首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The viscosity of neutrophils and their transit times through small pores   总被引:1,自引:0,他引:1  
Passive neutrophils from five different individuals are rapidly aspirated at constant suction pressure and at room temperature into a pipet with a diameter of 4 microns. The excess suction pressures (i.e., the pressures in excess of the small threshold pressure required to produce continuous flow into the pipet) are 5000, 10,000 and 20,000 dyn/cm2 (0.5, 1 and 2 kPa) and are comparable to those encountered in the microcirculation. The rate of entry into the pipet is modeled with a linearized version of a theory by Yeung and Evans for the newtonian flow of a neutrophil into a pipet or pore. From this theory and measurements of the cell size and its rate of entry into the pipet, we can calculate a value for the cytoplasmic viscosity. A linear (newtonian) fit of the theory to the experimental data gives a value for the viscosity of 1050 poise. A non-linear fit predicts a decrease in the "apparent viscosity" from about 1500 poise at zero excess pressure to 1000 poise at an excess aspiration pressure of 20,000 dyn/cm2. Our experiments and analysis also allow us to calculate a value for the transit time through short pores over a wide range of excess aspiration pressures and pore diameters. For example, for a pore diameter of 3 microns and an aspiration pressure of 1250 dyn/cm2, we predict a transit time of about 70 s. At 6 microns and 20,000 dyn/cm2, the predicted transit time is only about 0.04 s.  相似文献   

2.
A new red blood cell filtration system, termed the Cell Transit Time Analyzer (CTTA), has been developed in order to measure the individual transit times of a large number of cells through cylindrical micropores in special "oligopore" filters; the system operates on the electrical conductometric principle and employs special computer software to provide several measures of the resulting transit time histogram. Using this system with filters having pore diameters of 4.5 or 5.0 microns and length to diameter ratios of 3.0 to 4.7, we have evaluated the effects of several experimental factors on the flow behavior of normal and modified human RBC. Our results indicate: 1) linear RBC pressure-flow behavior over a driving pressure range of 2 to 10.5 cm H2O with zero velocity intercepts at delta P = 0, thus suggesting the Poiseuille-like nature of the flow; 2) resistance to flow or "apparent viscosities" for normal RBC which are between 3.1 to 3.9 cPoise and are independent of driving pressure and pore geometry; 3) increased flow resistance (i.e., increased transit times) for old versus young RBC and for RBC made less deformable by DNP-induced crenation or by heat treatment at 48 degrees C; 4) increased mean transit time and poorer reproducibility when using EDTA rather than heparin as the anticoagulant agent. Further, using mixtures of heat-treated and normal RBC and various percentile values of the transit time histogram, we have been able to demonstrate the presence of sub-populations of rigid cells and thus the value of measurements which allow statistical analyses of RBC populations.  相似文献   

3.
T W Secomb  R Hsu 《Biophysical journal》1996,71(2):1095-1101
Filtration through micropores is frequently used to assess red blood cell deformability, but the dependence of pore transit time on cell properties is not well understood. A theoretical model is used to simulate red cell motion through cylindrical micropores with diameters of 3.6, 5, and 6.3 microns, and 11-microns length, at driving pressures of 100-1000 dyn/cm2. Cells are assumed to have axial symmetry and to conserve surface area during deformation. Effects of membrane shear viscosity and elasticity are included, but bending resistance is neglected. A time-dependent lubrication equation describing the motion of the suspending fluid is solved, together with the equations for membrane equilibrium, using a finite difference method. Predicted transit times are consistent with previous experimental observations. Time taken for cells to enter pores represents more than one-half of the transit time. Predicted transit time increases with increasing membrane viscosity and with increasing cell volume. It is relatively insensitive to changes in internal viscosity and to changes in membrane elasticity except in the narrowest pores at low driving pressures. Elevating suspending medium viscosity does not increase sensitivity of transit time to membrane properties. Thus filterability of red cells is sensitively dependent on their resistance to transient deformations, which may be a key determinant of resistance to blood flow in the microcirculation.  相似文献   

