首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
T Nei 《Cryobiology》1976,13(3):278-286
The extent of hemolysis of human red blood cells suspended in different concentrations of glycerol and frozen at various cooling rates was investigated on the basis of morphological observation in the frozen state. Hemolysis of the cells in the absence of glycerol showed a V-shaped curve in terms of cooling rates. There was 70% hemolysis at an optimal cooling rate of approximately 103 °C/min and 100% hemolysis at all other rates tested. Morphologically, a lower than optimal cooling rate resulted in cellular shrinkage, while a higher than optimal rate resulted in the formation of intracellular ice.The cryoprotective effect of glycerol was dependent upon its concentration and on the cooling rate. Samples frozen at 103 and 104 °C/min showed freezing patterns which differed from cell to cell. The size of intraand extracellular ice particles became smaller, and there was less shrinkage or deformation of cells as the rate of cooling and concentration of glycerol were increased.There was some correlation between the morphology of frozen cells and the extent of post-thaw hemolysis, but the minimum size of intracellular ice crystals which might cause hemolysis could not be estimated. As a cryotechnique for electron microscopy, the addition of 30% glycerol and ultrarapid freezing at 105 °C/min are minimum requirements for the inhibition of ice formation and the prevention of the corresponding artifacts in erythrocytes.  相似文献   

2.
Intracellular freezing of glycerolized red cells.   总被引:1,自引:0,他引:1  
K R Diller 《Cryobiology》1979,16(2):125-131
The response of glycerolized human red blood cells to freezing has been evaluated in terms of the thermodynamic state of the frozen intracellular medium. The physiochemical conditions requisite for intracellular freezing, characterized by the cooling rate and the degree of extracellular supercooling, are altered appreciably by the prefreezing addition of glycerol to the cells.Fresh human erythrocytes were suspended in an isotonic glycerol solution yielding a final cryophylactic concentration of either 1.5 or 3.0 m. Subsequently the cell suspension was frozen on a special low temperature stage, mounted on a light microscope, at controlled constant cooling rates with varying degrees of extracellular supercooling (ΔTsc). The formation of a pure intracellular ice phase was detected by direct observation of the cells.The addition of glycerol produced several significant variations in the freezing characteristics of the blood. As in unmodified cells, the incidence of intracellular freezing increased with the magnitudes of both the cooling rate and the extracellular supercooling. However, the glycerolized cells exhibited a much greater tendency to supercool prior to the initial nucleation of ice. Values of ΔTsc > ?20 °C were readily obtained. Also, the transition from 0 to 100% occurrence of intracellular ice covered a cooling rate spectrum in excess of 300 to 600 °K/min, as compared with 10 °C/min for unmodified cells. Thus, the incidence of intracellular ice formation was significantly increased in glycerolized cells.  相似文献   

3.
J K Sherman  K C Liu 《Cryobiology》1973,10(2):104-118
One phase of a study on cryosurvival and cryoprotection of mammalian cells, in terms of ultrastructural alteration of rough endoplasmic reticulum (RER) within rat pancreatic acinar cells, is presented. Small (2–3 mm) squares of tissue, 0.7–0.9 mm in thickness, were compared as unfrozen controls, with (w) and without (wo) glycerol pretreatment (15% vv in mammalian Ringer's solution) at 0 °C and 22 °C (to regulate glycerol permeability); as well as parallel frozen-thawed samples, after combinations of slow (3.8 °C/min) freezing (SF) and rapid (38 °C/sec) freezing (RF) with either slow (1.5 °C/min) thawing (ST) or rapid (8 °C/sec) thawing (RT). Regimens compared were SFRT, SFST, RFRT, and RFST, all w and wo glycerol pretreatment at 0 °C and 22 °C. Tissue from each treatment was prepared for electron microscopic observations. The results on rates of freezing and thawing and relative cryoprotection of intracellular and extracellular glycerol under conditions described are intended to serve as a correlative basis for subsequent parallel studies on function (protein synthesis) and ultrastructure of the frozen state. They now indicate the following: (1) Cryoinjury of RER, which occurred during all treatments compared, was manifested in irregularity, dilatation, vesiculation, and altered matrix density of cisternae, and ribosomal derangement or disjunction. Least injury was shown by some disorientation and dilatation with increasing degrees of damage involving accentuation of these and other alterations. Such ultrastructural alterations to RER are not unique to cryoinjury, since they have been induced by treatments and agents other than freeze-thawing in experimental pathology. (2) Cryoinjury is unique, however, in that it can be regulated to demonstrate a spectrum of degrees of injury to cells and their organelles, immediately after cryoexposure. Controlled cryoinjury is suggested as a research tool for studies on injury, in general, on an ultrastructural-functional level. (3) Glycerol is injurious or toxic during pretreatment. Toxicity, which resembles cryoinjury, is greater during 22 ° C (intracellular) than 0 °C (extracellular) glycerol pretreatment, especially with respect to dilatation of cisternae. (4) Extra-cellular glycerol is cryoprotective during both slow and rapid freezing followed by either slow or rapid thawing, while little or no cryoprotection is afforded when glycerol is located simultaneously in the intracellular and extracellular location. (5) Rate of freezing is more important than rate of thawing as a factor in cryosurvival. Rapid freezing is more injurious than slow freezing, in the absence of glycerol or in the presence of extracellular glycerol, with slight or no differences seen as a function of thawing rate. Neither rate of freezing nor rate of thawing is of serious consequence when glycerol is intracellular. (6) Rate of thawing has importance after slow freezing, when slow thawing is more injurious than rapid, but not after rapid freezing, either in the presence or absence of extracellular glyeerol.  相似文献   

