首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Class A macrophage scavenger receptors (SR-A) are multifunctional receptors with roles in modified lipoprotein uptake, innate immunity, and macrophage adhesion. Our previous studies conducted in mouse peritoneal macrophages demonstrated that pertussis toxin (PTX) mediated inhibition of G(i/o) attenuated SR-A-dependent uptake of modified lipoprotein. The finding that SR-A-mediated lipoprotein internalization was PTX-sensitive led us to hypothesize that SR-A-mediated cell adhesion might be similarly regulated by G(i/o)-dependent signaling pathways. To test this hypothesis, SR-A was expressed in HEK cells under inducible control. Relative to HEK cells that lack SR-A, SR-A expressing cells displayed enhanced adhesion to tissue culture dishes. SR-A-mediated adhesion was significantly reduced following PTX treatment and was insensitive to chelating divalent cations with EDTA. SR-A-expressing cells exhibited a distinct cell morphology characterized by fine filopodia-like projections. Both polymerized actin and vinculin were codistributed with SR-A in the filopodia-like projections indicating the formation of focal adhesion complexes. Overall, our results indicate that the ability of SR-A to enhance cell adhesion involves G(i/o) activation and formation of focal adhesion complexes.  相似文献   

2.
Class A scavenger receptors (SR-A) are transmembrane glycoproteins that mediate both ligand internalization and cell adhesion. Previous studies have identified specific amino acids in the cytoplasmic tail of SR-A that regulate receptor internalization; however, the role of cytoplasmic domains in regulating cell adhesion has not been addressed. To investigate the role of cytoplasmic domains in SR-A-mediated adhesion and to address whether SR-A-mediated adhesion and internalization require distinct cytoplasmic domains, different SR-A constructs were stably expressed in human embryonic kidney (HEK 293) cells. Deleting the entire cytoplasmic tail (SR-A Delta 1-55) greatly reduced receptor protein abundance. Retaining the six amino acids proximal to the membrane (SR-A Delta 1-49) restored receptor protein abundance. Although SR-A Delta 1-49 localized to the cell surface, cells expressing this receptor failed to internalize the ligand acetylated low density lipoprotein. Replacing the cytoplasmic tail of SR-A with that of the transferrin receptor (TfR/SR-A) resulted in retention of the chimeric receptor in the endoplasmic reticulum suggesting a specific role for the membrane-proximal amino acids in trafficking SR-A from the endoplasmic reticulum to the Golgi. Like SR-A expressing cells, cells expressing SR-A Delta 1-49 displayed increased spreading and adhesion, demonstrating that the membrane-proximal amino acids were sufficient for SR-A-mediated cell adhesion. Together, our results indicate a critical role for the membrane-proximal amino acids in SR-A trafficking and demonstrate that SR-A-mediated adhesion and internalization require distinct cytoplasmic domains.  相似文献   

3.
Integrin-mediated cell adhesion activates several signaling effectors, including phosphatidylinositol 3-kinase (PI3K), a central mediator of cell motility and survival. To elucidate the molecular mechanisms of this important pathway the specific members of the PI3K family activated by different integrins have to be identified. Here, we studied the role of PI3K catalytic isoforms in β1 integrin-induced lamellipodium protrusion and activation of Akt in fibroblasts. Real-time total internal reflection fluorescence imaging of the membrane–substrate interface demonstrated that β1 integrin-mediated attachment induced rapid membrane spreading reaching essentially maximal contact area within 5–10 min. This process required actin polymerization and involved activation of PI3K. Isoform-selective pharmacological inhibition identified p110α as the PI3K catalytic isoform mediating both β1 integrin-induced cell spreading and Akt phosphorylation. A K756L mutation in the membrane-proximal part of the β1 integrin subunit, known to cause impaired Akt phosphorylation after integrin stimulation, induced slower cell spreading. The initial β1 integrin-regulated cell spreading as well as Akt phosphorylation were sensitive to the tyrosine kinase inhibitor PP2, but were not dependent on Src family kinases, FAK or EGF/PDGF receptor transactivation. Notably, cells expressing a Ras binding-deficient p110α mutant were severely defective in integrin-induced Akt phosphorylation, but exhibited identical membrane spreading kinetics as wild-type p110α cells.We conclude that p110α mediates β1 integrin-regulated activation of Akt and actin polymerization important for survival and lamellipodia dynamics. This could contribute to the tumorigenic properties of cells expressing constitutively active p110α.  相似文献   

