首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cysteine synthase from Escherichia coli is a bienzyme complex comprised of serine acetyltransferase (SAT) and O-acetylserine sulfhydrylase A. The site of interaction of a SAT molecule was investigated by gel chromatography and surface plasmon technique using various mutant-type SATs, to better understand the mechanism involved in complex formation. The C-terminus of SAT, Ile 273, along with Glu 268 and Asp 271, was found to be essential for complex formation. The effects of O-acetyl-L-serine and sulfide on the affinity for the complex formation were also studied using a surface plasmon technique.  相似文献   

2.
The kinetic mechanism of serine acetyltransferase from Haemophilus influenzae was studied in both reaction directions. The enzyme catalyzes the conversion of acetyl CoA and L-serine to O-acetyl-L-serine (OAS) and coenzyme A (CoASH). In the direction of L-serine acetylation, an equilibrium ordered mechanism is assigned at pH 6.5. The initial velocity pattern in the absence of added inhibitors is best described by a series of lines converging on the ordinate when L-serine is varied at different fixed levels of acetyl CoA. The initial velocity pattern at pH 7.5 is also intersecting, but the lines are nearly parallel. Product inhibition by OAS is noncompetitive against acetyl CoA, while it is uncompetitive against L-serine. Product inhibition by L-serine in the reverse reaction direction is noncompetitive with respect to both OAS and CoASH. Glycine and S-methyl-L-cysteine (SMC) were used as dead-end analogs of L-serine and OAS, respectively. Glycine is competitive versus L-serine and uncompetitive versus acetyl CoA, while SMC is competitive against OAS and uncompetitive against CoASH. Desulfo-CoA was used as a dead-end analog of both acetyl CoA and CoASH, and is competitive versus both substrates in the direction of L-serine acetylation; while it is competitive against CoASH and noncompetitive against OAS in the direction of CoASH acetylation. All of the above kinetic parameters are consistent with those predicted for an ordered mechanism at pH 6.5 with the exception of the uncompetitive inhibition by OAS vs. serine. The latter inhibition pattern suggests combination of OAS with the central E:acetyl CoA:serine complex. Cysteine is known to regulate its own biosynthesis at the level of SAT. As a dead-end inhibitor, L-cysteine is competitive against both substrates in both reaction directions. These results are discussed in terms of the mechanism of regulation.  相似文献   

3.
C. Brunold  M. Suter 《Planta》1982,155(4):321-327
Intact chloroplasts isolated from spinach leaves by a combination of differential and Percoll density gradient centrifugation and free of mitochondrial and peroxisomal contamination contained about 35% of the total leaf serine acetyltransferase (EC 2.3.1.30) activity. No appreciable activity of the enzyme could be detected in the gradient fractions containing broken chloroplasts, mitochondria, and peroxisomes. L-cysteine added to the incubation mixture at 1 mM almost completely inhibited serine acetyltransferase activity, both of leaf and chloroplast extracts. D-cysteine was much less inhibitory. L-cystine up to 5 mM and O-acetyl-L-serine up to 10 mM had no effect on the enzyme activity. When measured at pH 8.4, the enzyme extracted from the leaves had a K m for L-serine of 2.4, the enzyme from the chloroplasts a K m of 2.8 mM.Abbreviations NAS N-acetyl-L-serine - NADP-GPD NADP-dependent glyceraldehyde-3-phosphate dehydrogenase - OAS O-acetyl-L-serine - OASSase O-acetyl-L-serine sulfhydrylase - 3-PGA D-3-phosphoglycerate - SATase serine acetyltransferase  相似文献   

4.
Cysteine synthesis is catalyzed by serine acetyltransferase (SAT) and O-acetylserine (thiol) lyase (OAS-TL) in the cytosol, plastids, and mitochondria of plants. Biochemical analyses of recombinant plant SAT and OAS-TL indicate that the reversible association of the proteins in the cysteine synthase complex (CSC) controls cellular sulfur homeostasis. However, the relevance of CSC formation in each compartment for flux control of cysteine synthesis remains controversial. Here, we demonstrate the interaction between mitochondrial SAT3 and OAS-TL C in planta by FRET and establish the role of the mitochondrial CSC in the regulation of cysteine synthesis. NMR spectroscopy of isolated mitochondria from WT, serat2;2, and oastl-C plants showed the SAT-dependent export of OAS. The presence of cysteine resulted in reduced OAS export in mitochondria of oastl-C mutants but not in WT mitochondria. This is in agreement with the stronger in vitro feedback inhibition of free SAT by cysteine compared with CSC-bound SAT and explains the high OAS export rate of WT mitochondria in the presence of cysteine. The predominant role of mitochondrial OAS synthesis was validated in planta by feeding [(3)H]serine to the WT and loss-of-function mutants for OAS-TLs in the cytosol, plastids, and mitochondria. On the basis of these results, we propose a new model in which the mitochondrial CSC acts as a sensor that regulates the level of SAT activity in response to sulfur supply and cysteine demand.  相似文献   