4.
The resistive pulse technique was used to study the influence of specific mechanical properties of the red cell on its ability to enter and flow through single capillary-sized pores with diameters of 3.6, 5.0 and 6.3 micron and lengths of 11 micron. A two-fold increase in membrane shear elasticity resulted in a 40 percent increase in the cell's transit time through a 3.6 micron pore but produced no change in transit time through a 6.3 micron pore. A two-fold increase in membrane shear viscosity produced a 40 percent increase in transit time through the 3.6 micron pore and small but significant increases in transit times through the larger pores. Osmotically dehydrated cells showed no increase in transit time through a 6.3 micron pore, but showed increases in transit times of 50 to 70 percent through 5.0 and 3.6 micron pores. Dense red cells showed increased transit times through both 5.0 micron and 6.0 micron pores. These results indicate that for cells with normal geometric properties, the membrane's shear viscosity and elasticity only influence the cell's transit through pores of 5 micron or less in diameter. However, alterations in the cell's geometric properties can extend the influence of membrane shear properties to larger diameter pores.  相似文献   

5.
A simple method for filter purification of Chlamydia trachomatis from cell culture is described. Crude homogenates of chlamydiae-infected cells were passed through a glass prefilter and a 0.6 microns pore diameter polycarbonate filter. The filtrate was then passed through a 0.2 microns pore diameter filter on which the chlamydiae were trapped. This filter was then back-washed to collect the organisms. These procedures removed cell debris and soluble protein, and yielded particles with a narrow size distribution. The mean yield of viable chlamydiae purified by filtration was 64% when the filters were washed at each stage of the process.  相似文献   

6.
A novel method of cell immobilization is described. The cell support consists of ceramic microspheres of approximately 50-75 microns diameter. The spheres are hollow, having a wall thickness of 10-15 microns and one entrance (ca. 20 microns diameter). The walls are porous with a mean pore size of approximately 90 nm. When a cell suspension (of S. cerevisiae) is passed through a column of such particles, cells are immobilized. Conditions are devised such that the overwhelming majority of cells are held in the central cavity of the support and not between the particles. Provided turbulence is avoided, the distribution of cells along the column length in the steady state is rather homogeneous. The facts that (a) essentially all particles, regardless of orientation, entrap cells, and (b) nonporous particles also entrap cells with high efficiency, indicate that filtration effects are irrelevant and that heretofore unrecognized hydrodynamic forces are alone responsible for the cell immobilization. Cells can be immobilized to high biomass densities, while the hydrodynamic properties of columns containing such immobilized cells are excellent. We describe an on-line electronic method for the real-time measurement of immobilized cellular biomass. Cell growth (so recorded) and metabolism continue to occur in such particles at high rates. Using the glycolytic production of ethanol by S. cerevisiae as a model reaction, volumetric productivities as great as any published are obtained. Thus the "lobster-pot effect" or "hydrodynamic deposition" represents a novel, promising, and generally applicable method of cell immobilization.  相似文献   

7.
The dependence of the functional characteristics of bacterioplankton from the loess of Lake Khanka on the pore size of filtering materials was investigated. Soluble organic matter (SOM), bacteria, and bacterial consumers adsorbed on particles suspended in the lake water were found to filter differently depending on the pore size of the filtering material. Filters with pore size 4.5 microns (filters II) retained up to 20% of SOM and 20-30% of bacterial cells. Filters III with pore size 2.87 microns retained almost 50% SOM and about 40% of bacteria. The double layer of gauze no. 72 (referred to as filter I) with pores size 40 microns was unable to completely retain bacterial consumers. In the case of filtrates I and II, the generation time of bacterioplankton decreased with its increasing average daily concentration. In the case of filtrate III, the generation time of bacterioplankton was minimum and did not depend on its concentration. Oxygen consumption rates per one bacterial cell and per unit biomass in filtrates increased with decreasing pore size of the filters through which they had passed. The bacterial biomass and oxygen consumption rate increased exponentially in filtrates III and logarithmically in filtrates I.  相似文献   