4.
We have investigated the effects of wortmannin, an inhibitor of phosphatidylinositol 3-kinase (PI 3-kinase), on antigen-mediated signaling in the RBL-2H3 mast cell model. In RBL-2H3 cells, the cross-linking of high affinity IgE receptors (Fc epsilon R1) activates at least two cytoplasmic protein tyrosine kinases, Lyn and Syk, and stimulates secretion, membrane ruffling, spreading, pinocytosis, and the formation of actin plaques implicated in increased cell-substrate adhesion. In addition, Fc epsilon R1 cross-linking activates PI 3-kinase. It was previously shown that wortmannin causes a dose-dependent inhibition of PI 3-kinase activity and also inhibits antigen-stimulated degranulation. We report that the antigen-induced synthesis of inositol(1,4,5)P3 is also markedly inhibited by wortmannin. Consistent with evidence in other cell systems implicating phosphatidylinositol(3,4,5)P3 in ruffling, pretreatment of RBL-2H3 cells with wortmannin inhibits membrane ruffling and fluid pinocytosis in response to Fc epsilon R1 cross-linking. However, wortmannin does not inhibit antigen-induced actin polymerization, receptor internalization, or the actin-dependent processes of spreading and adhesion plaque formation that follow antigen stimulation in adherent cells. Wortmannin also fails to inhibit either of the Fc epsilon R1-coupled tyrosine kinases, Lyn or Syk, or the activation of mitogen-activated protein kinase as measured by in vitro kinase assays. Strikingly, there is substantial in vitro serine/threonine kinase activity in immunoprecipitates prepared from Fc epsilon R1-activated cells using antisera to the p85 subunit of PI 3-kinase. This activity is inhibited by pretreatment of the cells with wortmannin or by the direct addition of wortmannin to the kinase assay, suggesting that PI 3-kinase itself is capable of acting as a protein kinase. We conclude that Fc epsilon R1 cross-linking activates both lipid and protein kinase activities of PI 3-kinase and that inhibiting these activities with wortmannin results in the selective block of a subset of Fc epsilon R1-mediated signaling responses.  相似文献   

5.
Class A scavenger receptors (SR-A) participate in multiple macrophage functions including adhesion to modified extracellular matrix proteins present in various inflammatory disorders such as atherosclerosis and diabetes. By mediating macrophage adhesion to modified proteins and increasing macrophage retention, SR-A may contribute to the inflammatory process. Eicosanoids produced after phospholipase A(2) (PLA(2))-catalyzed release of arachidonic acid (AA) are important regulators of macrophage function and inflammatory responses. The potential roles of AA release and metabolism in SR-A-mediated macrophage adhesion were determined using macrophages adherent to modified protein. SR-A-dependent macrophage adhesion was abolished by selectively inhibiting calcium-independent PLA(2) (iPLA(2)) activity and absent in macrophages isolated from iPLA(2) beta(-/-) mice. Our results further demonstrate that 12/15-lipoxygenase (12/15-LOX)-derived, but not cyclooxygenase- or cytochrome P450-dependent epoxygenase-derived AA metabolites, are specifically required for SR-A-dependent adhesion. Because of their role in regulating actin polymerization and cell adhesion, Rac and Cdc42 activation were also examined and shown to be increased via an iPLA(2)- and LOX-dependent pathway. Together, our results identify a novel role for iPLA(2)-catalyzed AA release and its metabolism by 12/15-LOX in coupling SR-A-mediated macrophage adhesion to Rac and Cdc42 activation.  相似文献   

