首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Biological invasions are a key component of global change, and understanding the drivers of global invasion patterns will aid in assessing and mitigating the impact of invasive species. While invasive species are most often studied in the context of one or two trophic levels, in reality species invade communities comprised of complex food webs. The complexity and integrity of the native food web may be a more important determinant of invasion success than the strength of interactions between a small subset of species within a larger food web. Previous efforts to understand the relationship between food web properties and species invasions have been primarily theoretical and have yielded mixed results. Here, we present a synthesis of empirical information on food web connectance and species invasion success gathered from different sources (estimates of food web connectance from the primary literature and estimates of invasion success from the Global Invasive Species Database as well as the primary literature). Our results suggest that higher‐connectance food webs tend to host fewer invaders and exert stronger biotic resistance compared to low‐connectance webs. We argue that while these correlations cannot be used to infer a causal link between food web connectance and habitat invasibility, the promising findings beg for further empirical research that deliberately tests for relationships between food web connectance and invasion.  相似文献   

2.
Montserrat Vilà  Jacob Weiner 《Oikos》2004,105(2):229-238
Invasive plants often appear to be more competitive than native species, but there have been few tests of this hypothesis. We reviewed published pair-wise experiments between invading and native plant species. Although the designs that have been used allow only limited inferences, the available data suggest that the effect of invasive species on native species is usually stronger than vice versa. Furthermore, mixtures of invasive and native species are generally less productive than monocultures of the native species, but not less than monocultures of the invasive species. However, the selection of invaders and natives for study has not been random, and the data could be biased towards highly competitive invaders and natives that are weaker than average competitors. We attempt to clarify confusion surrounding the concept of competitive superiority in the context of plant invasions, and we discuss the limitations of the methods that have been used to investigate competition between invasive and native species. To rigorously test the generality of the hypothesis that invaders are better competitors than natives we need to compare the effects of closely related native and invasive species on each other. We suggest that the influence of an invading species on total plant community biomass is an important clue in understanding the role of competition in a plant invasion. The role of competition in the establishment and naturalization stages of the invasion process may be very different from its role in the "outbreak" stage.  相似文献   

3.
A role for immunology in invasion biology   总被引:1,自引:0,他引:1  
Invasive species are of increasing conservation and economic concern, yet mechanisms underlying invasions remain poorly understood. We propose that variation in immune defences might help explain why only some introduced populations become invasive. Introduced species escape many of their native diseases, but also face novel pathogens that can induce costly, and sometimes deadly, immune responses in na?ve hosts. Therefore, favouring less resource-demanding and dangerous defence mechanisms and allocating a greater proportion of resources to growth and reproduction should favour invasion. Specifically, we argue that successful invaders should reduce costly systemic inflammatory responses, which are associated with fever and metabolic and behavioural changes, and rely more heavily on less expensive antibody-mediated immunity. Here we provide supporting arguments for this hypothesis and generate predictions that are testable using tools from the growing field of ecological immunology.  相似文献   

4.
行为特征可在外来动物建立种群和扩张过程中发挥重要作用,因此,要正确理解动物入侵,常常需要仔细研究其行为机制。20世纪80年代以来,随着动物入侵规模在世界各地的迅速加剧,有关其行为机制的研究也受到了广泛关注。最近一些研究表明,一些入侵动物种内攻击和觅食等行为具有可塑性,因此它们能够灵活应对多变的环境条件,这对于种群的建立和维持至关重要;入侵动物与土著物种发生行为互作时,往往占据优势,从而取代土著物种,并有助于其地域扩张;入侵动物长距离扩散可以提高其地域扩张速度,许多行为可与扩散行为结合进一步促进扩张。今后需要加强对入侵动物的行为分析,使之全面地融合到生物入侵的研究之中。这不仅可以提高对外来物种入侵的预警和治理能力,而且为探索动物行为的奥秘以及动物间行为互作在物种进化中的意义提供了独特的机会。  相似文献   