8.
A new red blood cell filtration system, termed the Cell Transit Time Analyzer (CTTA), has been developed in order to measure the individual transit times of a large number of cells through cylindrical micropores in special "oligopore" filters: the system operates on the electrical conductometric principle and employs special computer software to provide several measures of the resulting transit time histogram. Using this system with filters having pore diameters of 4.5 or 5.0 cm and length to diameter ratios of 3.0 to 4.7, we have evaluated the effects of several experimental factors on the flow behavior of normal and modified human RBC. Our results indicate : 1) linear PBC pressure - flow behavior over a driving pressure range of 2 to 10.5 cm H2O with zero velocity intercepts at delta P = 0, thus suggesting the Poiseuille - like nature of the flow; 2) resistance to flow or "apparent viscosities" for normal RBC which are between 3.1 to 3.9 cPoise and are independent of driving pressure and pore geometry; 3) increased flow resistance (i.e., increased transit times) for old versus young RBC and for RBC made less deformable by DNP-induced crenation or by heat treatment at 48 degrees C; 4) increased mean transit time and poorer reproducibility when using EDTA rather than heparin as the anticoagulant agent. Further, using mixtures of heat-treated and normal RBC and various percentile values of the transit time histogram. We have been able to demonstrate the presence of sub-populations of rigid cells and thus the value of measurements which allow statistical analyses of RBC populations.  相似文献   

9.

Background

Normal cell function requires timely and accurate transmission of information from receptors on the cell membrane (CM) to the nucleus. Movement of messenger proteins in the cytoplasm is thought to be dependent on random walk. However, Brownian motion will disperse messenger proteins throughout the cytosol resulting in slow and highly variable transit times. We propose that a critical component of information transfer is an intracellular electric field generated by distribution of charge on the nuclear membrane (NM). While the latter has been demonstrated experimentally for decades, the role of the consequent electric field has been assumed to be minimal due to a Debye length of about 1 nanometer that results from screening by intracellular Cl and K+. We propose inclusion of these inorganic ions in the Debye-Huckel equation is incorrect because nuclear pores allow transit through the membrane at a rate far faster than the time to thermodynamic equilibrium. In our model, only the charged, mobile messenger proteins contribute to the Debye length.

Findings

Using this revised model and published data, we estimate the NM possesses a Debye-Huckel length of a few microns and find this is consistent with recent measurement using intracellular nano-voltmeters. We demonstrate the field will accelerate isolated messenger proteins toward the nucleus through Coulomb interactions with negative charges added by phosphorylation. We calculate transit times as short as 0.01 sec. When large numbers of phosphorylated messenger proteins are generated by increasing concentrations of extracellular ligands, we demonstrate they generate a self-screening environment that regionally attenuates the cytoplasmic field, slowing movement but permitting greater cross talk among pathways. Preliminary experimental results with phosphorylated RAF are consistent with model predictions.

Conclusion

This work demonstrates that previously unrecognized Coulomb interactions between phosphorylated messenger proteins and intracellular electric fields will optimize information transfer from the CM to the NM in cells.  相似文献   

10.
The behavior of human neutrophils during flow through capillary pores   总被引:1,自引:0,他引:1  
The passage times of individual human neutrophils through single capillary-sized pores in polycarbonate membranes were measured with the resistive pulse technique, and results were compared to those obtained from the micropipette aspiration of entire cells. Pore transit measurement serves as a useful means to screen populations of cells, and allows for protocols that measure time dependent changes to the population. Neutrophils exhibited a highly linear pressure/flow rate relationship at aspiration pressures from 200 Pa to 1,500 Pa in both the pore and pipette systems. Cellular viscosity, as determined by the method of Hochmuth and Needham, was 89.0 Pa.s for the pore systems and 134.9 Pa.s for the pipette systems. These results are in general agreement with recent values of neutrophil viscosity published in the literature. Extrapolation of the observed linear flow response revealed an apparent minimum pressure for whole cell aspiration significantly above the threshold pressure predicted by Evans' liquid drop model. However, whole cell aspiration was achieved in both the pore and pipette systems at pressures below this extrapolated minimum, although the calculated cellular viscosity was greatly increased. The implications of these two regimes of cell deformation is unclear. This behavior could be explained by shear thinning of the material in the cell body. However the origin of this phenomenon may be in the cortical region of the cell, which exhibits an elastic tension that may be deformation rate dependent.  相似文献   