6.
The class A scavenger receptor (SR-A) binds modified lipoproteins and has been implicated in cholesterol ester deposition in macrophages. The SR-A also contributes to cellular adhesion. Using SR-A(+/+) and SR-A(-)/- murine macrophages, we found SR-A expression important for both divalent cation-dependent and -independent adhesion of macrophages to the human smooth muscle cell extracellular matrix. The SR-A mediated 65 and 85% of macrophage adhesion to the extracellular matrix in the presence and absence of serum, respectively. When EDTA was added to chelate divalent cations, the SR-A mediated 90 and 95% of the macrophage adhesion without and with serum, respectively. SR-A-mediated adhesion to the extracellular matrix was prevented by fucoidin, an SR-A antagonist. Biglycan and decorin, proteoglycans of the extracellular matrix, were identified as SR-A ligands. Compared with control cells, Chinese hamster ovary cells expressing the SR-A showed 5- and 6-fold greater cell association (binding and internalization) of (125)I-decorin and -biglycan, respectively. In competition studies, unlabeled proteoglycan or fucoidin competed for binding of (125)I-labeled decorin and -biglycan, and biglycan and decorin competed for the SR-A-mediated cell association and degradation of (125)I-labeled acetylated LDL, a well characterized ligand for the SR-A. These results suggest that the SR-A could contribute to the adhesion of macrophages to the extracellular matrix of atherosclerotic plaques.  相似文献   

7.
Gangliosides are implicated in regulating cell adhesion and migration on fibronectin by binding with the alpha(5) subunit of alpha(5)beta(1) integrin. However, the effects of gangliosides on cell spreading and related signaling pathways are unknown. Increases in gangliosides GT1b and GD3 inhibited spreading on fibronectin, concurrent with inhibition of Src and focal adhesion kinase. Although antibody blockade of GT1b or GD3 function and gene-modulated ganglioside depletion stimulated spreading and activated Src and focal adhesion kinase, the augmented spreading by disruption of GT1b function, but not by disruption of GD3 function, was inhibited by blockade of Src and focal adhesion kinase activation. In contrast, inhibitors of protein kinase C prevented the stimulation of spreading by GD3 functional inhibition, but not by GT1b functional blockade. Modulation of either GT1b or GD3 content affected phosphoinositol 3-kinase activation, and inhibition of this activation reversed the stimulation of cell spreading by anti-GD3 antibody, anti-GT1b antibody, and ganglioside depletion, suggesting that phosphoinositol 3-kinase is an intermediate in both the FAK/Src and protein kinase C pathways that lead to cell spreading. These studies demonstrate that epithelial cell ganglioside GT1b modulates cell spreading through alpha(5)beta(1)/FAK and phosphoinositol 3-kinase signaling, whereas GD3-modulated spreading appears to involve phosphoinositol 3-kinase-dependent protein kinase C signaling.  相似文献   

8.
Activation of Lyn, a Src-related nonreceptor tyrosine kinase, in trophoblast cells is associated with trophoblast giant cell differentiation. The purpose of the present work was to use Lyn as a tool to identify signaling pathways regulating the endocrine differentiation of trophoblast cells. The Src homology 3 domain of Lyn was shown to display differentiation-dependent associations with other regulatory proteins, including phosphatidylinositol 3-kinase (PI3-K). PI3-K activation was dependent upon trophoblast giant cell differentiation. The downstream mediator of PI3-K, Akt/protein kinase B, also exhibited differentiation-dependent activation. Lyn is a potential regulator of the PI3-K/Akt signaling pathway, as are receptor tyrosine kinases. Protein tyrosine kinase profiling was used to identify two candidate regulators of the PI3-K/Akt pathway, fibroblast growth factor receptor-1 and Sky. At least part of the activation of Akt in differentiating trophoblast giant cells involves an autocrine growth arrest-specific-6-Sky signaling pathway. Inhibition of PI3-K activities via treatment with LY294002 disrupted Akt activation and interfered with the endocrine differentiation of trophoblast giant cells. In summary, activation of the PI3-K/Akt signaling pathway regulates the development of the differentiated trophoblast giant cell phenotype.  相似文献   