5.
Brucella abortus is the major cause of premature foetal abortion in cattle, can be transmitted from cattle to humans, and is considered a powerful biological weapon. De novo cysteine biosynthesis is one of the essential pathways reported in bacteria, protozoa, and plants. Serine acetyltransferase (SAT) initiates this reaction by catalyzing the formation of O-acetylserine (OAS) using l-serine and acetyl coenzyme A as substrates. Here we report kinetic and crystallographic studies of this enzyme from B. abortus. The kinetic studies indicate that cysteine competitively inhibits the binding of serine to B. abortus SAT (BaSAT) and noncompetitively inhibits the binding of acetyl coenzyme A. The crystal structures of BaSAT in its apo state and in complex with coenzyme A (CoA) were determined to 1.96 Å and 1.87 Å resolution, respectively. BaSAT was observed as a trimer in a size exclusion column; however, it was seen as a hexamer in dynamic light scattering (DLS) studies and in the crystal structure, indicating it may exist in both states. The complex structure shows coenzyme A bound to the C-terminal region, making mostly hydrophobic contacts from the center of the active site extending up to the surface of the protein. There is no conformational difference in the enzyme between the apo and the complexed states, indicating lock and key binding and the absence of an induced fit mechanism.  相似文献   

6.
7.
Ho CL  Saito K 《Amino acids》2001,20(3):243-259
Summary. Serine biosynthesis in plants proceeds by two pathways; the glycolate pathway which is associated with photorespiration and the pathway from 3-phosphoglycerate which is presumed to take place in the plastids. The 3-phosphoglycerate pathway (phosphorylated pathway) involves three enzymes catalyzing three sequential reactions: 3-phosphoglycerate dehydrogenase (PGDH), 3-phosphoserine aminotransferase (PSAT) and 3-phosphoserine phosphatase (PSP). cDNA and genomic clones encoding these three enzymes from spinach and Arabidopsis thaliana were isolated by means of heterologous probe screening, homologous EST clones and genetic complementation in an Escherichia coli mutant. The identity of the isolated cDNAs was confirmed by functional complementation of serine auxotrophy in E. coli mutants and/or the detection of catalytic activity in the recombinant enzymes produced in E. coli. Northern blot analyses indicated the most preferential expression of these three genes in light-grown roots. In contrast, the mRNAs of two proteins involved in the glycolate pathway (H-protein of glycine decarboxylase multienzyme complex and serine hydroxymethyltransferase) accumulated to high levels in light-grown shoots. Environmental stresses, such as high salinity, flooding and low temperature, induced changes in mRNA levels of enzymes in the plastidic phosphorylated serine biosynthetic pathway but not in that of the glycolate pathway. These results indicate that the plastidic 3-phosphoglycerate pathway plays an important role in supplying serine in non-photosynthetic tissues in plants and under environmental stresses. Received December 9, 1999 Accepted February 2, 2000  相似文献   