5.
中国农业生态系统外来种入侵及其管理现状   总被引:1,自引:0,他引:1  
农业生态系统极易遭受外来生物入侵。作者根据文献资料和多年工作观察统计出入侵我国农业生态系统的外来生物共计92科175属239种, 其中植物155种, 动物55种, 微生物29种, 植物多为有意引入后逸生, 而动物和微生物则主要是无意引入。外来入侵种发生数量呈现从南到北、从东到西逐渐减少的趋势。这些入侵种中, 来源于美洲的最多(占45.04%), 其次是欧洲(22.90%); 菜地(包括温室大棚)和果园入侵种最多, 分别达64.85%和66.53%, 而半年期的秋熟旱地和夏熟旱地分别占34.31%和23.85%。其中17种外来杂草、10种害虫、7种病原菌为恶性有害生物, 应作为防除的重点目标。目前农业生态系统外来入侵物种的控制以化学防治为主, 但由于长期施用化学农药, 在侵入我国农田的入侵种中, 已有51种在世界不同地区演化出抗药性生物型, 因而需重视生物防治、农业和生态防治以及检疫等的综合应用。今后外来种对农业生态系统的入侵格局、机制和趋势, 入侵途径以及生物入侵和抗药性生物型对农业生态系统中有害生物群落演替的影响、转基因作物导致的生物入侵等问题值得关注。  相似文献   

6.
Fire regimes influence and are influenced by the structure and composition of plant communities. This complex reciprocal relationship has implications for the success of plant invasions and the subsequent impact of invasive species on native biota. Although much attention has been given to the role of invasive grasses in transforming fire regimes and native plant communities, little is known about the relationship between woody invasive species and fire regime. Despite this, prescribed burning is frequently used for managing invasive woody species. In this study we review relationships between woody exotic plant invasions and fire in invaded ecosystems worldwide. Woody invaders may increase or decrease aspects of the fire regime, including fire frequency, intensity and extent. This is in contrast to grass invaders which almost uniformly increase fire frequency. Woody plant invasion can lead to escape from a grass-fire cycle, but the resulting reduction in fire frequency can sometimes lead to a cycle of rare but more intense fires. Prescribed fires may be a useful management tool for controlling woody exotic invaders in some systems, but they are rarely sufficient to eliminate an invasive species, and a dearth of controlled experiments hampers evaluation of their benefits. Nevertheless, because some woody invaders have fuel properties that differ substantially from native species, understanding and managing the impacts of woody invaders on fire regimes and on prescribed burns should become an important component of resource and biodiversity management.  相似文献   

7.
The aim of our review was to examine the cases of Tephritidae invasions across island systems in order to determine whether they follow a hierarchical mode of invasion. We reviewed the literature on factors and mechanisms driving invasion sequences in Pacific and Southwest Indian Ocean islands and gathered every record of invasion by a polyphagous tephritid in island groups. From invasion date or period, we defined an invasion link when a new fruit fly established on an island where another polyphagous tephritid is already resident (that was indigenous or a previous invader). Across surveyed islands, we documented 67 invasion links, involving 24 tephritid species. All invasion links were directional, i.e., they involved a series of invasions by invaders that were closely related to a resident species but were increasingly more competitive. These sequential establishments of species are driven by interspecific competition between resident and exotic species but are also influenced by history, routes, and flows of commercial exchanges and the bridgehead effect. This information should be used to improve biosecurity measures. Interactions between trade flow, invasive routes, and the presence of invasive and resident species should be integrated into large‐scale studies.  相似文献   

8.
Protected areas (PAs) are intended to provide native biodiversity and habitats with a refuge against the impacts of global change, particularly acting as natural filters against biological invasions. In practice, however, it is unknown how effective PAs will be in shielding native species from invasions under projected climate change. Here, we investigate the current and future potential distributions of 100 of the most invasive terrestrial, freshwater, and marine species in Europe. We use this information to evaluate the combined threat posed by climate change and invasions to existing PAs and the most susceptible species they shelter. We found that only a quarter of Europe's marine and terrestrial areas protected over the last 100 years have been colonized by any of the invaders investigated, despite offering climatically suitable conditions for invasion. In addition, hotspots of invasive species and the most susceptible native species to their establishment do not match at large continental scales. Furthermore, the predicted richness of invaders is 11%–18% significantly lower inside PAs than outside them. Invasive species are rare in long‐established national parks and nature reserves, which are actively protected and often located in remote and pristine regions with very low human density. In contrast, the richness of invasive species is high in the more recently designated Natura 2000 sites, which are subject to high human accessibility. This situation may change in the future, since our models anticipate important shifts in species ranges toward the north and east of Europe at unprecedented rates of 14–55 km/decade, depending on taxonomic group and scenario. This may seriously compromise the conservation of biodiversity and ecosystem services. This study is the first comprehensive assessment of the resistance that PAs provide against biological invasions and climate change on a continental scale and illustrates their strategic value in safeguarding native biodiversity.  相似文献   