9.
Class A scavenger receptors (SR-A) mediate the uptake of modified low density lipoprotein (LDL) by macrophages. Although not typically associated with the activation of intracellular signaling cascades, results with peritoneal macrophages indicate that the SR-A ligand acetylated LDL (AcLDL) promotes activation of cytosolic kinases and phospholipases. These signaling responses were blocked by the treatment of cells with pertussis toxin (PTX) indicating that SR-A activates G(i/o)-linked signaling pathways. The functional significance of SR-A-mediated G(i/o) activation is not clear. In this study, we investigated the potential role of G(i/o) activation in regulating SR-A-mediated lipoprotein uptake. Treatment of mouse peritoneal macrophages with PTX decreased association of fluorescently labeled AcLDL with cells. This inhibition was dependent on the catalytic activity of the toxin confirming that the decrease in AcLDL uptake involved inhibiting G(i/o) activation. In contrast to the inhibitory effect on AcLDL uptake, PTX treatment did not alter beta-VLDL-induced cholesterol esterification or deposition of cholesterol. The ability of polyinosine to completely inhibit AcLDL uptake, and the lack of PTX effect on beta-VLDL uptake, demonstrated that the inhibitory effect is specific for SR-A and not the result of non-specific effects on lipoprotein metabolism. Despite having an effect on an SR-A-mediated lipoprotein uptake, there was no change in the relative abundance of SR-A protein after PTX treatment.These results demonstrate that activation of a PTX-sensitive G protein is involved in a feedback process that positively regulates SR-A function.  相似文献   

10.
Pulmonary artery smooth muscle cell (PASMC)adhesion, spreading, and migration depend on matrix-stimulatedreorganization of focal adhesions. Platelet-derived growth factor(PDGF) activates intracellular signal transduction cascades that alsoregulate adhesion, spreading, and migration, but the signalingmolecules involved in these events are poorly defined. We hypothesizedthat phosphatidylinositol (PI) 3-kinases and Src tyrosine kinasestranslate matrix and PDGF-initiated signals into cell motility. Inexperiments with cultured canine PASMCs, inhibition of PI 3-kinaseswith wortmannin (0.3 µM) and LY-294002 (50 µM) and of Src kinasewith PP1 (30 µM) did not decrease spontaneous (nonstimulated) orPDGF-stimulated (10 ng/ml) adhesion onto collagen. PI 3-kinase and Srckinase activities, however, were necessary for cell spreading: PP1inhibited cell spreading and Src Tyr-418 phosphorylation in aconcentration-dependent manner. Inhibition of PI 3-kinase and Srcpartially reduced cell migration, while at 10 and 30 µM, PP1eliminated migration, likely due to inhibition of PDGF receptors. Inconclusion, both PI 3-kinases and Src tyrosine kinases are componentsof pathways that mediate spreading and migration of cultured PASMCs on collagen.

  相似文献   

11.
Integrin signaling is central to cell growth and differentiation, and critical for the processes of apoptosis, cell migration and wound repair. Previous research has demonstrated a requirement for SNARE-dependent membrane traffic in integrin trafficking, as well as cell adhesion and migration. The goal of the present research was to ascertain whether SNARE-dependent membrane trafficking is required specifically for integrin-mediated signaling. Membrane traffic was inhibited in Chinese hamster ovary cells by expression of dominant-negative (E329Q) N-ethylmaleimide-sensitive fusion protein (NSF) or a truncated form of the SNARE SNAP23. Integrin signaling was monitored as cells were plated on fibronectin under serum-free conditions. E329Q-NSF expression inhibited phosphorylation of focal adhesion kinase (FAK) on Tyr397 at early time points of adhesion. Phosphorylation of FAK on Tyr576, Tyr861 and Tyr925 was also impaired by expression of E329Q-NSF or truncated SNAP23, as was trafficking, localization and activation of Src and its interaction with FAK. Decreased FAK-Src interaction coincided with reduced Rac activation, decreased focal adhesion turnover, reduced Akt phosphorylation and lower phosphatidylinositol 3,4,5-trisphosphate levels in the cell periphery. Over-expression of plasma membrane-targeted Src or phosphatidylinositol 3-kinase (PI3K) rescued cell spreading and focal adhesion turnover. The results suggest that SNARE-dependent trafficking is required for integrin signaling through a FAK/Src/PI3K-dependent pathway.  相似文献   