8.
Cysteine synthesis in plants represents the final step of assimilatory sulfate reduction and the almost exclusive entry reaction of reduced sulfur into metabolism not only of plants, but also the human food chain in general. It is accomplished by the sequential reaction of two enzymes, serine acetyltransferase (SAT) and O-acetylserine (thiol) lyase (OAS-TL). Together they form the hetero-oligomeric cysteine synthase complex (CSC). Recent evidence is reviewed that identifies the dual function of the CSC as a sensor and as part of a regulatory circuit that controls cellular sulfur homeostasis. Computational modeling of three-dimensional structures of plant SAT and OAS-TL based on the crystal structure of the corresponding bacterial enzymes supports quaternary conformations of SAT as a dimer of trimers and OAS-TL as a homodimer. These findings suggest an overall alpha6beta4 structure of the subunits of the plant CSC. Kinetic measurements of CSC dissociation triggered by the reaction intermediate O-acetylserine as well as CSC stabilization by sulfide indicate quantitative reactions that are suited to fine-tune the equilibrium between free and associated CSC subunits. In addition, in vitro data show that SAT requires binding to OAS-TL for full activity, while at the same time bound OAS-TL becomes inactivated. Since OAS concentrations inside cells increase upon sulfate deficiency, whereas sulfide concentrations most likely decrease, these data suggest the dissociation of the CSC in vivo, accompanied by inactivation of SAT and activation of OAS-TL function in their free homo-oligomer states. Biochemical evidence describes this protein-interaction based mechanism as reversible, thus closing the regulatory circuit. The properties of the CSC and its subunits are therefore consistent with models of positive regulation of sulfate uptake and reduction in plants by OAS as well as a demand-driven repression/de-repression by a sulfur intermediate, such as sulfide.  相似文献   

9.
Summary. Plants are able to synthesise all amino acids essential for human and animal nutrition. Because the concentrations of some of these dietary constituents, especially methionine, lysine, and threonine, are often low in edible plant sources, research is being performed to understand the physiological, biochemical, and molecular mechanisms that contribute to their transport, synthesis and accumulation in plants. This knowledge can be used to develop strategies allowing a manipulation of crop plants, eventually improving their nutritional quality. This article is intended to serve two purposes. The first is to provide a brief review on the physiology of methionine synthesis in higher plants. The second is to highlight some recent findings linked to the metabolism of methionine in plants due to its regulatory influence on the aspartate pathway and its implication in plant growth. This information can be used to develop strategies to improve methionine content of plants and to provide crops with a higher nutritional value. Received January 28, 2000 Accepted March 3, 2000  相似文献   

10.
Summary Cysteme synthase, the key enzyme for fixation of inorganic sulfide, catalyses the formation of cysteine from O-acetylserine and inorganic sulfide. Here we report the cloning of cDNAs encoding cysteine synthase isoforms fromArabidopsis thaliana. The isolated cDNA clones encode for a mitochondrial and a plastidic isoform of cysteine synthase (O-acetylserine (thiol)-lyase, EC 4.2.99.8), designated cysteine synthase C (AtCS-C, CSase C) and B (AtCS-B; CSase B), respectively.AtCS-C andAtCS-B, having lengths of 1569-bp and 1421-bp, respectively, encode polypeptides of 430 amino acids (45.8 kD) and of 392 amino acids ( 41.8 kD), respectively. The deduced amino acid sequences of the mitochondrial and plastidic isoforms exhibit high homology even with respect to the presequences. The predicted presequence of AtCS-C has a N-terminal extension of 33 amino acids when compared to the plastidic isoform. Northern blot analysis showed thatAtCS-C is higher expressed in roots than in leaves whereas the expression ofAtCS-B is stronger in leaves. Furthermore, gene expression of both genes was enhanced by sulfur limitation which in turn led to an increase in enzyme activity in crude extracts of plants. Expression of theAtCS-B gene is regulated by light. The mitochondrial, plastidic and cytosolic (Hesse and Altmann, 1995) isoforms of cysteine synthase ofArabidopsis are able to complement a cysteine synthasedeficient mutant ofEscherichia coli unable to grow on minimal medium without cysteine, indicating synthesis of functional plant proteins in the bacterium. Two lines of evidence proved thatAtCS-C encodes a mitochondrial form of cysteine synthase; first, import ofin vitro translation products derived from AtCS-C in isolated intact mitochondria and second, Western blot analysis of mitochondria isolated from transgenic tobacco plants expressing AtCS-C cDNA/c-myc DNA fusion protein.Abbreviations CSase cysteine synthase The nucleotide sequence data reported will appear in the EMBL Database under the accession numbers X81973 forAtCS-C and X81698 forAtCS-B.  相似文献   