9.
Oceanic islands have long been considered to be particularly vulnerable to biotic invasions, and much research has focused on invasive plants on oceanic islands. However, findings from individual islands have rarely been compared between islands within or between biogeographic regions. We present in this study the most comprehensive, standardized dataset to date on the global distribution of invasive plant species in natural areas of oceanic islands. We compiled lists of moderate (5–25% cover) and dominant (>25% cover) invasive plant species for 30 island groups from four oceanic regions (Atlantic, Caribbean, Pacific, and Western Indian Ocean). To assess consistency of plant behaviour across island groups, we also recorded present but not invasive species in each island group.We tested the importance of different factors discussed in the literature in predicting the number of invasive plant species per island group, including island area and isolation, habitat diversity, native species diversity, and human development. Further we investigated whether particular invasive species are consistently and predictably invasive across island archipelagos or whether island-specific factors are more important than species traits in explaining the invasion success of particular species.We found in total 383 non-native spermatophyte plants that were invasive in natural areas on at least one of the 30 studied island groups, with between 3 and 74 invaders per island group. Of these invaders about 50% (181 species) were dominants or co-dominants of a habitat in at least one island group. An extrapolation from species accumulation curves across the 30 island groups indicates that the total current flora of invasive plants on oceanic islands at latitudes between c. 35°N and 35°S may eventually consist of 500–800 spermatophyte species, with 250–350 of these being dominant invaders in at least one island group. The number of invaders per island group was well predicted by a combination of human development (measured by the gross domestic product (GDP) per capita), habitat diversity (number of habitat types), island age, and oceanic region (87% of variation explained). Island area, latitude, isolation from continents, number of present, non-native species with a known invasion history, and native species richness were not retained as significant factors in the multivariate models.Among 259 invaders present in at least five island groups, only 9 species were dominant invaders in at least 50% of island groups where they were present. Most species were invasive only in one to a few island groups although they were typically present in many more island groups. Consequently, similarity between island groups was low for invader floras but considerably higher for introduced (but not necessarily invasive) species – especially in pairs of island groups that are spatially close or similar in latitude. Hence, for invasive plants of natural areas, biotic homogenization among oceanic islands may be driven by the recurrent deliberate human introduction of the same species to different islands, while post-introduction processes during establishment and spread in natural areas tend to reduce similarity in invader composition between oceanic islands. We discuss a number of possible mechanisms, including time lags, propagule pressure, local biotic and abiotic factors, invader community assembly history, and genotypic differences that may explain the inconsistent performance of particular invasive species in different island groups.  相似文献   

10.
Biological invasions are a major threat to natural biodiversity; hence, understanding the mechanisms underlying invasibility (i.e., the susceptibility of a community to invasions by new species) is crucial. Invasibility of a resident community may be affected by a complex but hitherto hardly understood interplay of (1) productivity of the habitat, (2) diversity, (3) herbivory, and (4) the characteristics of both invasive and resident species. Using experimental phytoplankton microcosms, we investigated the effect of nutrient supply and species diversity on the invasibility of resident communities for two functionally different invaders in the presence or absence of an herbivore. With increasing nutrient supply, increased herbivore abundance indicated enhanced phytoplankton biomass production, and the invasion success of both invaders showed a unimodal pattern. At low nutrient supply (i.e., low influence of herbivory), the invasibility depended mainly on the competitive abilities of the invaders, whereas at high nutrient supply, the susceptibility to herbivory dominated. This resulted in different optimum nutrient levels for invasion success of the two species due to their individual functional traits. To test the effect of diversity on invasibility, a species richness gradient was generated by random selection from a resident species pool at an intermediate nutrient level. Invasibility was not affected by species richness; instead, it was driven by the functional traits of the resident and/or invasive species mediated by herbivore density. Overall, herbivory was the driving factor for invasibility of phytoplankton communities, which implies that other factors affecting the intensity of herbivory (e.g., productivity or edibility of primary producers) indirectly influence invasions.  相似文献   