12.
During hematogenous cancer metastasis, tumor cells separate from a primary mass, enter the bloodstream, disperse throughout the body, migrate across vessel walls, and generate distant colonies. The later steps of metastasis superficially resemble leukocyte extravasation, a process initiated by selectin-mediated cell tethering to the blood vessel wall followed by integrin-mediated arrest and transendothelial migration. Some cancer cells express P-selectin ligands and attach to immobilized P-selectin, suggesting that these cells can arrest in blood vessels using sequential selectin- and integrin-mediated adhesion, as do leukocytes. We hypothesize that selectin binding may regulate subsequent integrin-mediated steps in metastasis. Using a model system of cultured Colo 320 human colon adenocarcinoma cells incubated with soluble P-selectin-IgG chimeric protein, we have found that P-selectin can stimulate activation of the alpha(5)beta(1) integrin resulting in a specific increase of adhesion and spreading of these cells on fibronectin substrates. P-selectin binding also induced activation of p38 mitogen-activated protein kinase (p38 MAPK) and phosphatidylinositol 3-kinase (PI3-K). PI3-K inhibitors blocked P-selectin-mediated integrin activation, cell attachment, and cell spreading. Inhibition of p38 MAPK activation blocked cell spreading, but not cell attachment. P-selectin binding also resulted in formation of a signaling complex containing PI3-K and p38 MAPK. These results suggest that P-selectin binding to tumor cells can activate alpha(5)beta(1) integrin via PI3-K and p38 MAPK signaling pathways leading to increased cell adhesion. We propose that P-selectin ligands are important tumor cell signaling molecules that modulate integrin-mediated cell adhesion in the metastatic process.  相似文献   

13.
14.
Classical cadherin adhesion molecules can function as adhesion-activated cell-signaling receptors. One key target for cadherin signaling is the lipid kinase phosphoinositide (PI) 3-kinase, which is recruited to cell-cell contacts and activated by E-cadherin. In this study, we sought to identify upstream factors necessary for E-cadherin to activate PI 3-kinase signaling. We found that inhibition of tyrosine kinase signaling blocked recruitment of PI 3-kinase to E-cadherin contacts and abolished the ability of E-cadherin to activate PI 3-kinase signaling. Tyrosine kinase inhibitors further perturbed several parameters of cadherin function, including cell adhesion and the ability of cells to productively extend nascent cadherin-adhesive contacts. Notably, the functional effects of tyrosine kinase blockade were rescued by expression of a constitutively active form of PI 3-kinase that restores PI 3-kinase signaling. Finally, using dominant negative Src mutants and Src-null cells, we identified Src as one key upstream kinase in the E-cadherin/PI 3-kinase-signaling pathway. Taken together, our findings indicate that tyrosine kinase activity, notably Src signaling, can contribute positively to cadherin function by supporting E-cadherin signaling to PI 3-kinase.  相似文献   

15.
We examined the role of the Src kinase Lyn in phospholipase C-gamma 2 (PLC-gamma 2) and phosphatidylinositol (PI) 3-kinase activation in erythropoietin (Epo)-stimulated FDC-P1 cells transfected with a wild type (WT) Epo-receptor (Epo-R). We showed that two inhibitors of Src kinases, PP1 and PP2, abolish both PLC-gamma 2 tyrosine phosphorylation and PI 3-kinase activity in WT Epo-R FDC-P1 cells. We also demonstrated that Epo-phosphorylated Lyn is associated with tyrosine phosphorylated PLC-gamma 2 and PI 3-kinase in WT Epo-R FDC-P1-stimulated cells. Moreover Epo-activated Lyn phosphorylates in vitro PLC-gamma 2 immunoprecipitated from unstimulated cells. Our results suggest that the Src kinase Lyn is involved in PLC-gamma 2 phosphorylation and PI 3-kinase activation induced by Epo.  相似文献   