11.
Engineering of cysteine and methionine biosynthesis in potato   总被引:10,自引:0,他引:10  
Summary. Methionine and cysteine, two amino acids containing reduced sulfur, are not only an important substrate of protein biosynthesis but are also precursors of various other metabolites such as glutathione, phytochelatines, S-adenosylmethionine, ethylene, polyamines, biotin, and are involved as methyl group donor in numerous cellular processes. While methionine is an essential amino acid due to an inability of monogastric animals and human beings to synthesise this metabolite, animals are still able to convert methionine consumed with their diet into cysteine. Thus, a balanced diet containing both amino acids is necessary to provide a nutritionally favourable food or feed source. Because the concentrations of methionine and cysteine are often low in edible plant sources, e.g. potato, considerable efforts in plant breeding and research have been and are still performed to understand the physiological, biochemical, and molecular mechanisms that contribute to their synthesis, transport, and accumulation in plants. During the last decade molecular tools have enabled the isolation of most of the genes involved in cysteine and methionine biosynthesis, and the efficient plant transformation technology has allowed the creation of transgenic plants that are altered in the activity of individual genes. The physiological analysis of these transgenic plants has contributed considerably to our current understanding of how amino acids are synthesised. We focused our analysis on potato (Solanum tuberosum cv. Désirée) as this plant provides a clear separation of source and sink tissues and, for applied purposes, already constitutes a crop plant. From the data presented here and in previous work we conclude that threonine synthase and not cystathionine gamma-synthase as expected from studies of Arabidopsis constitutes the main regulatory control point of methionine synthesis in potato. This article aims to cover the current knowledge in the area of molecular genetics of sulfur-containing amino acid biosynthesis and will provide new data for methionine biosynthesis in solanaceous plants such as potato. Received December 19, 2001 Accepted January 7, 2002  相似文献   

12.
We have previously cloned a cDNA, designated SAT1, corresponding to a gene coding for a serine acetyltransferase (SAT) from onion (Allium cepa L.). The SAT1 locus was mapped to chromosome 7 of onion using a single-stranded conformation polymorphism (SSCP) in the 3' UTR of the gene. Northern analysis has demonstrated that expression of the SAT1 gene is induced in leaf tissue in response to low S-supply. Phylogenetic analysis has placed SAT1 in a strongly supported group (100% bootstrap) that comprises sequences that have been characterised biochemically, including Allium tuberosum, Spinacea oleracea, Glycine max, Citrullus vulgaris, and SAT5 (AT5g56760) of Arabidopsis thaliana. This group can be divided further with the SAT1 of A. cepa sequence grouping strongly with the A. tuberosum sequence. Translation of SAT1 from onion generates a protein of 289 amino acids with a calculated molecular mass of 30,573 Da and pI of 6.52. The conserved G277 and H282 residues that have been identified as critical for L-cysteine inhibition are observed at G272 and H277. SAT1 has been cloned into the pGEX plasmid, expressed in E. coli and SAT activity of the recombinant enzyme has been measured as acetyl-CoA hydrolysis detected at 232 nm. A Km of 0.72 mM was determined for l-serine as substrate, a Km of 92 microM was calculated with acetyl-CoA as substrate, and an inhibition curve for L-cysteine generated an IC50 value of 3.1 microM. Antibodies raised against the recombinant SAT1 protein recognised a protein of ca. 33 kDa in whole leaf onion extracts. These properties of the SAT1 enzyme from onion are compared with other SAT enzymes characterised from closely related species.  相似文献   

13.
CysK1 and CysK2 are two members of the cysteine/S-sulfocysteine synthase family in Mycobacterium tuberculosis, responsible for the de novo biosynthesis of l-cysteine, which is subsequently used as a building block for mycothiol. This metabolite is the first line defense of this pathogen against reactive oxygen and nitrogen species released by host macrophages after phagocytosis. In a previous medicinal chemistry campaign we had developed urea-based inhibitors of the cysteine synthase CysM with bactericidal activity against dormant M. tuberculosis. In this study we extended these efforts by examination of the in vitro activities of a library consisting of 71 urea compounds against CysK1 and CysK2. Binding was established by fluorescence spectroscopy and inhibition by enzyme assays. Several of the compounds inhibited these two cysteine synthases, with the most potent inhibitor displaying an IC50 value of 2.5 µM for CysK1 and 6.6 µM for CysK2, respectively. Four of the identified molecules targeting CysK1 and CysK2 were also among the top ten inhibitors of CysM, suggesting that potent compounds could be developed with activity against all three enzymes.  相似文献   