11.
We tested whether two basic thermal requirements for insect development, lower developmental thresholds, i.e. temperatures at which development ceases, and sums of effective temperatures, i.e. numbers of day degrees above the lower developmental thresholds necessary to complete development, differ among insect species that proved to be successful invaders in regions outside their native range and those that did not. Focusing on species traits underlying invasiveness that are related to temperature provides insights into the mechanisms of insect invasions. The screening of thermal requirements thus could improve risk-assessment schemes by incorporating these traits in predictions of potentially invasive insect species. We compared 100 pairs of taxonomically-related species originating from the same continent, one invasive and the other not reported as invasive. Invasive species have higher lower developmental thresholds than those never recorded outside their native ranges. Invasive species also have a lower sum of effective temperatures, though not significantly. However, the differences between invasive and non-invasive species in the two physiological measures were significantly inversely correlated. This result suggests that many species are currently prevented from invading by low temperatures in some parts of the world. Those species that will overcome current climatic constraints in regions outside their native distribution due to climate change could become even more serious future invaders than present-day species, due to their potentially faster development.  相似文献   

12.
Global change is increasing the occurrence of perturbation events on natural communities, with biological invasions posing a major threat to ecosystem integrity and functioning worldwide. Most studies addressing biological invasions have focused on individual species or taxonomic groups to understand both, the factors determining invasion success and their effects on native species. A more holistic approach that considers multispecies communities and species’ interactions can contribute to a better understanding of invasion effects on complex communities. Here we address biological invasions on species‐rich food webs. We performed in silico experiments on empirical vertebrate food webs by introducing virtual species characterised by different ecological roles and belonging to different trophic groups. We varied a number of invasive species traits, including their diet breadth, the number of predators attacking them, and the bioenergetic thresholds below which invader and native species become extinct. We found that simpler food webs were more vulnerable to invasions, and that relatively less connected mammals were the most successful invaders. Invasions altered food web structure by decreasing species richness and the number of links per species, with most extinctions affecting poorly connected birds. Our food web approach allows identifying the combinations of trophic factors that facilitate or prevent biological invasions, and it provides testable predictions on the effects of invasions on the structure and dynamics of multitrophic communities.  相似文献   

13.
土壤养分分布具有高度空间异质性, 植物的根系觅养行为是其对土壤养分异质性的一种适应。不同植物为了适应养分异质性会产生不同的根系觅养行为, 通过调整自身的根系觅养范围、觅养精度和觅养速度来更好地吸收利用土壤中的养分。外来植物与本地植物的竞争是决定其成功入侵的重要因素, 土壤养分等环境因素会影响它们之间的竞争关系。近年来, 外来入侵植物的觅养行为逐渐受到人们的关注, 关于入侵植物根系觅养行为的研究成果陆续出现: (1)总体来看, 外来入侵植物具有较强的根系觅养能力, 但根系觅养范围与觅养精度之间的权衡关系还不确定; (2)营养异质性会影响入侵植物与本地植物之间的竞争, 反过来, 二者之间的竞争也会影响根系觅养行为对营养异质性的响应; (3)丛枝菌根真菌(arbuscular mycorrhizal fungi, AMF)能够提高入侵植物的根系觅养能力, 外来植物入侵能够改变入侵植物对AMF的偏好性, 形成AMF对入侵的正反馈作用, 而本地植物与AMF的相互作用也会影响入侵植物的竞争力。未来还应加强营养异质环境下种间竞争和AMF共生对入侵植物根系觅养行为的影响机制研究, 以及全球变化背景下入侵植物根系觅养行为的变化与机制方面的研究, 可以更深入地认识外来植物的觅养行为在其成功入侵中的作用, 并为利用营养调控来防控入侵植物提供理论依据。  相似文献   