16.
Vascular cell adhesion molecule (VCAM)-1 has been implicated in interactions between leukocytes and connective tissue, including rheumatoid arthritis (RA) synovial tissue fibroblasts. Such interactions within the synovium contribute to RA inflammation. Using phosphoinositide 3-kinase (PI3-kinase) inhibitor LY294002 and Src inhibitor PP2, we show that interleukin (IL)-18-induced ERK1/2 activation is Src kinase-dependent. Antisense (AS) c-Src oligonucleotide (ODN) treatment reduced IL-18-induced ERK1/2 expression by 32% compared with control, suggesting an upstream role of Src in ERK1/2 activation. AS c-Src ODN treatment also inhibited Akt expression by 74% compared with sense control. PI3-kinase inhibitor LY294002 or AS PI3-kinase ODN inhibited Akt expression. AS c-Src ODN inhibited Akt phosphorylation, confirming Src is upstream of PI3-kinase in IL-18-induced RA synovial fibroblast signaling. IL-18 induced a time-dependent activation of c-Src, Ras, and Raf-1, suggesting this signaling cascade plays a role in ERK activation. IL-18 directly activated Src kinase by more than 4-fold over basal levels by enzymatic assay. Electrophoretic mobility shift assay showed that activator protein-1 (AP-1) is activated by IL-18 through ERK and Src but not through PI3-kinase. In an alternate pathway, inhibition of IL-1 receptor-associated kinase-1 (IRAK) with AS ODN to IRAK reduced IL-18-induced expression of nuclear factor kappaB (NFkappaB). Finally, IL-18-induced cell surface VCAM-1 expression was inhibited by treatment with AS ODNs to c-Src, IRAK, PI3-kinase, and ERK1/2 by 57, 43, 41, and 32% compared with control sense ODN treatment, respectively. These data support a role for IL-18 activation of three distinct pathways during RA synovial fibroblast stimulation: two Src-dependent pathways and the IRAK/NFkappaB pathway. Targeting VCAM-1 signaling mechanisms may represent therapeutic approaches to inflammatory and angiogenic diseases characterized by adhesion molecule up-regulation.  相似文献   

17.
The Hippo pathway is involved in the regulation of contact inhibition of proliferation and responses to various physical and chemical stimuli. Recently, several upstream negative regulators of Hippo signaling, including epidermal growth factor receptor ligands and lysophosphatidic acid, have been identified. We show that fibronectin adhesion stimulation of focal adhesion kinase (FAK)-Src signaling is another upstream negative regulator of the Hippo pathway. Inhibition of FAK or Src in MCF-10A cells plated at low cell density prevented the activation of Yes-associated protein (YAP) in a large tumor suppressor homologue (Lats)–dependent manner. Attachment of serum-starved MCF-10A cells to fibronectin, but not poly-d-lysine or laminin, induced YAP nuclear accumulation via the FAK–Src–phosphatidylinositol 4,5-bisphosphate 3-kinase (PI3K) signaling pathway. Attenuation of FAK, Src, PI3K, or PDK1 activity blocked YAP nuclear accumulation stimulated by adhesion to fibronectin. This negative regulation of the Hippo pathway by fibronectin adhesion signaling can, at least in part, explain the effects of cell spreading on YAP nuclear localization and represents a Lats-dependent component of the response to cell adhesion.  相似文献   