11.
Particle and cell counting is used for a variety of applications including routine cell culture, hematological analysis, and industrial controls1-5. A critical breakthrough in cell/particle counting technologies was the development of the Coulter technique by Wallace Coulter over 50 years ago. The technique involves the application of an electric field across a micron-sized aperture and hydrodynamically focusing single particles through the aperture. The resulting occlusion of the aperture by the particles yields a measurable change in electric impedance that can be directly and precisely correlated to cell size/volume. The recognition of the approach as the benchmark in cell/particle counting stems from the extraordinary precision and accuracy of its particle sizing and counts, particularly as compared to manual and imaging based technologies (accuracies on the order of 98% for Coulter counters versus 75-80% for manual and vision-based systems). This can be attributed to the fact that, unlike imaging-based approaches to cell counting, the Coulter Technique makes a true three-dimensional (3-D) measurement of cells/particles which dramatically reduces count interference from debris and clustering by calculating precise volumetric information about the cells/particles. Overall this provides a means for enumerating and sizing cells in a more accurate, less tedious, less time-consuming, and less subjective means than other counting techniques6.Despite the prominence of the Coulter technique in cell counting, its widespread use in routine biological studies has been prohibitive due to the cost and size of traditional instruments. Although a less expensive Coulter-based instrument has been produced, it has limitations as compared to its more expensive counterparts in the correction for "coincidence events" in which two or more cells pass through the aperture and are measured simultaneously. Another limitation with existing Coulter technologies is the lack of metrics on the overall health of cell samples. Consequently, additional techniques must often be used in conjunction with Coulter counting to assess cell viability. This extends experimental setup time and cost since the traditional methods of viability assessment require cell staining and/or use of expensive and cumbersome equipment such as a flow cytometer.The Moxi Z mini automated cell counter, described here, is an ultra-small benchtop instrument that combines the accuracy of the Coulter Principle with a thin-film sensor technology to enable precise sizing and counting of particles ranging from 3-25 microns, depending on the cell counting cassette used. The M type cassette can be used to count particles from with average diameters of 4 - 25 microns (dynamic range 2 - 34 microns), and the Type S cassette can be used to count particles with and average diameter of 3 - 20 microns (dynamic range 2 - 26 microns). Since the system uses a volumetric measurement method, the 4-25 microns corresponds to a cell volume range of 34 - 8,180 fL and the 3 - 20 microns corresponds to a cell volume range of 14 - 4200 fL, which is relevant when non-spherical particles are being measured. To perform mammalian cell counts using the Moxi Z, the cells to be counted are first diluted with ORFLO or similar diluent. A cell counting cassette is inserted into the instrument, and the sample is loaded into the port of the cassette. Thousands of cells are pulled, single-file through a "Cell Sensing Zone" (CSZ) in the thin-film membrane over 8-15 seconds. Following the run, the instrument uses proprietary curve-fitting in conjunction with a proprietary software algorithm to provide coincidence event correction along with an assessment of overall culture health by determining the ratio of the number of cells in the population of interest to the total number of particles. The total particle counts include shrunken and broken down dead cells, as well as other debris and contaminants. The results are presented in histogram format with an automatic curve fit, with gates that can be adjusted manually as needed.Ultimately, the Moxi Z enables counting with a precision and accuracy comparable to a Coulter Z2, the current gold standard, while providing additional culture health information. Furthermore it achieves these results in less time, with a smaller footprint, with significantly easier operation and maintenance, and at a fraction of the cost of comparable technologies.  相似文献   

12.
Abstract. The cell population kinetics of the villus epithelium of the mouse have been analysed with respect to the size, flux and time. Microdissection methods were employed to measure the villus cell population size and yielded reproducible, precise results. There was a proximodistal negative size gradient in villus cell population and, in those villi of normal morphology, there was a good correlation with the usual morphometric estimators such as height and row count, although correlation was improved by a product variable consisting of a height multiplied by a width parameter.
Flux onto the villus is the product of the crypt cell production rate, which was measured by a metaphase arrest method using vincristine and crypt microdissection, and the crypt:villus ratio; net villus influx was maximum proximally in the bowel, where the largest villi were found, and decreased distally. The distribution of transit times of labelled cells to the crypt: villus junction and to the villus tip was measured, allowing the measurement of the median villus transit time.
Comparison of the measured villus transit time with the theoretical transit time calculated from the villus influx and population size gave results consistent with a steady state hypothesis. It was found, at each level of the small intestine studied, that the number of epithelial cells on the villus was equivalent to the total number of crypt cells associated with the villus.  相似文献   