4.
The effect of varying the concentration of glycerol from 0 to 16% on the survival of ram spermatozoa frozen at increasing rates of cooling (1–100 °C/min) or by direct plunging of spermatozoa in 0.5-ml straws in liquid nitrogen was studied after thawing at a constant rate (in water at 39 °C for 30 sec). For each glycerol concentration, the ram spermatozoa tolerated a range of cooling velocities and the best survival rates (percentage motility and rating) were obtained when the glycerol concentration was 4 or 6% and when the rate of freezing ranged from 10 to 100 °C/min. No spermatozoa survived in any glycerol concentration following freezing in straws plunged into liquid nitrogen. In general, the range of cooling rates shifts to lower values as the glycerol concentration increases for optimum cryosurvival. However, the toxic effect of increasing the concentration of glycerol over 8% contributes greatly to the gradual decrease in cryosurvival of spermatozoa at these particular concentrations.  相似文献   

5.
Overwintering larvae of the Cucujid beetle, Cucujus clavipes, were freeze tolerant, able to survive the freezing of their extracellular body fluids, during the winter of 1978–1979. These larvae had high levels of polyols (glycerol and sorbitol), thermal hysteresis proteins and haemolymph ice nucleators that prevented extensive supercooling (the supercooling points of the larvae were ? 10°C), thus preventing lethal intracellular ice formation. In contrast, C. clavipes larvae were freeze suspectible, died if frozen, during the winter of 1982–1983, but supercooled to ~ ? 30°C. The absence of the ice nucleators in the 1982–1983 larvae, obviously essential in the now freeze-susceptible insects, was the major detected difference in the larvae from the 2 years. However, experiments in which the larvae were artifically seeded at ? 10°C (the temperature at which the natural haemolymph ice nucleators produced spontaneous nucleation in the 1978–1979 freeze tolerant larvae) demonstrated that the absence of the ice nucleators was not the critical factor, or at least not the only critical factor, responsible for the loss of freeze tolerance in the 1982–1983 larvae. The lower lethal temperatures for the larvae were approximately the same during the 2 winters in spite of the change in overwintering strategy.  相似文献   

6.
K C Gupta 《Cryobiology》1975,12(4):417-426
Blood films (3–8 μm thick) supported between two glass coverslips were frozen to ?20 °C. In the extracellular areas, ice cavities of the order of 0.2 μm separated by bands of dense plasma were evident when examined with the electron microscope; intracellular ice was not observed with the light microscope. Electron microscopy also showed the presence of intracellular ice particles of the order of 0.2–0.7 μm, these appeared as fine reticulations when observed with the light microscope. Upon gradual rewarming the following changes were observed: recrystallization in the extracellular matrix (?18 to ?8 °C), intracellular recrystallization (?13 to ?10 °C), transfer of water from erythrocytes to extracellular areas (?9 to ?7 °C), and melting and hemolysis (?6 to ?2 °C).Freezing of blood at ?3 °C and subsequent thawing did not cause hemolysis of the red cells. In blood frozen at ?3 °C and cooled to ?20 °C or frozen by abrupt exposure to 20 °C the erythrocytes hemolyzed in 7/16–11/16 of a second, whereas in blood frozen at ?3 °C and cooled to ?10 °C the cells hemolyzed in 5–15 sec even though the mode if lysis (i.e., uniform seepage of hemoglobin from the surface of the cell) was similar in all cases. This indicates that the presence of intracellular ice does not seem to play a major role in the injury to the erythrocytes. The mechanism of cryoinjury demonstrated by hemolysis has been discussed.  相似文献   