18.
Attachment of many cell types to extracellular matrix proteins triggers cell spreading, a process that strengthens cell adhesion and is a prerequisite for many adhesion-dependent processes including cell migration, survival, and proliferation. Cell spreading requires integrins with intact beta cytoplasmic domains, presumably to connect integrins with the actin cytoskeleton and to activate signaling pathways that promote cell spreading. Several signaling proteins are known to regulate cell spreading, including R-Ras, PI 3-kinase, PKCepsilon and Rac1; however, it is not known whether they do so through a mechanism involving integrin beta cytoplasmic domains. To study the mechanisms whereby cell spreading is regulated by integrin beta cytoplasmic domains, we inhibited cell spreading on collagen I or fibrinogen by expressing tac-beta1, a dominant-negative inhibitor of integrin function, and examined whether cell spreading could be restored by the coexpression of either V38R-Ras, p110alpha-CAAX, myr-PKCepsilon, or L61Rac1. Each of these activated signaling proteins was able to restore cell spreading as assayed by an increase in the area of cells expressing tac-beta1. R-Ras and Rac1 rescued cell spreading in a GTP-dependent manner, whereas PKCstraightepsilon required an intact kinase domain. Importantly, each of these signaling proteins required intact beta cytoplasmic domains on the integrins mediating adhesion in order to restore cell spreading. In addition, the rescue of cell spreading by V38R-Ras was inhibited by LY294002, suggesting that PI 3-kinase activity is required for V38R-Ras to restore cell spreading. In contrast, L61Rac1 and myr-PKCstraightepsilon each increased cell spreading independent of PI 3-kinase activity. Additionally, the dominant-negative mutant of Rac1, N17Rac1, abrogated cell spreading and inhibited the ability of p110alpha-CAAX and myr-PKCstraightepsilon to increase cell spreading. These studies suggest that R-Ras, PI 3-kinase, Rac1 and PKCepsilon require the function of integrin beta cytoplasmic domains to regulate cell spreading and that Rac1 is downstream of PI 3-kinase and PKCepsilon in a pathway involving integrin beta cytoplasmic domain function in cell spreading.  相似文献   

19.
Tissue factor (TF), apart from activating the extrinsic pathway of the blood coagulation, is a principal regulator of embryonic angiogenesis and oncogenic neoangiogenesis, but also influences inflammation, leukocyte diapedesis and tumor progression. The intracellular domain of TF lacks homology to other classes of receptors and hence the signaling mechanism is poorly understood. Here we demonstrate that factor VIIa (the natural ligand for TF) induces the activation of the Src family members c-Src, Lyn, and Yes, and subsequently phosphatidylinositol 3-kinase (PI3K), followed by stimulation of c-Akt/protein kinase B as well as the small GTPases Rac and Cdc42. In turn Rac mediates p38 mitogen-activated protein (MAP) kinase activation and cytoskeletal reorganization, whereas factor VIIa-induced p42/p44 MAP kinase stimulation required PI3K enzymatic activity but was not inhibited by dominant negative Rac proteins. We propose that this Src family member/PI3K/Rac-dependent signaling pathway is a major mediator of factor VIIa/TF effects in pathophysiology.  相似文献   

20.
Macrophage scavenger class A type I and type II receptors (SR-A) are trimeric, integral membrane glycoproteins that bind an unusually broad array of macromolecular ligands. These ligands include modified proteins and lipoproteins, nucleic acids, and a variety of plant and microbial cell wall constituents, such as fucoidan and lipoteichoic acid. Early studies of SR-A functions indicated that the receptors bound, internalized, and degraded their ligands without provoking any macrophage activating signaling events. More recent studies have provided evidence that several SR-A ligands can activate macrophage gene expression via utilization of a receptor-linked, PI3-kinase pathway. To investigate the role of SR-A in engaging signal transduction events, we employed macrophages taken from mice lacking these receptors. Using either fucoidan or lipoteichoic acid, we confirm that both ligands stimulate tyrosine phosphorylation of PI3-kinase and production of modest levels of the cytokine, TNFalpha. However, macrophages taken from SR-A null mice did not differ from wild type macrophages in these responses, indicating that these signaling events arise independently of SR-A activity. Employing mice lacking CD14, a GPI anchored receptor that binds bacterial lipopolysaccharide and signals via activation of Toll-like receptors, we show that the fucoidan and lipoteichoic acid responses are largely abrogated when CD14 is absent. These data do not provide support for direct SR-A involvement in signal transduction events and suggest that the early characterization of these receptors as initiators of a non-phlogistic, pathogen clearance pathway was correct.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号