14.
Serine hydroxymethyltransferase (SHMT) catalyzes the inter conversion of serine and tetrahydrofolate (H(4)-folate) to form glycine and 5,10-methylene H(4)-folate and generates one-carbon fragments for the synthesis of nucleotides, methionine, thymidylate, choline, etc. In spite of being an indispensable enzyme of the thymidylate cycle, SHMT in Leishmania donovani remains uncharacterized. The study of L. donovani SHMT (ldSHMT) becomes important as this gene is preferentially expressed in the amastigote stage of parasite, which resides in human macrophages. Here we report cloning, expression and purification of a catalytically active ldSHMT. The homogeneity of recombinant protein was analyzed by denaturing gel electrophoresis and protein was found to be 95% pure having yield of 1mg/l. The recombinant protein is a tetramer of 216kDa as evidenced by gel filtration chromatography and uses serine and tetrahydrofolate as substrates with Km of 1.6 and 2.4mM, respectively. Further biochemical studies revealed that pH optimum of ldSHMT is 7.8 and enzyme is thermally stable up to 45 degrees C. ldSHMT was found sensitive towards denaturants as manifested by loss of enzyme activity at the concentration of 1M urea or 0.25M guanidine hydrochloride. This is the first report of purification and characterization of recombinant SHMT from any protozoan source. Studies on recombinant ldSHMT will help in evaluating this enzyme as potential drug target.  相似文献   

15.
When growing in its native habitat, Thlaspi goesingense can hyperaccumulate 1.2% of its shoot dry weight as nickel. We reported previously that both constitutively elevated activity of serine acetyltransferase (SAT) and concentration of glutathione (GSH) are involved in the ability of T. goesingense to tolerate nickel. A feature of SAT is its feedback inhibition by L-cysteine. To understand the role of this regulation of SAT by Cys on GSH-mediated nickel tolerance in T. goesingense, we characterized the enzymatic properties of SATs from T. goesingense. We demonstrate that all three isoforms of SAT in T. goesingense are insensitive to inhibition by Cys. Further, two amino acids (proline and alanine) in the C-terminal region of the cytosolic SAT (SAT-c) from T. goesingense are responsible for converting the enzyme from a Cys-sensitive to a Cys-insensitive form. Furthermore, the Cys-insensitive isoform of SAT-c confers elevated resistance to nickel when expressed in Escherichia coli and Arabidopsis thaliana, supporting a role for altered regulation of SAT by Cys in nickel tolerance in T. goesingense.  相似文献   

16.
As sulfur constitutes one of the macronutrients necessary for the plant life cycle, sulfur uptake and assimilation in higher plants is one of the crucial factors determining plant growth and vigour, crop yield and even resistance to pests and stresses. Inorganic sulfate is mostly taken up as sulfate from the soil through the root system or to a lesser extent as volatile sulfur compounds from the air. In a cascade of enzymatic steps inorganic sulfur is converted to the nutritionally important sulfur-containing amino acids cysteine and methionine (Hell, 1997; Hell and Rennenberg, 1998; Saito, 1999). Sulfate uptake and allocation between plant organs or within the cell is mediated by specific transporters localised in plant membranes. Several functionally different sulfate transporters have to be postulated and have been already cloned from a number of plant species (Clarkson et al., 1993; Hawkesford and Smith, 1997; Takahashi et al., 1997; Yamaguchi, 1997). Following import into the plant and transport to the final site of reduction, the plastid, the chemically relatively inert sulfate molecule is activated through binding to ATP forming adenosine-5'-phosphosulfate (APS). This enzymatic step is controlled through the enzyme ATP-sulfurylase (ATP-S). APS can be further phosphorylated to form 3'-phosphoadenosine-5'-phosphosulfate (PAPS) which serves as sulfate donor for the formation of sulfate esters such as the biosynthesis of sulfolipids (Schmidt and J?ger, 1992). However, most of the APS is reduced to sulfide through the enzymes APS-reductase (APR) and sulfite reductase (SIR). The carbon backbone of cysteine is provided through serine, thus directly coupling photosynthetic processes and nitrogen metabolism to sulfur assimilation. L-serine is activated by serine acetyltransferase (SAT) through the transfer to an acetyl-group from acetyl coenzyme A to form O-acetyl-L-serine (OAS) which is then sulhydrylated using sulfide through the enzyme O-acetyl-L-serine thiol lyase (OAS-TL) forming cysteine. Cysteine is the central precursor of all organic molecules containing reduced sulfur ranging from the amino acid methionine to peptides as glutathione or phytochelatines, proteines, vitamines, cofactors as SAM and hormones. Cysteine and derived metabolites display essential roles within plant metabolism such as protein stabilisation through disulfide bridges, stress tolerance to active oxygen species and metals, cofactors for enzymatic reactions as e.g. SAM as major methylgroup donor and plant development and signalling through the volatile hormone ethylene. Cysteine and other metabolites carrying free sulfhydryl groups are commonly termed thioles (confer Fig. 1). The physiological control of the sulfate reduction pathway in higher plants is still not completely understood in all details. The objective of this paper is to summarise the available data on the molecular analysis and control of cysteine biosynthesis in plants, and to discuss potentials for manipulating the pathway using transgenic approaches.  相似文献   

