamine (GlcNAc) residues on the oligosaccharide sidechains of this glycoprotein. These peripheral GlcNAc residues can be distinguished from those in the chitobiose portion of the oligosaccharide sidechains by their sensitivity to removal by the exoglycosidase β-N-acetylglucosaminidase. GlcNAc residues sensitive to removal by β-N-acetylglucosaminidase are present not only on phytohemagglutinin, but also on other newly synthesized proteins. The enzyme UDPGlcNAc:glycoprotein GlcNAc-transferase which transfers GlcNAc residues to glycoproteins was first described by Davies and Delmer (Plant Physiol 1981 68: 284-291). The data presented here show that this enzyme is associated with the Golgi complex of developing cotyledons.  相似文献   

16.
A cytosolic pea (Pisum sativum) seed albumin (ALB) and a chimeric protein (PHALB) consisting of the signal peptide and first three amino acids of phytohemagglutinin (PHA) and the amino acid sequence of ALB were expressed in parallel suspension cultures of tobacco (Nicotiana tabacum) cells and their intracellular fates examined. PHALB was efficiently secreted by the cells whereas ALB remained intracellular. These experiments show that the information contained in the signal peptide of a vacuolar protein is both necessary and sufficient for efficient secretion, and define secretion as a default or bulk-flow pathway. Entry into the secretory pathway was accompanied by glycosylation and the efficient conversion of the high mannose glycans into complex glycans indicating that transported glycoproteins do not need specific recognition domains for the modifying enzymes in the Golgi. Tunicamycin depressed the accumulation of the unglycosylated polypeptide in the culture medium much less than the accumulation of other glycoproteins. We interpret this as evidence that glycans on proteins that are not normally glycosylated do not have the same function of stabilizing and protecting the polypeptide as on natural glycoproteins.  相似文献   

17.
M Gohlke  U Mach  R Nuck  B Volz  C Fieger  R Tauber  W Reutter 《FEBS letters》1999,450(1-2):111-116
In the present study we show that the H (0) blood group determinant Fuc alpha1-2Gal beta1-4GlcNAc beta1-R is present on N-linked glycans of soluble human L-selectin recombinantly expressed in baby hamster kidney (BHK) cells. The glycans were isolated using complementary HPLC techniques and characterized by a combination of exoglycosidase digestion and mass spectrometry. The linkage of the fucose residues was determined by incubation of the glycans with specific fucosidases. The H blood determinant Fuc alpha1-2Gal beta1-4GlcNAc beta1 was detected for bi-, 2,4 branched tri- and tetraantennary structures. To our knowledge, the proposed oligosaccharide structures represent a new glycosylation motif for recombinant glycoproteins expressed on BHK cells.  相似文献   

18.
Hen oviduct membranes are shown to catalyze the following enzyme reaction: GlcNAc beta 1-2Man alpha 1-6(GlcNAc beta 1-2Man alpha 1-3)Man beta 1-4GlcNAc beta 1-4(Fuc alpha 1-6)GlcNAc-Asn + UDP-GlcNAc leads to GlcNAc beta 1-2Man alpha 1-6(GlcNAc beta 1-2Man alpha 1-3)GlcNAc beta 1-4)Man beta 1-4GlcNAc beta 1-4(Fuc alpha 1-6)GlcNAc-Asn + UDP. The enzyme catalyzing this reaction has been named UDP-GlcNAc:glycopeptide beta 4-N-acetylglucosaminyltransferase III (GlcNAc-transferase III) to distinguish it from two other GlcNAc-transferases (I and II) present in hen oviduct and previously described in several mammalian tissues. GlcNAc-transferases I and II, respectively, attach GlcNAc in beta 1-2 linkage to the Man alpha 1-3 and Man alpha 1-6 arms of Asn-linked oligosaccharide cores. A specific assay for GlcNAc-transferase III was devised by using concanavalin A/Sepharose columns to separate the product of transferase III from other interfering radioactive glycopeptides formed in the reaction. The specific activity of GlcNAc-transferase III in hen oviduct membranes is about 5 nmol/mg of protein/h. Substrate specificity studies have shown that GlcNAc-transferase III requires both terminal beta 1-2-linked GlcNAc residues in its substrate for maximal activity. Removal of the GlcNAc residue on the Man alpha 1-6 arm reduces activity by at least 85% and removal of both GlcNAc residues reduces activity by at least 93%. Two large scale preparations of product were subjected to high resolution proton NMR spectroscopy to establish the incorporation by the enzyme of a GlcNAc in beta 1-4 linkage to the beta-linked Man. This GlcNAc residue is called a "bisecting" GlcNAc and appears to play important control functions in the synthesis of complex N-glycosyl oligosaccharides. Several enzymes in the biosynthetic scheme are unable to act on glycopeptide substrates containing a bisecting GlcNAc residue.  相似文献   

19.
Gelatinase B is a matrix metalloproteinase (MMP-9) involved in tissue remodeling, development, cancer, and inflammation. Neutrophils produce three major forms of (pro)gelatinase B: 92 kDa monomers, homodimers, and complexes of gelatinase B covalently bound to neutrophil gelatinase B-associated lipocalin (NGAL). In contrast to the case for other proteinases, little information about the glycosylation of any natural human MMP is available. Here, both gelatinase B and NGAL were purified from human peripheral blood neutrophils, and the entire contents of the released N- and O-glycan pools were analyzed simultaneously using recently developed high-performance liquid chromatography-based technology. The results are discussed within the context of the domain structure of gelatinase B and a molecular model of NGAL based on data from this study and the three-dimensional nuclear magnetic resonance (NMR) structure of the protein. More than 95% of the N-linked glycans attached to both gelatinase B and NGAL were partially sialylated, core-fucosylated biantennary structures with and without outer arm fucose. The O-linked glycans, which were estimated to comprise approximately 85% of the total sugars on gelatinase B, mainly consisted of type 2 cores with Galbeta1,4GlcNAc (lactosamine) extensions, with or without sialic acid or outer arm fucose. This paper also contains the first report of O-linked glycans attached to NGAL. Although both proteins were isolated from neutrophils and contained O-linked glycans mainly with type 2 cores, the glycans attached to individual serine/threonine residue(s) in NGAL were significantly smaller than those on gelatinase B. In contrast to NGAL, gelatinase B contains a region rich in Ser, Thr, and Pro typical of O-glycosylated mucin-like domains.  相似文献   

20.
The endoplasmic reticulum (ER) is the major site for folding and sorting of newly synthesized secretory cargo proteins. One central regulator of this process is the quality control machinery, which retains and ultimately disposes of misfolded secretory proteins before they can exit the ER. The ER quality control process is highly effective and mutations in cargo molecules are linked to a variety of diseases. In mammalian cells, a large number of secretory proteins, whether membrane bound or soluble, are asparagine (N)-glycosylated. Recent attention has focused on a sugar transferase, UDP-Glucose: glycoprotein glucosyl transferase (UGGT), which is now recognized as a constituent of the ER quality control machinery. UGGT is capable of sensing the folding state of glycoproteins and attaches a single glucose residue to the Man9GlcNAc2 glycan of incompletely folded or misfolded glycoproteins. This enables misfolded glycoproteins to rebind calnexin and reenter productive folding cycles. Prolonging the time of glucose addition on misfolded glycoproteins ultimately results in either the proper folding of the glycoprotein or its presentation to an ER associated degradation machinery.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号