7.
The first successful freezing of early embryos to −196°C in 1972 required that they be cooled slowly at ∼1°C/min to about −70°C. Subsequent observations and physical/chemical analyses indicate that embryos cooled at that rate dehydrate sufficiently to maintain the chemical potential of their intracellular water close to that of the water in the partly frozen extracellular solution. Consequently, such slow freezing is referred to as equilibrium freezing. In 1972 and since, a number of investigators have studied the responses of embryos to departures from equilibrium freezing. When disequilibrium is achieved by the use of higher constant cooling rates to −70°C, the result is usually intracellular ice formation and embryo death. That result is quantitatively in accord with the predictions of the physical/chemical analysis of the kinetics of water loss as a function of cooling rate. However, other procedures involving rapid nonequilibrium cooling do not result in high mortality. One common element in these other nonequilibrium procedures is that, before the temperature has dropped to a level that permits intracellular ice formation, the embryo water content is reduced to the point at which the subsequent rapid nonequilibrium cooling results in either the formation of small innocuous intracellular ice crystals or the conversion of the intracellular solution into a glass. In both cases, high survival requires that subsequent warming be rapid, to prevent recrystallization or devitrification. The physical/ chemical analysis developed for initially nondehydrated cells appears generally applicable to these other nonequilibrium procedures as well.  相似文献   

8.
The effect of thawing velocities ranging from 10°C/min to 1.800°C/min on the motility and acrosomal integrity of boar spermatozoa frozen at 1°C/min (suboptimal), 5°C/min, and 30°C/min (optimal) rate was studied with the sperm suspended for freezing in diluent containing 2, 4, or 6% of glycerol (v/v). The influence of thawing on sperm survival depends on the rate at which the sperm had been frozen. In semen frozen at a suboptimal rate of 1°C/min, the percentage of motile sperm (FMP) initially fell to 3.5–4.0% when the thawing rose to 200°C/ min, but, with further increases in thawing rate, increased and reached peak values (10.3–11.0% FMP) after thawing at 1,800°C/min. The percentage of sperm with normal apical ridge (NAR) also increased moderately with thawing rate, but the degree of improvement decreased as the glycerol level was increased. In semen frozen at 1°C/min, acrosomal integrity (NAR) was best maintained in 2% glycerol, reaching 22.9% NAR after thawing at 1,800°C/min. In semen frozen at the optimal rate of 30°C/min, the increases in thawing rates above 200°C/min substantially improved motility. Motility was generally higher in semen protected by 4 or 6% glycerol, with the peak values of 44 or 46% FMP, respectively, after thawing at 1,200°C/min. The proportion of sperm with NAR also increased with thawing rate, but as in the case of suboptimally frozen sperm it was influenced negatively by the glycerol concentration. The peak value 53% NAR was recorded in semen protected by 2% glycerol, frozen at 30°C/min, and thawed at 1,200°C/min. In view of the inverse relationship between FMP and NAR, selection of optimal conditions from among the interacting variables, freezing rate, glycerol concentration, and thawing rate requires compromising between maximal FMP and maximal NAR. Accordingly, we have adopted as optimal a protocol with a thawing rate of 1,200°C/min, a freezing rate of 30°C/min and concentrations of 3% glycerol. © 1993 Wiley-Liss, Inc.  相似文献   

9.
T Nei 《Cryobiology》1976,13(3):287-294
Morphological alterations of human red blood cell membranes were examined with the cells containing different concentrations of glycerol being subjected to rapid rates of cooling, approximately 104 and 105 °C/min, and subsequent rewarming. Small membrane defects, similar to holes, were observed in specimens frozen with and without 10% glycerol. Various degrees of roughness were found on the surface of the cells at all freezing rates tested. The membrane alterations were reduced with increasing glycerol concentration, although roughness also appeared on the surface of the cells in 30% glycerol suspensions, frozen rapidly, and rewarmed to ?80 or ?60 °C. The cell membrane surface texture correlated with the growth of intra- and extracellular ice particles. There was also a positive correlation between these alterations and post-thaw hemolysis. It is concluded, therefore, that morphological alterations appearing on the erythrocyte membranes may be a manifestation of freezing damage.  相似文献   