17.
Synthesis of the sulfur amino acids: cysteine and methionine   总被引:2,自引:0,他引:2  
This review will assess new features reported for the molecular and biochemical aspects of cysteine and methionine biosynthesis in Arabidopsis thaliana with regards to early published data from other taxa including crop plants and bacteria (Escherichia coli as a model). By contrast to bacteria and fungi, plant cells present a complex organization, in which the sulfur network takes place in multiple sites. Particularly, the impact of sulfur amino-acid biosynthesis compartmentalization will be addressed in respect to localization of sulfur reduction. To this end, the review will focus on regulation of sulfate reduction by synthesis of cysteine through the cysteine synthase complex and the synthesis of methionine and its derivatives. Finally, regulatory aspects of sulfur amino-acid biosynthesis will be explored with regards to interlacing processes such as photosynthesis, carbon and nitrogen assimilation.  相似文献   

18.
Wirtz M  Hell R 《Amino acids》2003,24(1-2):195-203
The first step of cysteine biosynthesis in bacteria and plants consists in the formation of O-acetylserine catalyzed by serine acetyltransferase (SAT). SAT is highly sensitive to feedback inhibition by cysteine as part of the regulatory circuit of cysteine biosynthesis und thus hampers over-expression and fermentation of cysteine in biotechnological production processes. Since plants contain multiple SAT isoforms with different cysteine feedback sensitivity, this resource was exploited to demonstrate the suitability of plant SATs for the production of cysteine in both bacteria and plants. Three new cDNAs encoding SATs were isolated from Nicotiana tabacum. The catalytic activity of SAT4 was insensitive up to 0.6 mM cysteine. Expression of SAT4 in a newly constructed Escherichia coli host strain without endogenous SAT activity yielded a significant accumulation of cysteine in the culture medium compared to expression of cysteine sensitive SATs in the same strain. The application of a similarly insensitive SAT isoform from A. thaliana demonstrated the suitability of this approach to increase cysteine levels in transgenic tobacco plants.  相似文献   

19.
Summary Effect of intraperitoneal administration (5 mmol/kg of body weight) of glucose- cysteine adduct (glc-cys) as a cysteine prodrug in rat tissues was studied. Cysteine levels in liver and kidney increased to 1.08 and 1.98mol per g or ml, respectively, at 2h after the administration. GSH levels did not change substantially. However, when glc-cys was injected to rats treated with diethyl maleate, a GSH-depleting agent, the decreased GSH levels were restored rapidly. The recoveries in liver and kidney were 72% at 1h and 66% at 2h, respectively, after glc-cys administration. Metabolism of glc-cys was assessed by urinary excretion of glc-cys, sulfate and taurine. Average excretion of glc-cys was 2.86mmol/kg/24h after glc-cys administration. Increased excretions of sulfate and taurine were 0.77 and 0.14mmol/kg/24h, respectively. Data show that, although glc-cys excretion was relatively rapid, glc-cys was effectively utilized for GSH synthesis in GSH-depleted tissues.  相似文献   

20.
Two cDNAs encoding feedback inhibition-insensitive serine acetyltransferases of Arabidopsis thaliana were expressed in the chromosomal serine acetyltransferase-deficient and L-cysteine non-utilizing Escherichia coli strain JM39-8. The transformants produced 1600 to 1700 mg l(-1) of L-cysteine and L-cystine from glucose. The amount of these amino acids produced per cell was 30 to 60% higher than that of an E. coli strain carrying mutant serine acetyltransferase less sensitive to feedback inhibition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号