14.
Ecology of forest insect invasions   总被引:1,自引:0,他引:1  
Forests in virtually all regions of the world are being affected by invasions of non-native insects. We conducted an in-depth review of the traits of successful invasive forest insects and the ecological processes involved in insect invasions across the universal invasion phases (transport and arrival, establishment, spread and impacts). Most forest insect invasions are accidental consequences of international trade. The dominant invasion ‘pathways’ are live plant imports, shipment of solid wood packaging material, “hitchhiking” on inanimate objects, and intentional introductions of biological control agents. Invading insects exhibit a variety of life histories and include herbivores, detritivores, predators and parasitoids. Herbivores are considered the most damaging and include wood-borers, sap-feeders, foliage-feeders and seed eaters. Most non-native herbivorous forest insects apparently cause little noticeable damage but some species have profoundly altered the composition and ecological functioning of forests. In some cases, non-native herbivorous insects have virtually eliminated their hosts, resulting in major changes in forest composition and ecosystem processes. Invasive predators (e.g., wasps and ants) can have major effects on forest communities. Some parasitoids have caused the decline of native hosts. Key ecological factors during the successive invasion phases are illustrated. Escape from natural enemies explains some of the extreme impacts of forest herbivores but in other cases, severe impacts result from a lack of host defenses due to a lack of evolutionary exposure. Many aspects of forest insect invasions remain poorly understood including indirect impacts via apparent competition and facilitation of other invaders, which are often cryptic and not well studied.  相似文献   

15.
Many species in the family Pinaceae are invaders. These species are relatively easy to control because of some of their intrinsic characteristics and because they are highly visible and easy to eliminate. Many Pinaceae species have been well studied because of their use in forestry and their invasive behavior in many countries. The impacts of invasive Pinaceae are not only ecological, but also economic and social. We review the ecology and management of Pinaceae invasions and explore how restoration of invaded areas should be addressed. There are many ways to prevent invasions and to deal with them. Planting less invasive species, better site selection, and invasion monitoring are used successfully in different parts of the world to prevent invasion. Mechanical and chemical methods are used effectively to control Pinaceae invasions. Control is more effective at the early stages of invasion. Old invasions are more problematic as their elimination is more expensive, and the restoration of native vegetation is challenging. In some areas, native vegetation cannot thrive after Pinaceae have been removed, and weeds colonize cleared areas. More attention is needed to prevent the initiation and spread of invasions by focusing control interventions at early stages of invasion. Finding new ways of dealing sustainably with conflicts of interest between foresters and conservationists is crucial. Non-native Pinaceae are important parts of the economies and landscapes in several countries and they will continue to play such a role in the future. Despite the numerous challenges facing Pinaceae invasion management, several approaches can be successful at controlling them. Proper application of current techniques and development of more efficient ones is needed if the goal of maximizing benefits and minimizing negative impacts is to be achieved.  相似文献   

16.
Forest ecosystems world-wide are being subjected to invasion by organisms representing all domains of life. Here we use a combined aboveground-belowground approach to provide a conceptual framework for assessing how forests respond to biological invasions. We first address mechanisms by which invasive plants and aboveground and belowground consumers impact on forests, and highlight that although we have a growing understanding of the determinants of the effects of invasive plants, for invasive consumers we have yet to move from a series of iconic case studies to the development of general principles. We also address the effects of invasive biota in the context of the drivers of invasion, co-invasion and invasional meltdown, the issue of simultaneous species gains and losses, and forest restoration and recovery post-invasion. We then highlight areas that would benefit from further work, particularly regarding underlying mechanisms, determinants of context-dependency of invader effects, and linkages between causes and consequences of invasion. In concluding, we emphasize that biological invaders have the potential for large-scale and long-term impacts on forest processes, and consideration of these impacts in an aboveground-belowground context will enable better prediction of future responses of forests to invaders and their management as well as of restoration efforts.  相似文献   