10.
Babesia rodhaini parasites in murine blood containing 1.5 m DMSO were frozen at two rates, as judged by the duration of the “freezing plateau”, then cooled to ?196 °C and rewarmed at two rates to detect interactions between the duration of the plateau and rates of subsequent cooling and rewarming. Infectivity tests showed that fast and slow freezing (plateau times of about 1 sec and 30 sec, respectively) had similar effects on parasite survival when cooling was at 130 °C/min and warming was at 800 °C/min. However, when either the cooling rate was increased to 3500 °C/min or the warming rate was decreased to 2.3 °C/min, fast freezing decreased parasite survival more than did slow freezing. It is suggested that fast freezing accentuated the damaging effects of fast cooling and slow warming by increasing intracellular ice formation.  相似文献   

11.
Human red cells were equilibrated for 30 min at 20 °C in buffered saline containing 2 m glycerol and then frozen to ?196 °C at 0.27, 1.7, 59, 180, 480, 600, and 1300 °C/ min and warmed at 0.47, 1, 26, 160, and 550 °C/min. Cells frozen at 600 and 1300 °C/min responded in the classical fashion for cells containing intracellular ice; i.e., survivals were low when warming was slow (<10%), but increased progressively with increasing warming rate. The sensitivity to slow warming presumably reflects the recrystallization of intracellular ice. Cells frozen at 59 and 180 °C/ min yielded high survivals at all warming rates. This response is also consistent with the findings for other cells cooled just slowly enough to preclude intracellular ice. Cells frozen very slowly at 0.27 and 1.7 °C/ min, however, responded differently; survivals were considerably higher when warming was slow (0.47 or 1 °C/min) than when it was 26, 160, or 550 °C/min. This response is analogous to that observed recently by others in mouse embryos and in higher plant tissue-culture cells and to that observed for many years in higher plants. It also confirms previous observations of Meryman in human red cells. It may reflect osmotic shock from rapid dilution but, if so, the basis of the osmotic shock is uncertain.  相似文献   

12.
The aim of the present study was to analyse morphological variations in ovine spermatozoa subjected to different cryopreservation protocols using high resolution imaging techniques. Ejaculates were pooled and diluted in Tris-based extender. Aliquots containing 300 × 106 spz/ml were prepared and evaluated a) after the semen collection and pooling, b) after conventional freezing, c) after vitrification of samples maintained at room temperature (22 °C) prior to vitrification, and d) after vitrification of samples maintained at 5 °C prior to vitrification. Sperm motility, acrosome integrity, DNA fragmentation and morphology were assessed. Subcellular sperm changes were assessed and described by light microscopy, scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The maintenance of spermatozoa at 5 °C prior to vitrification and the use of 0.4 M sucrose pointed out lower dimensions of area, length and width than fresh, frozen and sperm maintained at 22 °C prior to vitrification. It was observed that the head width and length are significantly higher (P < 0.0001) in fresh spermatozoa than in the vitrified sperm samples. It could be hypothesized that greater intracellular fluid loss during vitrification could prevent damages in the spermatozoon throughout the reduced ice crystals formation, but mainly by the reduction of extracellular ice crystals due to the physical properties modification obtained when high concentrations of sugars are added. This is the first ultramicroscopic study carried out in ovine vitrified spermatozoa, which confirms the functional sperm alterations previously detected.  相似文献   

13.
《Cryobiology》2016,72(3):486-492
Low cell recovery rate of human embryonic stem cells (hESCs) resulting from cryopreservation damages leads to the difficulty in their successful commercialization of clinical applications. Hence in this study, sensitivity of human embryonic stem cells (hESCs) to different cooling rates, ice seeding and cryoprotective agent (CPA) types was compared and cell viability and recovery after cryopreservation under different cooling conditions were assessed. Both extracellular and intracellular ice formation were observed. Reactive oxidative species (ROS) accumulation of hESCs was determined. Cryopreservation of hESCs at 1 °C/min with the ice seeding and at the theoretically predicted optimal cooling rate (TPOCR) led to lower level of intracellular ROS, and prevented irregular and big ice clump formation compared with cryopreservation at 1 °C/min. This strategy further resulted in a significant increase in the hESC recovery when glycerol and 1,2-propanediol were used as the CPAs, but no increase for Me2SO. hESCs after cryopreservation under all the tested conditions still maintained their pluripotency. Our results provide guidance for improving the hESC cryopreservation recovery through the combination of CPA type, cooling rate and ice seeding.  相似文献   