13.
Fibricola cratera is a strigeoid trematode indigenous to North America that, heretofore, was known only to infect wild mammals. Herein, it is reported that an experimental inoculation of a human volunteer produced a patent infection that lasted 40 months. Symptoms of epigastric discomfort, loose stools and flatulence occurred over the first year of infection and ameliorated thereafter. Eggs per gram of stool were low (less than or equal to 2) throughout the course of infection and were not detected by the standard technique of formalin-ether concentration. To monitor infection, the entire stool sample was examined each month after sieving through No. 10 (pore size 2 mm) and 100 (pore size 145 microns) sieves and collecting eggs on a No. 325 (pore size 45 microns) sieve. This is the first report of a North American strigeoid trematode capable of maturing in a human and is only the second species of strigeoid known to do so. The other species is F. seoulensis which has been implicated in 26 human infections in Korea.  相似文献   

14.
Summary To clarify the precise conditions under which chick embryonic proventricular mesenchyme can induce proventricular epithelial differentiation, transfilter experiments were carried out. Six-day proventricular epithelium formed glands and expressed pepsinogen when a Nucleopore filter with a pore size of more than 0.6 m, but not 0.2 m, was inserted between the epithelium and the proventricular mesenchyme. The larger the pore size of the filter, the more elongated the glands and the more pepsinogen was induced in the explants. The quail nuclear marker and scanning electron microscopy were used to examine penetration of mesenchymal cells through the Nuclepore filter. The filter of more than 0.2 m pore size allowed cell processes of mesenchymal cells to pass through. However, only the filter with a pore size of more than 0.6 m allowed actual migration of mesenchymal cells through the filter, and the larger the pore size of the filter, the more mesenchymal cells passed through. Under the same conditions 6-day and 4.5-day gizzard epithelium formed glands and expressed pepsinogen. These results indicate that a flow of diffusible substances through a Nuclepore filter and even direct contact of a few short cell processes of mesenchymal cells with epithelial cells are not sufficient for induction, and that direct contact of mesenchymal cell processes and/or mesenchymal cells with epithelial cells over a considerably wide area may be prerequisite for the induction.  相似文献   

15.
The influence of nature of the feed sample, feeding frequency and pore size on the influx of bacteria and protozoa into synthetic fiber bags suspended in the rumens of sheep fed different diets was studied. Counts of total culturable bacteria in bags with a pore size of 10 microns were less than 30% of the ruminal counts for animals that were fed the lucerne hay and high-roughage diets. The maximum count (62 and 82% of the ruminal count) for these specific diets was obtained by using bags with a pore size of 53 microns. Protozoal counts in bags with pore sizes of 30 and 53 microns were equal to or higher than the ruminal counts for the lucerne hay and high-roughage diets but less than half of the ruminal count for the low-roughage diet. An interaction between incubation time, feeding frequency of the host animals, and the microbial populations developing inside the bags was also demonstrated. The results clearly show that the microbial population inside the bag differed from that of the surrounding ruminal ingesta and that caution must be taken in interpreting results on feed evaluation and especially on rates of degradation when using the in sacculus technique. Factors influencing the influx of bacteria and protozoa into bags with different pore sizes and containing a variety of substrates are discussed together with suggestions for the use of this technique.  相似文献   

16.
The influence of nature of the feed sample, feeding frequency and pore size on the influx of bacteria and protozoa into synthetic fiber bags suspended in the rumens of sheep fed different diets was studied. Counts of total culturable bacteria in bags with a pore size of 10 microns were less than 30% of the ruminal counts for animals that were fed the lucerne hay and high-roughage diets. The maximum count (62 and 82% of the ruminal count) for these specific diets was obtained by using bags with a pore size of 53 microns. Protozoal counts in bags with pore sizes of 30 and 53 microns were equal to or higher than the ruminal counts for the lucerne hay and high-roughage diets but less than half of the ruminal count for the low-roughage diet. An interaction between incubation time, feeding frequency of the host animals, and the microbial populations developing inside the bags was also demonstrated. The results clearly show that the microbial population inside the bag differed from that of the surrounding ruminal ingesta and that caution must be taken in interpreting results on feed evaluation and especially on rates of degradation when using the in sacculus technique. Factors influencing the influx of bacteria and protozoa into bags with different pore sizes and containing a variety of substrates are discussed together with suggestions for the use of this technique.  相似文献   

