首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
We studied the evolution of the tobacco Tnt1 retrotransposon by analyzing Tnt1 partial sequences containing both coding domains and U3 regulatory sequences obtained from a number of Nicotiana species. We detected three different subfamilies of Tnt1 elements, Tnt1A, Tnt1B, and Tnt1C, that differ completely in their U3 regions but share conserved flanking coding and LTR regions. U3 divergence between the three subfamilies is found in the region that contains the regulatory sequences that control the expression of the well-characterized Tnt1-94 element. This suggests that expression of the three Tnt1 subfamilies might be differently regulated. The three Tnt1 subfamilies were present in the Nicotiana genome at the time of species divergence, but have evolved independently since then in the different genomes. Each Tnt1 subfamily seems to have conserved its ability to transpose in a limited and different number of Nicotiana species. Our results illustrate the high variability of Tnt1 regulatory sequences. We propose that this high sequence variability could allow these elements to evolve regulatory mechanisms in order to optimize their coexistence with their host genome.   相似文献   

3.

Background  

Tnt1 was the first active plant retrotransposon identified in tobacco after nitrate reductase gene disruption. The Tnt1 superfamily comprises elements from Nicotiana (Tnt1 and Tto1) and Lycopersicon (Retrolyc1 and Tlc1) species. The study presented here was conducted to characterise Tnt1-related sequences in 20 wild species of Solanum and five cultivars of Solanum tuberosum.  相似文献   

4.
Transposable elements can generate considerable genetic diversity. Here we examine the distribution of the Tnt1 retrotransposon family in representative species of the genus Nicotiana . We show that multiple Tnt1 insertions are found in all Nicotiana species. However, Tnt1 insertions are too polymorphic to reveal species relationships. This indicates that Tnt1 has amplified rapidly and independently after Nicotiana speciation. We compare patterns of Tnt1 insertion in allotetraploid tobacco ( N. tabacum ) with those in the diploid species that are most closely related to the progenitors of tobacco, N. sylvestris (S-genome donor) and N. tomentosiformis (T-genome donor). We found no evidence for Tnt1 insertion sites of N. otophora origin in tobacco. Nicotiana sylvestris has a higher Tnt1 content than N. tomentosiformis and the elements are distributed more uniformly across the genome. This is reflected in tobacco where there is a higher Tnt1 content in S-genome chromosomes. However, the total Tnt1 content of tobacco is not the sum of the two modern-day parental species. We also observed tobacco-specific Tnt1 insertions and an absence of tobacco Tnt1 insertion sites in the diploid relatives. These data indicate Tnt1 evolution subsequent to allopolyploidy. We explore the possibility that fast evolution of Tnt1 is associated with 'genomic-shock' arising out of interspecific hybridization and allopolyploidy.  © 2004 The Linnean Society of London, Biological Journal of the Linnean Society , 2004, 82 , 639–649.  相似文献   

5.
6.
A previous study generated lettuce (Lactuca sativa) mutant lines tagged by retrotransposon Tnt1 from tobacco (Nicotiana tabacum) and identified a homozygous mutant, Tnt6a, that exhibited severe dwarf phenotype. Here we show that Tnt1 is inserted into the intron of gibberellin biosynthetic gene LsGA3ox1 in Tnt6a mutants. Expression analysis suggests that LsGA3ox1 is nearly knocked out in the Tnt6a mutants.  相似文献   

7.
8.
Nitrate reductase was purified from leaves of Nicotiana plumbaginifolia using either 5'AMP-Sepharose chromatography or two steps of immunoaffinity chromatography involving monoclonal antibodies directed against nitrate reductase from maize and against ribulose-1,5-bisphosphate carboxylase from N. plumbaginifolia. Nitrate reductase obtained by the first method was purified 1000-fold to a specific activity of 9 units/mg protein. The second method produced an homogenous enzyme, purified 21,000-fold to a specific activity of 80 units/mg protein. SDS/PAGE of nitrate reductase always resulted in two bands of 107 and 99.5 kDa. The 107-kDa band was the nitrate reductase subunit of N. plumbaginifolia; the smaller one of 99.5 kDa is thought, as commonly reported, to result from proteolysis of the larger protein. The molecular mass of 107 kDa is close to the values calculated from the coding sequences of the two nitrate reductase genes recently cloned from tobacco (Nicotiana tabacum cv Xanthi).  相似文献   

9.
10.
11.
The tobacco (Nicotiana tabacum) element Tnt1 is one of the few identified active retrotransposons in plants. These elements possess unique properties that make them ideal genetic tools for gene tagging. Here, we demonstrate the feasibility of gene tagging using the retrotransposon Tnt1 in lettuce (Lactuca sativa), which is the largest genome tested for retrotransposon mutagenesis so far. Of 10 different transgenic bushes carrying a complete Tnt1 containing T-DNA, eight contained multiple transposed copies of Tnt1. The number of transposed copies of the element per plant was particularly high, the smallest number being 28. Tnt1 transposition in lettuce can be induced by a very simple in vitro culture protocol. Tnt1 insertions were stable in the progeny of the primary transformants and could be segregated genetically. Characterization of the sequences flanking some insertion sites revealed that Tnt1 often inserted into genes. The progeny of some primary transformants showed phenotypic alterations due to recessive mutations. One of these mutations was due to Tnt1 insertion in the gibberellin 3beta-hydroxylase gene. Taken together, these results indicate that Tnt1 is a powerful tool for insertion mutagenesis especially in plants with a large genome.  相似文献   