14.
Visualization of freezing damage. II. Structural alterations during warming   总被引:4,自引:0,他引:4  
H Bank 《Cryobiology》1973,10(2):157-170
There is a growing amount of indirect evidence which suggests that the loss in viability of rapidly cooled cells is due to recrystallization of intracellular ice. This possibility was tested by an evaluation of the formation of morphological artifacts in rapidly cooled cells to determine whether this process can account for the loss in viability. Samples of the common yeast Saccharomyces cerevisiae were frozen at 1.8 or 1500 °C/min, and the structure of the frozen cells was examined by the use of freeze-fracturing techniques. Other cells cooled at the same rate were warmed to temperatures ranging from ?20 ° to ?50 °C and then rapidly cooled to ?196 °C, a procedure that should cause small ice crystals to coalesce by the process of migratory recrystallization. Cells cooled at 1500 °C/min and then warmed to temperatures above ?40 °C formed large intracellular ice crystals within 30 min, and appreciable recrystallization occurred at temperatures as low as ?45 °C. Cells cooled at 1.8 °C/min and warmed to temperatures as high as ?20 °C underwent little structural alteration. These results demonstrate that intracellular ice can cause morphological artifacts. The correlation between the temperature at which rapid recrystallization begins and the temperature at which the cells are inactivated indicates that recrystallization is responsible for the death of rapidly cooled cells.  相似文献   

15.
K R Diller 《Cryobiology》1975,12(5):480-485
Human erythrocytes were frozen on the stage of a cryomicroscope at accurately controlled constant-cooling rates with varying degrees of extracellular supercooling. The formation of intracellular ice was detected by direct observation of the frozen cells through the microscope. A significant coupling effect was determined between the minimum cooling rate necessary to produce intracellular freezing and the extent of supercooling. Increased degrees of extracellular supercooling reduced the range of cooling rates for which water would freeze within the cell. Specific data points were obtained at ΔTSC = 0, ?5, and ?12 °C for which the corresponding transition cooling rates were respectively ?845, ?800, and ?11 °C/min.An explanation for the occurrence of this phenomenon is presented based on the physiochemical processes that govern the freezing of a cell suspension.  相似文献   

16.
Tumor cells of an ascites sarcoma of rat were primarily frozen very rapidly with the original host ascitic fluid at ?27 °C by the spraying method. Frozen specimens were fractured and replicated at about ?100 °C under vacuum by a special spray-sandwich method for freeze-etching, and the morphological appearance of ice crystals formed in and around the frozen cells were observed by electron microscopy.The cells cooled very rapidly at ?27 °C actually froze intracellularly, and intracellular ice crystals ranged from 0.03 to 0.5 μm in grain size due to the initial freezing rate of the specimens. In the cells having granulous intracellular ice crystals less than 0.05 μm in grain size, cytoplasmic organelles seemed to maintain their original structures.We suggested in our previous report that these tumor cells, frozen very rapidly at temperatures above ?30 °C, survived intracellular freezing as long as they remained translucent, and optically no ice crystals appeared within them, as seen in intact unfrozen cells. It may therefore be concluded that the tumor cells frozen very rapidly at temperatures near ?30 °C actually freeze intracellularly and probably maintain their viability as long as the size of individual intracellular ice-crystals is kept smaller than 0.05 μm, although the exact critical size of innocuous intracellular ice crystals is uncertain.  相似文献   

17.
Ultrastructural observations on the frozen state of pancreatic acinar cells were correlated with results of parallel studies before freezing and after thawing, as to cryoinjury and cryoprotection.Data support an hypothesis of freezing injury based upon intracellular ice and solution effects during rapid and slow freezing, respectively. The basis for superiority of extracellular over intracellular glycerol in cryoprotection was demonstrated in terms of these factors.Evidence is offered to explain the ultrastructural cryoinjury and cryoprotection of rough endoplasmic reticulum (RER) seen after thawing, relative to the combined effects of freezing rate and glycerol. Slow freezing, in combination with the presence of extracellular glycerol, provided sufficient dehydration to almost completely suppress intracellular ice formation, yielding minimal ultrastructural alteration of RER. Greatest cryoinjury, expressed as extensive conversion of RER into sphere-like vesicles, was induced by the extensive intracellular ice formation which accompanied rapid freezing. A mechanism is suggested to explain physical damage of RER by intracellular ice.  相似文献   