17.
Much uncertainty remains about traits linked with successful invasion – the establishment and spread of non‐resident species into existing communities. Using a 20‐year experiment, where 50 non‐resident (but mostly native) grassland plant species were sown into savannah plots, we ask how traits linked with invasion depend on invasion stage (establishment, spread), indicator of invasion success (occupancy, relative abundance), time, environmental conditions, propagule rain, and traits of invaders and invaded communities. Trait data for 164 taxa showed that invader occupancy was primarily associated with traits of invaders, traits of recipient communities, and invader‐community interactions. Invader abundance was more strongly associated with community traits (e.g. proportion legume) and trait differences between invaders and the most similar resident species. Annuals and invaders with high‐specific leaf area were only successful early in stand development, whereas invaders with conservative carbon capture strategies persisted long‐term. Our results indicate that invasion is context‐dependent and long‐term experiments are required to comprehensively understand invasions.  相似文献   

18.
Invasive marine algae: An ecological perspective   总被引:3,自引:0,他引:3  
The significance of marine algal invasion is undisputed in the global context; however, this topic has not received as much attention as it deserves. Although substantial evidence supports the fact of marine algal introduction and invasion, the underlying ecological principles need more attention to better explain such invasions. Marine algal invasions transcend national boundaries, so the problem must be considered an international problem. Commercial exploitation of invasive marine algae (and under this category we include deliberate introductions) should be undertaken, if at all, with great care and with a full understanding of all aspects of the biology and ecological consequences of the new exotic species. The aim of this article is to define algal invaders from a marine ecosystem standpoint and to discuss the different vectors, their dispersal patterns, and mechanisms of their dominance in their naturalized or introduced range  相似文献   

19.
A meta-analysis of biotic resistance to exotic plant invasions   总被引:12,自引:0,他引:12  
Biotic resistance describes the ability of resident species in a community to reduce the success of exotic invasions. Although resistance is a well‐accepted phenomenon, less clear are the processes that contribute most to it, and whether those processes are strong enough to completely repel invaders. Current perceptions of strong, competition‐driven biotic resistance stem from classic ecological theory, Elton's formulation of ecological resistance, and the general acceptance of the enemies‐release hypothesis. We conducted a meta‐analysis of the plant invasions literature to quantify the contribution of resident competitors, diversity, herbivores and soil fungal communities to biotic resistance. Results indicated large negative effects of all factors except fungal communities on invader establishment and performance. Contrary to predictions derived from the natural enemies hypothesis, resident herbivores reduced invasion success as effectively as resident competitors. Although biotic resistance significantly reduced the establishment of individual invaders, we found little evidence that species interactions completely repelled invasions. We conclude that ecological interactions rarely enable communities to resist invasion, but instead constrain the abundance of invasive species once they have successfully established.  相似文献   

20.
Invasive plants are often associated with greater productivity and soil nutrient availabilities, but whether invasive plants with dissimilar traits change decomposer communities and decomposition rates in consistent ways is little known. We compared decomposition rates and the fungal and bacterial communities associated with the litter of three problematic invaders in intermountain grasslands; cheatgrass (Bromus tectorum), spotted knapweed (Centaurea stoebe) and leafy spurge (Euphorbia esula), as well as the native bluebunch wheatgrass (Pseudoroegneria spicata). Shoot and root litter from each plant was placed in cheatgrass, spotted knapweed, and leafy spurge invasions as well as remnant native communities in a fully reciprocal design for 6 months to see whether decomposer communities were species‐specific, and whether litter decomposed fastest when placed in a community composed of its own species (referred to hereafter as home‐field advantage–HFA). Overall, litter from the two invasive forbs, spotted knapweed and leafy spurge, decomposed faster than the native and invasive grasses, regardless of the plant community of incubation. Thus, we found no evidence of HFA. T‐RFLP profiles indicated that both fungal and bacterial communities differed between roots and shoots and among plant species, and that fungal communities also differed among plant community types. Synthesis. These results show that litter from three common invaders to intermountain grasslands decomposes at different rates and cultures microbial communities that are species‐specific, widespread, and persistent through the dramatic shifts in plant communities associated with invasions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号