12.
We have analyzed four Nicotiana plumbaginifolia null mutants presumably affected in the heme domain of nitrate reductase. The DNA sequence of this domain has been determined for each mutant and for the wild type. Two mutations were identified as single base changes leading to, respectively, the substitution of a histidine residue by an asparagine (mutant E56) and to the appearance of an ochre stop codon (mutant E64). Based on the amino acid sequence homology between the nitrate reductase heme domain and mammalian cytochrome b5, we have predicted the three-dimensional structure of this domain. This showed that the nitrate reductase heme domain is structurally very similar to cytochrome b5 and it also confirmed that the residue involved in E56 mutation is one of the two heme-binding histidines. The two other mutations (mutants A1 and K21) were found to be, respectively, -1 and +1 frameshift mutations resulting in the appearance of an opal stop codon. These sequence data confirmed previous genetic and biochemical hypotheses on nitrate reductase-deficient mutants. Northern blot analysis of these mutants indicated that mutant E56 overexpressed the nitrate reductase mRNA, whereas the nonsense mutations present in the other mutants led to reduced levels of nitrate reductase mRNA.  相似文献   

13.
A previous study generated lettuce (Lactuca sativa) mutant lines tagged by retrotransposon Tnt1 from tobacco (Nicotiana tabacum) and identified a homozygous mutant, Tnt6a, that exhibited severe dwarf phenotype. Here we show that Tnt1 is inserted into the intron of gibberellin biosynthetic gene LsGA3ox1 in Tnt6a mutants. Expression analysis suggests that LsGA3ox1 is nearly knocked out in the Tnt6a mutants.  相似文献   

14.
15.
Distribution dynamics of the Tnt1 retrotransposon in tobacco   总被引:1,自引:0,他引:1  
Retrotransposons contribute significantly to the size, organization and genetic diversity of plant genomes. Although many retrotransposon families have been reported in plants, to this day, the tobacco Tnt1 retrotransposon remains one of the few elements for which active transposition has been shown. Demonstration that Tnt1 activation can be induced by stress has lent support to the hypothesis that, under adverse conditions, transposition can be an important source of genetic variability. Here, we compared the insertion site preference of a collection of newly transposed and pre-existing Tnt1 copies identified in plants regenerated from protoplasts or tissue culture. We find that newly transposed Tnt1 copies are targeted within or close to host gene coding sequences and that the distribution of pre-existing insertions does not vary significantly from this trend. Therefore, in spite of their potential to disrupt neighboring genes, insertions within or near CDS are not preferentially removed with age. Elimination of Tnt1 insertions within or near coding sequences may be relaxed due to the polyploid nature of the tobacco genome. Tnt1 insertions within or near CDS are thus better tolerated and can putatively contribute to the diversification of tobacco gene function. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

16.
17.
18.
19.
Summary Two hundred and eleven nitrate reductase-deficient mutants (NR) were isolated from mutagenized Nicotiana plumbaginifolia protoplast cultures by chlorate selection and regenerated into plant. More than 40% of these clones were classified as cnx and presumed to be affected in the biosynthesis of the molybdenum cofactor, the remaining clones being classified as nia mutants. A genetic analysis of the regenerated plants confirmed this proportion of nia and cnx clones. All mutants regenerated were found to carry monogenic recessive mutations that impaired growth on nitrate as sole nitrogen source. Mutants propagated by grafting on N. tabacum systematically displayed a chlorotic leaf phenotype. This chlorosis was therefore related to the NR deficiency. The observation of leaves with NR chlorotic sectors surrounded by NR+ wild-type tissues suggeests that an NR deficiency is not corrected by diffusible factors. Periclinal chimeras between wild-type tobacco and the NR graft were also observed. In this type of chimeric tissue chlorosis was no longer detectable when NR+ cells were in the secondmost (L2) layer, but was still detectable when NR cells were in the secondmost layer. The genetic analysis of nia mutants revealed that they belong to a single complementation group. However three nia mutants were found to complement some of the other nia mutants. The apoenzyme of nitrate reductase was immunologically detected in several nia mutants but not in other members of this complementation group. Some of the nia mutants, although they were NR, still displayed methylviologenitrate reductase activity at a high level. These data show that the nia complementation group corresponds to the structural gene of nitrate reductase. Some of the mutations affecting this structural gene result in the overproduction of an inactive nitrate reductase, suggesting a feedback regulation of the level of the apoenzyme in the wild type.  相似文献   

20.
Summary Nicotiana tabacum mutant cell cultures lacking nitrate reductase activity were assayed for the presence of the molybdenum-cofactor using its ability to restore NADPH-nitrate reductase activity in extracts of Neurospora crassa nit-1 mycelia. The molybdenum-cofactor of the tobacco wild-type line was shown to complement efficiently the N. crassa nit-1 mutant in vitro. The molybdenum-cofactor seems to exist in a bound form, as acid-treatment was required for release of cofactor activity. Molybdate (5–10 mM), ascorbic acid, and anaerobic conditions greatly increased the activity of the cofactor, demonstrating its high lability and sensitivity to oxygen. Similar results were obtained with two tobacco nia mutants, which are defective in the apoprotein of nitrate reductase. The four cnx mutants studied were shown to contain exclusively an inactive form of the molybdenum-cofactor. This inactive cofactor could be reactivated in vitro and in vivo by unphysiologically high concentrations of molybdate (1–10 mM), thereby converting the cnx cells into highly active cofactor sources in vitro, and restoring nitrate reductase and xanthine dehydrogenase in vivo to partial acitivity. Thus the defect of the cnx mutants resides in a lack of molybdenum as a catalytically active ligand metal for the cofactor, while the structural moiety of the cofactor seems not to be impaired by the mutation. The subunit assembly of the nitrate reductase was found to be independent of the molybdenum content of the cofactor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号