18.
Armitage WJ  Juss BK 《Cryobiology》2003,46(2):194-196
Cells in monolayers have been reported to be more susceptible to freezing injury than the same cell type frozen in dispersed suspensions. There appears to be an enhanced susceptibility to intracellular freezing in the monolayers, which is thought to be facilitated by the presence of gap junctions allowing the spread of ice between neighbouring cells. MDCK Type II cells do not form gap junctions in monolayer culture. When frozen at rates of 0.2 to 10 degrees C/min, monolayers in 10% (v/v) propane-1,2-diol or dimethyl sulphoxide showed little influence of cooling rate on survival. This suggested that, in the absence of gap junctions, cells in monolayers did not display enhanced susceptibility to intracellular freezing. In contrast, however, monolayers frozen in glycerol showed a marked increase in cell damage when cooled at rates higher than 0.5 degrees C/min. This does not necessarily counter the suggestion that lack of gap junctions mitigates intracellular freezing as there is evidence that glycerol may itself promote intracellular freezing.  相似文献   

19.
The occurrence of intracellular ice formation (IIF) during freezing, or the lack there of, is the single most important factor determining whether or not cells survive cryopreservation. One important determinant of IIF is the temperature at which a supercooled cell nucleates. To avoid intracellular ice formation, the cell must be cooled slowly enough so that osmotic dehydration eliminates nearly all cell supercooling before reaching that temperature. This report is concerned with factors that determine the nucleation temperature in mouse oocytes. Chief among these is the concentration of cryoprotective additive (here, glycerol or ethylene glycol). The temperature for IIF decreases from -14 degrees C in buffered isotonic saline (PBS) to -41 degrees C in 1M glycerol/PBS and 1.5M ethylene glycol/PBS. The latter rapidly permeates the oocyte; the former does not. The initial extracellular freezing at -3.9 to -7.8 degrees C, depending on the CPA concentration, deforms the cell. In PBS that deformation often leads to IIF; in CPA it does not. The oocytes are surrounded by a zona pellucida. That structure appears to impede the growth of external ice through it, but not to block it. In most cases, IIF is characterized by an abrupt blackening or flashing during cooling. But in some cases, especially with dezonated oocytes, a pale brown veil abruptly forms during cooling followed by slower blackening during warming. Above -30 degrees C, flashing occurs in a fraction of a second. Below -30 degrees C, it commonly occurs much more slowly. We have observed instances where flashing is accompanied by the abrupt ejection of cytoplasm. During freezing, cells lie in unfrozen channels between the growing external ice. From phase diagram data, we have computed the fraction of water and solution that remains unfrozen at the observed flash temperatures and the concentrations of salt and CPA in those channels. The results are somewhat ambiguous as to which of these characteristics best correlates with IIF.  相似文献   

20.
Previous studies have demonstrated that glycerol does not have to permeate bovine red cells to protect them against subsequent freezing and thawing. The present study is concerned with the relation between solute permeation and freezing injury of human red cells. Cells were held in 2 m glycerol for 30 sec to 10 min at 0 °C and then frozen to ?196 °C at 60 °C/min. Cells cooled at this rate have a very low probability of undergoing intracellular freezing. Percent survivals (≡percent unhemolyzed) increased by 21% (from 66 to 80%) over the first 3-min period. Extrapolation to zero time (and zero glycerol permeation) yields a survival of 57%. Between 30 sec and 3 min the calculated osmolal ratio of intracellular glycerol to other solutes increased 240% (from 2.5 to 5.7). The human red cell is impermeable to sucrose at 0 °C. Cells suspended in 1.40 m sucrose (equiosmolal to 2.0 m glycerol) for 0.5 to 10 min prior to freezing yielded as high survivals after thawing as did cells in glycerol.These data indicate that prior permeation of additive is not a prerequisite for the survival of red cells subjected to subsequent freezing and thawing. Although sucrose and glycerol protect equally well to this point, differences appear when attempts are made to remove the additive. Over 90% of the cells survive the removal of glycerol. Only some 30% survive the removal of sucrose. Cells frozen in an equisomolal solution of sodium chloride do not even survive the initial freezing and thawing.The findings indicate that slow freezing injury cannot be accounted for in terms of the attainment of a critical minimum volume, nor can it be considered to be equivalent to posthypertonic hemolysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号