17.
Rat gastric mucosal cells were separated according to size by rate-zonal sedimentation through a medium containing a gradient of bovine albumin. Numbers and mean sizes of cells indicated two main populations, 430-1000 microns 3 and 1500-2500 microns 3, with a discontinuity between 1000 and 1500 microns 3. Gradient fractions, combined into pools of increasing cell size, synthesized radiolabelled proteins which were resolved by electrophoresis, densitometry and computation. The smallest cells (430-800 microns 3) tended to synthesize radiolabelled proteins with the highest relative specific radioactivities. The decrease in relative specific radioactivity with increase in cell size was compatible with a progression from precursor cells towards the more differentiated state.  相似文献   

18.
Elution of poly(ethylene glycol) of molecular weight 200-20,000 Da from a size exclusion chromatography column packed with phenol-fed aerobic granules of three different nominal sizes (types I-III) has been investigated. The pore sizes of the three types of granules were evaluated based on the mean hydraulic times of the elution curves that decreased directly proportional to the increased logarithm of the molecular mass of a standard tracer and increased as granule size decreased. The corresponding exclusion limits for types I-III granules were 139,000, 123,000, and 54,500 Da, respectively. A one-dimensional convection-dispersion model described the effective dispersion coefficients of the tracers through the granule column. The intra-granular permeabilities and convective and diffusional transit times through the granule interior were evaluated by a dual porosity model. For small molecules of molecular mass <5,000 Da, intra-granular convection dominated transport mechanisms at fast moving velocity. For comparatively larger molecules, diffusion barrier existed to limit nutrient supply to the granules. The size exclusion test provided intra granular transport characteristics using detailed analysis on the elution data.  相似文献   

19.
Preliminary studies of the transfusion filter Bentley PF 127, a polyfilter type with a graded serie of diameters of microfenestration are reported. Dog blood has been used in all instances of the trial phase. Variations of the hematological factors as well as biochemical disparities have been examined and all deposits were assessed by means of scanning electron microscope. Amounts of deposits increased with the blood age. As far as banked dog blood develops less microaggregates during storage than human blood, the SEM pictures reported are a plea for banked blood microfiltration in any transfusion to human beings. The deposits which were trapped in the polyurethane foam, had previously passed through a screen filter with pore size slightly wider than the standard one (250 microns instead of 170 microns). Unfortunately the possibility of thrombus formation is serious as far as banked blood is rather fragile, and due to a slow flow rate, the time of blood contact with the filter is enough to allow thrombus development. However, the amounts of clots greatly increased with the age of the blood. The importance of filtration by adsorption was not very visible. The future of such a depth filter is questionable: should we prefer a transfusion screen filter with small pore size, the efficiently of which is determined by its pore size, and which traps the microaggregates by mechanical retention, or a depth filter which is supposed to retain the microaggregates regard less of the size but which could be very easily thrombus invaded and does not allow a suffisant blood flow rate for patients needing large amounts of blood in period of initial resuscitation? The debate is open but we should recognize that a screen filter with small pore size is widely used in the hospitals.  相似文献   

20.
We assessed the effect of hypoxia/reoxygenation on 14C-albumin flux across endothelial monolayers. Cultured bovine pulmonary artery endothelial cells were grown to confluence on nitrocellulose filters (pore size 12 microns). The endothelialized filters were mounted in Ussing-type chambers which were filled with cell culture medium (M 199). Equimolar amounts (33 nM) of 14C-labeled and unlabeled albumin were added to the "hot" and "cold" chambers, respectively. The monolayers were then exposed to successive periods (90 min) of normoxia (pO2 145 mmHg), hypoxia (pO2 20 mmHg), and reoxygenation (pO2 145 mmHg). A gas bubbling system was used to control media pO2 and to ensure adequate mixing. Four aliquots of culture media were taken during each period in order to calculate the 14C-albumin permeability across the endothelialized filter. In some experiments, either the xanthine oxidase inhibitor, oxypurinol (10 microM), or superoxide dismutase (600 U/mL), was added to the media immediately prior to the experiments. As compared to the normoxic control period, albumin permeability was 1.5 times higher during hypoxia (p less than 0.01) and 2.3 times higher during reoxygenation (p less than 0.01). The reoxygenation-induced increase in albumin permeability was prevented by either oxypurinol or superoxide dismutase. These data indicate that xanthine oxidase-derived oxygen radicals contribute to the hypoxia/reoxygenation-induced endothelial cell dysfunction. The altered endothelial barrier function induced by hypoxia/reoxygenation is consistent with the microvascular dysfunction observed following reperfusion of ischemic tissues.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号